
Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

— Tiny errors, big losses: stories of 0wnage —

Fyodor Y.

Guard-Info

October 25, 2008

1 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

1 Introduction

2 Web from attacker’s perspective

3 Presentation notes

4 Small screw-ups

5 Funny Design Screwups

6 Convinient stupidities

7 Conclusion

2 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Introducing Presenter

My name is Fyodor Yarochkin (often simply Fyodor Y.). I am not
the nmap guy (snort faq Q1.2). I did some stuff for snort, xprobe
and some other obscure public projects. I like to code and
experiment with fun stuff.
I also do some penetration testings and application testings as my
day-job. So this presentation summarises my experience.

3 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Why hacking web is fun?

easy, time-efficient

you often see simple/stupid errors that are easily exploitable

these ”stupid” errors can’t be found with scanners, because they are
”custom” type of bugs (no other web application would have
exactly the same bug)

application logic bugs are easy to find manually if you understand
the application, but nearly impossible - with existing automated
tools

firewalls lock everything but they don’t lock web!

4 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Presentation Notes

We will discuss bugs, which I’ve seen in the wild.

The bugs I selected for discussion are - prevalent bugs - i.e. bugs
that I have seen in one or another variation over the years.

I will not tell you where I saw them.

Screenshots that I will show - replicate actual bugs that I saw, but
they are not screenshots of customer systems that I worked with.

Still.. I will tell you what was the bug. what was the impact of the
bug and how 0wnage happened.

what is the ”right” way to mitigate the type of bugs or make the
exploitation harder.

5 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Presentation Notes

I’ve organized this presentation as a collection of SCREW-UPS
that usually lead to web application or system comrpomise.
Technically, the web application is just as secure as secure its
weakest component or set of components.

6 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Presentation Notes

So if the web application code is secure, but the deployment is
bad, the total ”security” of the web application is bad.
Likewise, if the deployment is good, and machines are expensive,
and alot of money were spent on firewalls, but the code was
produced by jsp-in-21-day, the application security is still ”bad”.

7 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

The 0wnage strategy

A web application 0wnage (or any 0wnage perse) doesn’t usually
happen because of one bug. Its more like solving a puzzle, using
different sources of information.
These source of information could be anything, from web search
posts, posts to the public forums to ldap data dumps, and
application source code.

8 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

SCREWUP: Admin Forgetful

One of the things to search for on the web, is the stuff that admins
forget about. And usually there are alot of juicy finds... and
usually are easy ways in. Some examples..

9 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Forgotten Admin interfaces

PHPMySQLAdmin, simple /admin/ interfaces to various stuff
(cms systems, DB management.

10 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Real Ownage Story

Unpassword’ed PHPMySQLAdmin interface provided access to
mysql database that contained authentication credentials (user ids,
passwords, and internal IP addresses) to a large number of internal
systems.

11 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Forgotten Admin interfaces

You can find more admin interfaces by performing file name
bruteforce and combining ”admin” with variety of words related to
web site. (i.e. cmsadmin). Some apache settings and IIS case
insensitivity make the bruteforce tasks even easier.

12 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

and more...

While you’re here, you can also check if admins keep other
interesting folders. you can often find application source code, logs
or other interesting stuff in it.

13 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Real Ownage Story

The tmp folder contained tars of various application components.
ready to download. Consequential application vulnerabilities were
discovered by application source code manual analysis. These were
later exploited.

14 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

SCREWUP: passwords

Passwords to admin interface are easy to guess (if any required at
all!!), if admins assume that the interfaces are not public.
(admin/admin is a very common password)

15 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

SCREWUP: Forgotten source code

Application source code is usually a good find. Getting application
source code is often easier than you think.

foo.com/myapp =¿ foo.com/myapp.tgz

You can also look for jars and other java classes. Java reverse
engineering tools are reliable enough to get you readable
application code. So, if you can find misconfigured WEB-INF folder
and download classes from there, that’s another good thing :)

16 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Real Ownage Story

Application class files were downloaded from WEB-INF/classes
folder. Decompiled and file upload vulnerabilities were found and
exploited.
Test components and remote shell (left by developers?) was first
found inside downloaded .tgz archive, and then used on actual
system.

17 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

more source code

Another way to hunt for application source pieces is to search for
.inc/.bak files.. - some editors create .bak automagically. And web
admins often wouldn’t remove these...

