One time
passwords

#

About me

e Klas Lindfors

e Software Developer at Yubico (http://www.yubico.com)

o Swedish startup with presence in Sweden, UK and US

o Builds the YubiKey, showing itself as a keyboard

o Big name customers: Google, Facebook...

Content

e What is there?
e How does it work?
e What is the future?

What is there?

e HOTP
e TOTP
e Yubico OTP

"HMAC-based One-time Password Algorithm"

e Standardized by Initiative for open authentication, later as RFC-4226
e 6 or 8 digits
e Event based

e Counter synchronization

HOTP Detalls

HOTP(K,C) = Truncate(HMAC(K,C)) & Ox7fffffff

e HMAC-SHA1 of 8-byte counter and key
e Truncation is by taking last 4 bits as index and getting 31 bits
e Modulo digits ** 10

HOTP Example

o Key "kaka" (Oxb6b616b61)

e Counter 1 (Ox0000000000000001)

e HMAC-SHAIL(K, C) = O0x5e3a6c99797fd 3ed5eb2 cff4ae21061aba/748d9 6
e = 1408065202 % 1000000 = 065202

HOTP Validation

e Decide on a window of acceptable counters

o A common window iIs 3

e Start with stored counter + 1 and generate up to counter + 1 + window codes

o Has to be done for each token for the user

e Compare codes one by one until one match, store the value for that
e Requires for synchronized storage of current counter

e Requires a reset for when/if the counter is out of sync

o Could become support intensive

TOTP

"Time-based One-time Password Algorithm"

e Extension of the HMAC-based One Time Password algorithm HOTP to support a time based
moving factor.

e RFC-6238
e Time based

e TiIme synchronization

TOTP Detalls

TOTP(K) = Truncate(HMAC(K, unixtime(now) / 30)) & Ox7fffffff

e Same algorithm as HOTP
e Time instead of counter

TOTP Example

o Key "kaka" (Ox6b616b61)
e Time 2014-02-18 17:30:00 UTC (1392744600)

0 1392744600 / 30 = Ox2C462F4

e HMAC-SHA1(K, C) = Ox8 238609b 904009d8a6bf2ebcfoce98d434ab0fec O
e = 37249179 % 1000000 = 249179

TOTP Validation

e Decide on a window of acceptable time-slide

o If using hard tokens, might have to track time drift individually

e No need to track counters centrally

Event based algorithm using AES encryption
Not a standard

44 characters (12 + 32)

id and OTP in one

Session and use counter

Yubico OTP Detaills

e Private ID (6 bytes)

e Two counters (3 bytes)

e TiImestamp since powerup (3 bytes)
e Random (2 bytes)

e CRC (2 bytes)

e Encrypted with AES-ECB

e Modhex Is used

0123456789abcdef
cbdefghijklnrtuv

Yubico OTP Validation

e Use public-id to find the correct key

e Decrypt the 16 byte OTP with the key
e Verify CRC

e Compare private-id

e Compare session and use counter

o Only looking at the use counter if the session is the same

e Optionally look at the timer, but it might wrap

Yubico OTP Validation (cont.)

e |[n the cloud with YubiCloud

o Clients in most languages (PHP, Python, Ruby)

e Opensource packages to run yourself

e Implement the validation from scratch /“\ / h\] I/h
\wm/ Sasy/ AR

_4-

N r’u‘ ' D,

\M-- _-H.f{z‘ LE,l'-EhII‘R:i'Ty ..-'"" N

OTP Comparisons

e OATH

o + Standard
o + Simple algorithm
o - No identification of the token (unless OATH Token ldentifier is used)

o - Low entropy
o - No way to know if software or hardware
o - Bruteforce

e HOTP

o + Simple hardware tokens exist
o - Syncronized database of counters

e TOTP

o + No database of counters
o + Valid for a limited time

o - More complex hardware with time

#

OTP Comparisons (cont.)

e Yubico OTP

o + Comes with identification

o + Longer OTP that is harder to bruteforce
o + Might be guaranteed hardware

o - Not a standard

o - Syncronized database for the counters

#

Validation in the cloud

e For example YubiCloud or Symantec VIP

e One token can be used for several sites

e One phished token in one setting can be used for others

o With soft multi-credential authenticators the move seem to be to site-local validation
e Redundancy and uptime is critical

e Seed storage

What is the future?

e FIDO Alliance U2F

o Universal Second Factor

e OATH OCRA

o OATH Challenge-Response Algorithm

U2F

e Draft standards published

o http://fidoalliance.org/specifications/download

e Assymetric cryptography (ECC NIST-P2506)
e Unique Key Pair per service
e Contains attestation to ensure a hard authenticator

e Some protection for man-in-the-middle do ;-

stronger
alliance | authentication

U2F Detalls

e Two primitives, Sign and Enroll

e Enroll creates a unique Key Pair, might let the service store it
e Sign takes challenge and site id, signs with ECDSA

e Browser centered, Javascript API

e Nothing secret in the server

e Presence

OCRA

"0OATH Challenge-Response Algorithm"

e RFC-6287
e Challenge-response based OATH
e Same algorithm as HOTP and TOTP

o Though usually used with SHA-256 or SHA-512

e Starting to get some traction

#

Questions

Thank You

e Klas Lindfors <klas@yubico.com>

