ML* vs Cryptocoin Miners

*Statistical Analysis



About me

e Jonn Callahan
* Principal Sec Consultant @ nVisium (DC-based)
* Python & Golang

 Math is neat, even if I’'m terrible at it
* I'd liken myself to a mathematical skid, but I’'m learning!

* Huge metalhead



* Credit @corsoa
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Quick Intro

e Cryptocoin mining is a new (ish) path of monetizing popped boxes

* Monero (XMR) + Verium (VRM)

* Vast majority of pools utilize the Stratum protocol
* This is what we’ll actually be analyzing

* Network traffic is aggregated and exposed within AWS via VPC Flow
Logs

* Mining traffic probably exhibits some patterned behaviors

* So, is it possible to build a mining-specific IDS running against Flow
Logs?



Starting Data

e 24 hours of mining traffic from 12 different cryptocoin miners
e All Monero (XMR)
e All the same pool and port
* Varying c4 sizes (had the best S:hashrate at spot pricing)

* 3 weeks worth of non-mining traffic
e ~82,000 unique-by-IP, one-way streams (pre-transformation)

e ~38,000 unique-by-IP-pair, bi-directional streams (post-transformation)
e ~1,000 unique ENIs (virtual NICs)



VPC Flow Logs

* Aggregate 5-tuple network logs organized by ENI
e Aggregation occurs over 10-minute windows
* Two log entries for each single TCP stream

e version account-id interface-id srcaddr dstaddr srcport dstport
protocol packets bytes start end action log-status

* 2178069999999 eni-552a29999 91.189.89.199 172.12.12.12 3333
45113 6 3 760 1520029322 1520029358 ACCEPT OK



VPC Flow Logs Transformation

* Need to re-organization and correlate multiple flow log entries that
correspond to TCP streams from two services communicating

* Can filter out REJECT
* Focusing strictly on clients that are successfully mining

* Organize by IP and protocol (ignore port)
* Proto 6 == TCP

 Client ports can vary (ephemeral ports) but a remote mining server is unlikely
to receive anything other than mining traffic — safe to aggregate traffic by
unique IP pairs

e Count all unigue IP addresses, use to assume which is the source (saves an
AWS API call)



Data Extraction

* Eight features available to us
 Number of bytes sent by src/dst
* Number of packets sent by src/dst
* Number of unique src/dst ports
* Length of src/dst communication



Strategy

* Graph data (false positives if iteration > 1)
* Eyeball patterns

* Build model

* Filter non-mining traffic

* Repeat until no more false positives



Attempt O

* Quick and dirty check: number of unique dst ports

* Since our infected machine acts as a client communicating with a
remote mining pool, it’s safe to assume only a single remote port is
used

* But a variety of ephemeral src ports will likely be used
* Therefore, lets strip out streams with multiple dst ports
 Sadly, this strips out very few streams (~200 of our ~38k)



Attempt 1

* Lets graph two dimensions of our data and see how they correlate
 Specifically, lets focus on the number of bytes and packets sent

* Do they correlate?

* |s there clustering?

* Any discernable patterns?
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Patterns

* Fairly strong clustering among most metric-pairs

* src pkts x src bytes has the strongest linear correlation
* Though all metric pairs look to correlate linearly to some degree

A striation pattern emerges for src with enough points
* Also appears with src bytes x dst bytes, but with less linear correlation

* Not so much for dst, though maybe aggregating all mining data and zooming
in a bit will reveal something

e Surprisingly, points at (0, 0)



Build a Model

* Lets focus on the clustering

* Since we strong clustering, we can define the area that encompasses
all of our samples via a convex hull

* This methodology is conceptually similar to defining a hyperplane a la SVM,
for those familiar



(a) Convex hull (b) Concave hull
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Let’s filter!

* With a defined hull, we can now pipe the samples through

* If a set of traffic stream’s membership rate within our hull is under
our limit, strip it out

* For now, let’s pick an arbitrary rate of 98%



n-Dimensional Euclidean Magic

* The previous hull graphs aren’t really representative of what we’re
actually doing

e Since computing the convex hull of a point cloud relies on Euclidean
distances, we don’t need to limit ourselves to 2-dimensional hulls
(and 5 different sets of hulls, one for each metric pairing)

* Instead, let’s define a 4-dimensional hull encompassing:

* src bytes sent
e src packets sent
e dst bytes sent
» dst packets sent



Curse of Dimensionality

* As the number of dimensions increases, volume increases at such a
rate that points become sparse

e Restated: as dimensions increases linearly, amount of data needed
increases exponentially

* Typically only starts to occur with hundreds of dimensions, so
irrelevant to us
* But an important note nonetheless!



src packets

src true negative

120 A

100 -

80 -

60 -

40

20 1

0

I
2000

!
4000

I
6000
src bytes

I
8000

!
10000

I
12000




Results

e ~38k streams -> ~19k streams
* Good first attempt, but lets take a look at what got through
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Attempt 2

* Many of the FPs looked like the previous graph
 Lots of points at (0,0,0,0)

e Since our test data populates far more than (0,0,0,0), lets strip those
out -> build a new hull -> re-filter
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Et voila!

e 19k ->4
* No, that’s not a typo. Four streams, not 4k.
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So what next?

* Lots of other options for fingerprinting cluster shape
* Size of the convex hull interior
* Mean/median nearest-neighbor
* Spatial homogeneity within the convex hull

* Ripley K and L functions (expensive and accurate)

 Number of members within a set of concentric circles centered on the center point of
the convex hull (cheap and inaccurate)

* Quantifying the striations found in src pkts x src bytes pairing
e Timestamp analysis (bursts of traffic vs continuous)
* This would easily strip out our last four false positives

* Linear regression line
* Angle
* Mean/median pt distance to regression line



So what next?

* Optimization
* A perfect model is useless if it takes too long to run
* Compare time-to-execute of other strategies



So what next?

* Collect more mining data

* Pools with different Stratum configurations
e Share difficulty
* Reward systems (PPLNS, PPS, etc)

* Solo mining

* Unsuccessful/blocked miners
* REJECT traffic — miners that can’t reach their target pool/wallet

e Different coins

* Collect more non-mining data
* Now taking VPC Flow Log donations....



Tooling + Learning

* Python!
* numpy + scipy for all the mathematical black magic

* matplotlib for making the pretty charts (and some 2D topological
stuff)

* Algorithms of the Intelligent Web by Douglas Mcllwraith et. al.
 (second edition)



If you're feeling generous....

* | need lots and lots of VPC Flow Logs
* Looking for people to donate

* | plan to release OSS tooling — would be happy to let those who help
with this preview tooling in a sort-of closed beta



Thanks for listening!

* jonn.callahan@nvisium.com

* @jonn.callahan

* https://www.slideshare.net/JonnCallahan/owasp-m-lvscryptocoins-
128298635

@ nvisium
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