18 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

SCREWUP: log files

Web app admin uses oracle client to debug application
Client drops sqlnet.log file into current directory.
Current directory is ofen the web app directory.. accessible from
outside

19 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

SCREWUP: log files

admin uses WSFTP to upload web content..

This may give some details on internal network, IPs etc. Not very
useful by itself, but often helpful in combination with other bugs

20 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Design Bugs

The other set of interesting bugs to go after is design bugs.
These are usually hard, if not ipossible to find with application
scanners. Therefore they are a good hunt :)

21 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Embedded Data

Some developers think it is a very neat idea to allow your ActiveX
component to authenticate users by connecting to DB directly.
But implementations may be wrong..

22 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Embedded Data

ActiveX connects to database. Executes SQL query to validate
user and ether logs user in or displays error message.
The caveat of such design is that database authentication
credentials are embedded within the ActiveX binary and can be
easily extracted by ”curious” user.

23 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Broken Authentication Schemes

An application uses two components that run under two
incompatible (thank you, industry) application servers. One
application provides authentication service. The other application
needs to verify that user was authenticated.
How people do it...

24 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Broken Authentication Schemes

The second application simply verifies that parameter
COOKIE=blah is passed to the application. The application has
no way to know the actual cookie thu, so it ”assumes” that the
cookie is good.

25 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Real Ownage Story

The application had to use some other host for file uploading
functions. The original application used WebLogic, while file
upload server was an IIS system. Not only you could specify where
to upload the files, but also you did not have to log into the
application to do it.

26 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Another Broken Authentication Schema

PageA asks for password and submits to PageB
PageB takes password, validates, and submits to PageC
PageC sets session to authenticated and redirects to Main..
How do you bypass this auth. thing? :)

27 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Broken Session Tracking Mechanisms

Privileged access. How does application know if that is admin
session?

28 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Broken Session Tracking Mechanisms

Set-Cookie: Admin=1

heh..

29 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

More funny stuff (real-life examples)

URL Embedded passwords - what could be more convinient.. ;-)

setCookie(’OTPlogin’, ’***censored****’, expires);
var URLList =

’https://**censored**/user.userlogin?username=**censored*
&passwd=decc**passcut**&auth=radius

&clientip=**huhu**&custom=free’;

This type of URLs cries for some manipulation ;-)

30 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Funnys

Access control - the way not to do it:

31 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Don’ts in implementing access control

”I only show you menus, which you are allowed to see”. (and you
can guess the rest, .. especially when application component
names are sequential).

32 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Even worse method to implement the same
thing

”I only show you menus, which you are allowed to see”. (and you
see the rest inside HTML commented code).

33 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Real Ownage Story

Hidden application components were guessed because application
folder names were sequential (numbers). No access control check
was performed anywhere within the application except for the main
menu. Once ”admin”-privileged application components were
found, we had full control of the application (including ability to
create/remove users, alter data and so on)

34 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

File Upload is usually a huge hole

File uploads get worse when file upload path is within web
directory.
This is usually done for file linking convinience (you can simply
include ¡a href=/uploads/blargh¿ .. links to the file.
But there are just too many things that can go wrong with this file
upload mechanism. (depends not only on application coding
practice, but also on proper system hardening and web server
secure configuration to function in secure way).

35 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

File Upload is usually a huge hole

Frequent exploitation scenarios: file extension path manipulation,
playing with difference of multi file extrension handling by web
server and application upload component, access to the files
uploaded by other users and so on.

36 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Real Ownage Story

The file upload function was implemented within 3 steps.
intermediate page kept relative path of uploaded file. It was
discovered that it was possible to simply modify path within the
”intermediate” page, to upload files into web server webroot folder.

37 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Worse than SQL injection

SQL code as part of HTML ”hidden” parameter

38 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Real Ownage Story

The developers thought it was very convinient to have a single jsp
script to display nicely the application data. The SQL code to
select data was passed to teh script as ”hidden” parameter.
With simple parameter changes it was possible to completely
compromise the application, not only querying, but also modifying
and inserting new data (including application users) into the
backend database.

39 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Saving Cash on hardware

Intranet and Internet webs on the same box, sharing the same
Content Management System(s)

40 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Other amusing web configurations

FTP and WEB roots map to the same root folder

41 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Real Ownage Story

ftp passwords were reused from other compromised system. Files
uploaded into ftp folder, and executed through web request.

