
ML* vs Cryptocoin Miners
*Statistical Analysis



About me

• Jonn Callahan

• Principal Sec Consultant @ nVisium (DC-based)

• Python & Golang

• Math is neat, even if I’m terrible at it
• I’d liken myself to a mathematical skid, but I’m learning!

• Huge metalhead



• Credit @corsoa



Quick Intro

• Cryptocoin mining is a new (ish) path of monetizing popped boxes
• Monero (XMR) + Verium (VRM)

• Vast majority of pools utilize the Stratum protocol 
• This is what we’ll actually be analyzing

• Network traffic is aggregated and exposed within AWS via VPC Flow 
Logs

• Mining traffic probably exhibits some patterned behaviors

• So, is it possible to build a mining-specific IDS running against Flow 
Logs?



Starting Data

• 24 hours of mining traffic from 12 different cryptocoin miners
• All Monero (XMR)

• All the same pool and port

• Varying c4 sizes (had the best $:hashrate at spot pricing)

• 3 weeks worth of non-mining traffic
• ~82,000 unique-by-IP, one-way streams (pre-transformation)

• ~38,000 unique-by-IP-pair, bi-directional streams (post-transformation)

• ~1,000 unique ENIs (virtual NICs)



VPC Flow Logs

• Aggregate 5-tuple network logs organized by ENI

• Aggregation occurs over 10-minute windows

• Two log entries for each single TCP stream

• version account-id interface-id srcaddr dstaddr srcport dstport
protocol packets bytes start end action log-status

• 2 178069999999 eni-55aa9999 91.189.89.199 172.12.12.12 3333 
45113 6 3 760 1520029322 1520029358 ACCEPT OK 



VPC Flow Logs Transformation

• Need to re-organization and correlate multiple flow log entries that 
correspond to TCP streams from two services communicating

• Can filter out REJECT
• Focusing strictly on clients that are successfully mining

• Organize by IP and protocol (ignore port)
• Proto 6 == TCP
• Client ports can vary (ephemeral ports) but a remote mining server is unlikely 

to receive anything other than mining traffic – safe to aggregate traffic by 
unique IP pairs

• Count all unique IP addresses, use to assume which is the source (saves an 
AWS API call)



Data Extraction

• Eight features available to us
• Number of bytes sent by src/dst

• Number of packets sent by src/dst

• Number of unique src/dst ports

• Length of src/dst communication



Strategy

• Graph data (false positives if iteration > 1)

• Eyeball patterns

• Build model

• Filter non-mining traffic

• Repeat until no more false positives



Attempt 0

• Quick and dirty check: number of unique dst ports

• Since our infected machine acts as a client communicating with a 
remote mining pool, it’s safe to assume only a single remote port is 
used
• But a variety of ephemeral src ports will likely be used

• Therefore, lets strip out streams with multiple dst ports

• Sadly, this strips out very few streams (~200 of our ~38k)



Attempt 1

• Lets graph two dimensions of our data and see how they correlate

• Specifically, lets focus on the number of bytes and packets sent

• Do they correlate?

• Is there clustering?

• Any discernable patterns?











Patterns

• Fairly strong clustering among most metric-pairs

• src pkts x src bytes has the strongest linear correlation
• Though all metric pairs look to correlate linearly to some degree

• A striation pattern emerges for src with enough points
• Also appears with src bytes x dst bytes, but with less linear correlation

• Not so much for dst, though maybe aggregating all mining data and zooming 
in a bit will reveal something

• Surprisingly, points at (0, 0)



Build a Model

• Lets focus on the clustering

• Since we strong clustering, we can define the area that encompasses 
all of our samples via a convex hull
• This methodology is conceptually similar to defining a hyperplane a la SVM, 

for those familiar









Let’s filter!

• With a defined hull, we can now pipe the samples through

• If a set of traffic stream’s membership rate within our hull is under 
our limit, strip it out

• For now, let’s pick an arbitrary rate of 98%



n-Dimensional Euclidean Magic

• The previous hull graphs aren’t really representative of what we’re 
actually doing

• Since computing the convex hull of a point cloud relies on Euclidean 
distances, we don’t need to limit ourselves to 2-dimensional hulls 
(and 5 different sets of hulls, one for each metric pairing)

• Instead, let’s define a 4-dimensional hull encompassing:
• src bytes sent

• src packets sent

• dst bytes sent

• dst packets sent



Curse of Dimensionality

• As the number of dimensions increases, volume increases at such a 
rate that points become sparse

• Restated: as dimensions increases linearly, amount of data needed 
increases exponentially

• Typically only starts to occur with hundreds of dimensions, so 
irrelevant to us
• But an important note nonetheless!





Results

• ~38k streams -> ~19k streams

• Good first attempt, but lets take a look at what got through





Attempt 2

• Many of the FPs looked like the previous graph
• Lots of points at (0,0,0,0)

• Since our test data populates far more than (0,0,0,0), lets strip those 
out -> build a new hull -> re-filter





Et voilà!

• ~19k -> 4
• No, that’s not a typo. Four streams, not 4k.





So what next?

• Lots of other options for fingerprinting cluster shape
• Size of the convex hull interior

• Mean/median nearest-neighbor

• Spatial homogeneity within the convex hull
• Ripley K and L functions (expensive and accurate)

• Number of members within a set of concentric circles centered on the center point of 
the convex hull (cheap and inaccurate)

• Quantifying the striations found in src pkts x src bytes pairing

• Timestamp analysis (bursts of traffic vs continuous)
• This would easily strip out our last four false positives

• Linear regression line
• Angle

• Mean/median pt distance to regression line



So what next?

• Optimization

• A perfect model is useless if it takes too long to run

• Compare time-to-execute of other strategies



So what next?

• Collect more mining data
• Pools with different Stratum configurations

• Share difficulty

• Reward systems (PPLNS, PPS, etc)

• Solo mining

• Unsuccessful/blocked miners
• REJECT traffic – miners that can’t reach their target pool/wallet 

• Different coins

• Collect more non-mining data
• Now taking VPC Flow Log donations….



Tooling + Learning

• Python!

• numpy + scipy for all the mathematical black magic

• matplotlib for making the pretty charts (and some 2D topological 
stuff)

• Algorithms of the Intelligent Web by Douglas McIlwraith et. al.
• (second edition)



If you’re feeling generous….

• I need lots and lots of VPC Flow Logs

• Looking for people to donate

• I plan to release OSS tooling – would be happy to let those who help 
with this preview tooling in a sort-of closed beta



Thanks for listening!

• jonn.callahan@nvisium.com

• @jonn.callahan

• https://www.slideshare.net/JonnCallahan/owasp-m-lvscryptocoins-
128298635

mailto:jonn.callahan@nvisium.com
https://www.slideshare.net/JonnCallahan/owasp-m-lvscryptocoins-128298635

