
The Cool Future of Source Code Analysis

USING THE WISDOM OF THE CROWD TO

ENHANCE APPLICATION SECURITY

By Moshe Lerner

VP Corporate Strategy at Checkmarx

ABOUT MYSELF

Moshe Lerner

VP Corporate Strategy at Checkmarx

- Led many Israeli software companies
- A technology, vision and business match-maker

moshel@checkmarx.com

APPLICATION SECURITY ANOMALY

Ratio Developers VS QA experts

2 : 1

Ratio Developers VS Appsec experts

150 : 1

CAN WE TRULY SECURE APPS?

NEW PARADIGMS

CAN WE CREATE A TRUE SECURE SDLC?

Agile Development

Continuous Deployment

Beta = GA

Hybrid Apps

ISSUES AT HAND Size | Complexity | Volume

The biggest challenge of current source code

analysis solutions is size and agility!

How to deliver:

1. Usable results

2. Automatically

3. Out-of-the-box

4. Accurate

 for extra large code bases with thousands+ of results

AGENDA
1. How to automatically detect issues that the user does not

even know how to describe.

 - “Extracting knowledge” from a large code base

 (wisdom of the crowd)

2. How to automatically correlate ???

 - Suggest remediation actions for a fraction of the time for
 extra large code bases

ZERO DAYS? ZERO CONFIGURATION?

• What happens if you do not even know what question to ask?

• What if you do not have the resources to configure the system?

• We want a “guru” that asks the questions for us.

– Configures the system for us.

– Finds the vulnerabilities for us.

– Guides us how to fix.

Hold on for a few more slides …

SOURCE CODE ANALYSIS

HISTORY

FIRST GENERATION CODE ANALYSIS

• The system came out of the box with the relevant security

knowledge wired into the system.

• Little-to-no adaptation capabilities.

FIRST GENERATION CODE ANALYSIS

NEW GENERATION CODE ANALYSIS

• The system came out of the box with the relevant security knowledge

• Ability to customize existing security knowledge

• Ability to add you own business logic

• EASY!! Virtual Compiler. No need to compile your code.

• EASY!! Incremental scan.

• Detection ranges from SQL Injection to Backdoors

Security

 Quality

Business
 Logic

Abstract Store

NEW GENERATION CODE ANALYSIS

<EXAMPLE/>

A = Input

DB (C + B)

C = escapeSingleQuotes (A)

B = Input

B

SOQL Injection:

<EXAMPLE/>

CxList Input = All.FindByName(“input”);

CxList DB = All.FindByName(“execute”);

CxList Fix = All.FindByName(“fix”);

Return DB.InfluencedByAndNotSanitized(input, fix);

APPLICATION INTELLIGENCE

Security

 Quality

Business
 Logic

The Cool Future of Source Code Analysis

SCKD
Source Code Knowledge Discovery

“Using Wisdom of the crowd (Big Data) to identify
security vulnerabilities via code irregularities”

ZERO DAYS? ZERO CONFIGURATION?

• What happens if you do not even know what question to ask?

• What if you do not have the resources to configure the
system?

• We want a “Guru” that asks the questions for us.

• Configures the system for us.

• Finds the vulnerabilities for us.

• Guides us.

THERE IS SUCH A GURU

YOU

YOU

YOU

and… YOU!

All of you – Wisdom of the crowd

Most of the developers write good, standard, quality code, most
of the time

CROWD

We can set a baseline based on code statistics and find
deviations thereof

SCKD

• Source Code Knowledge Discovery – an active research
(Knowledge Discovery in DB - http://en.wikipedia.org/wiki/Knowledge_extraction)

 “Knowledge discovery describes the process of automatically
searching large volumes of data for patterns that can be
considered knowledge about the data. It is often described
as deriving knowledge from the input data. Knowledge discovery
developed out of the Data mining domain, and is closely related to
it both in terms of methodology and terminology.”