42 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Remote Desktop Applications

Remote Desktop Applications, such as Tarantella/Sun Secure
Global Desktop,Citrix are usually good way in, if you can find user
ids/passwords. You are usually restricted in what you can use (or
even bound to a single application), but finding local shell
execution possibilities usually is not an issue.

43 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Real Ownage Story

Userids were extracted from directory service. Passwords were
automagically guessed against ftp servers. these user ids and
passowrds were reused to access remote desktop applications,
compromise underlying systems and internal segments.
good thing - you’re already inside intranet usually, once you’re on
remote desktop application.

44 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Broken User input validation

It is very convinient to validate user input and filter ”wrong”
characters by using javascript code that executes when submit
button is pressed...
but this is badly wrong (and useless as well ;-))

45 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Real Ownage Story

The file upload function was performing validation of uploading file
extensions by checking (via javascript) whether these files were any
of .exe/.com/.php/.jsp files and would only ”submit” form in case
if the validation test passed.
Checks were bypassed by using perl script to upload files ;-)

46 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Sum-up on discussed bugs

Web Applications are complex systems. A large number of factors
affect web application security. There’s no ”silver bullet” solution
for all the problems. All the discussed earlier bugs can be classified
into following groups: Design flaws, Implementation flaws, Coding
bugs, Configuration and Deployment Flaws, Maintenance issues.
Proper process that utilizes automated tools, and manual analysis
(performed by human brain) is the key attribute in creating and
maintaining properly secured web applications.

47 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Classification

Design flaws - the wrong or erronous decisions, which were made
during application design phase.

Implementation flaws - even if the original design ideas were
security-wise correct, decision on component implementation
methods may still be erroneous (packages to use, required system
configurations)

Coding bugs - bugs that appear as coding errors. Even if the
intention was correct, the way the intention was converted into
code, might be wrong.

Configuration and Deployment flaws - even if the web application
was designed, and developed securely, the actual deployment of web
application may lead to security problems. Missed configuration
options, forgotten source code.

Maitenance issues - web application is usually a live system.
Constant system changes and modifications may leave
security-relevant ”traces”, which could be exploited by attacker

48 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Design flaws

It is nearly impossible to automate process of analysing and
reviewing design flaws. The most effective ways to identify design
flaws are peer-reviews by domain and security experts, application
architecture reviews and so on.
Application manual analysis and testing by application security
testing teams may also be helpful to identify and mitigate (at
higher cost, of already developed application) certain design issues.
Knowledge of basic security principles (trusted vs. untrusted data),
analaysis of data flows from security viewpoint are also helpful to
avoid mistakes at design level.

49 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Implementation flaws

Some of the implementation flaws might be picked by automated
code analysis and testing tools. Others have to manually evaluated
by system security experts. Detailed understanding of functionality
of used application components is usually required to avoid
mistakes at this stage.

50 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Coding bugs

The majority of automated code analysis software and blackbox
application testing software are most effective at this level, as there
are relatively robust technologies to identify and often patch
coding bugs automagically :)

51 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Configuration and Deployment flaws

Use of automated blackbox application testing software along with
manual application is usually helpful approach to identify and
mitigate configuration and deployment problems.
Often, existence of proper configuration and deployment security
policies, system baseline security policies is a great factor in
addressing possible security problems at this level.
Automated tools exist to validate system compliance to base
security policies. Penetration Tests and Application Security Tests
may also be helpful to identify configuration errors, which can’t be
detected automatically.

52 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Maintenance issues

I believe the existence and application of security policies is the key
factor to avoid problems during application maintenance phases.
Productional systems should be periodically validated for existence
of possible misconfigurations, or other security threats that were
introduced by application changes.
Some of these ”compliance” checks may actually be automated
(for example it is very easy to automade checks for .bak files, log
files or application source code within the application web root
folder).
Other checks could be performed using automated tools or
periodical manual review.

53 / 54

— Tiny errors, big losses: stories of 0wnage —

Outline Introduction Web from attacker’s perspective Presentation notes Small screw-ups Funny Design Screwups Convinient stupidities Conclusion

Questions?

Or answers.. comments... :-)
fygrave at gmail dot com
And thank you very much ;-)

54 / 54

— Tiny errors, big losses: stories of 0wnage —

	Outline
	Introduction
	Web from attacker's perspective
	Presentation notes
	Small screw-ups
	Funny Design Screwups
	Convinient stupidities
	Conclusion