http://en.wikipedia.org/wiki/Knowledge_extraction

TECHNIQUE

• Building reference data

• Finding common sequences

• Finding violations

S = input();

If (isValid(s))

{

 …

 response.write(s);

 …

}

A = input();

If (isValid(A))

{

 …

 response.write(A);

 …

}

K = input();

If (isValid(k))

{

 …

 response.write(k);

 …

}

M = input();

If (isValid(M))

{

 …

 response.write(M);

 …

}

C = input();

If (isValid(C))

{

 …

 response.write(C);

 …

}

BUILDING REFERENCE DATA

* = input();

If (isValid(*))

{

 …

 response.write(*);

 …

}

 v = input();

 …

 response.write(v);

 …

?

X

FINDING DEVIATIONS

BACKDOOR
if my name is Moshe, login

If (isAuthenticated(user))
{
 ….
}

If (isAuthenticated(user))
{
 ….
}

If (isAuthenticated(user))
{
 ….
}

If (isAuthenticated(user))
{
 ….
}

If (isAuthenticated(user))
{
 ….
}

If (isAuthenticated(user) || user.name == “Moshe”)
{
 ….
}

If (isAuthenticated(user) || user.name == “Moshe”)
{
 ….
}

EXAMPLE: LEVERAGING CLOUD OF APPS?

VAT = 1.05

…

VAT = 1.08

…

VAT = 1.08

…

VAT = 1.08

Find similarities between

different applications in order to

set an intra-corporate

standard.

With Zero-Definition!

It’s enough that some

apps were fixed.

They’ll allow us to find

the apps that are not yet fixed.

WORKS WELL FOR:

• General:

– We can find the hidden knowledge of the crowd, give it a name and find breaches of it.

• Security:

– Make sure the user is authenticated at each page

– Auto-recognize sanitization routines

– Backdoors (“if (isValid(user) or user==“Moshe”)…”)

– Business logic (“if (qty > 0) {charge (qty*amnt)}”)

• Quality

– Always release a specific resource

– Best coding practices (auto recognize conventions)

– Initialize a variable

ALSO

• Wisdom of the crowd

• Works better for larger enterprises and code bases

GRAPH VISUALIZATION

Optimize call for action

“Using smart graph methods to identify
Vulnerability junctions and best fix locations ”

ISSUE

• Findings thousands accurate results, does not make us happy …

• Webgoat, for example, has ~220 XXS+SQL Injection

• Assuming 30 minutes to fix each one + 30 minutes to validate will take 220

hours - ~ 1 month of work

• We’ll narrow this down to 16 places

• ~1/14 of the time

• So we have some time to play golf ;)

CURRENT SITUATION

Each results has a data flow, presented
independently from other findings.

SINGLE DATA FLOW PATH- XSS

String s = Request.QueryString[“param1”];
…

Response.Write(s);

Request.QueryString[“param1”];

s

Response.Write(s);

Request.QueryString[“param1”];

s

Response.Write(s);

CURRENT SITUATION

ONE IS EASY … AND 14?!

Many Single-Path – XSS – a lot of work

BUT…

What do they have in common?

Combined paths

CAN WE:

• Point, click and check without even READING the source

code?

• “What if I fix here? Or here?”

What-If I fix here?

Here it is more effective

And here?

Automatic “What-if” => Best Fix Location

Compare the two:

Vs.

BENEFITS

• Gives you the correlation between findings of the same type

(e.g. SQLi) and different types.

• You are not dealing with individual findings – but with a

complete system

• Use your time better

FIX LOCATIONS

• At the point of a click we narrow down 220 places into 16.

• The more results, the more effective this solution is

RECAP

The biggest challenge of current source code analysis

solutions is size!

How to deliver:

1. Actionable results

2. Automatically

3. Out-of-the-box

4. Accurate

 for extra large code bases with thousands+ of results

QUESTIONS?

Thank you

Moshe Lerner
Moshel@checkmarx.com

