
Securing Android Applications
Dario Incalza

$ whoami

2

• Pre-sales & Security Engineer @ GuardSquare
• Pentesting mobile applications
• Securing mobile applications
• keybase.io/h4oxer
• @h4oxer
• www.darioincalza.be

@h4oxer

http://keybase.io/h4oxer
http://www.darioincalza.be

Outline

3

• Android Application 101
• Attack Surfaces Android Application
• Securing Android Applications

• Cryptography
• Code Protection
• Secure Communications
• Secure Execution Environment

@h4oxer

Android Application 101

4

• Java or C/C++
• .apk file == zip file
• Easy to disassemble
• Recompiled upon

installation

AndroidManifest
XML Assets

resources.arsc Resource files

Dalvik Bytecode
(classes.dex)

Native Libraries
(.so libs)

@h4oxer

Attack Surfaces

5@h4oxer

Application CommunicationExecution
Environment

Reverse
Engineering
Piracy
Trojan Injection
Credential Theft

Man-in-the-
Middle
Weak Protocols

Debug Analysis
Emulator Analysis
Hooking Frameworks
Rooted Environment

Local Data Information Theft
Privacy Leaks

Attack Surfaces

Bytecodeviewer

7@h4oxer

APKTool

8@h4oxer

mitmproxy

9@h4oxer

xPosed Framework

• Enables Java and native hooking
• Manipulates zygote process on Android
• Injects XposedBridge.jar in every app
• Implement hooking modules
• No need to modify APKs

10@h4oxer

xPosed Hooking Module

11@h4oxer

 findAndHookMethod(“com.example.BankApp”, “signTransaction”,
new XC_MethodHook()  
{

protected void beforeHookedMethod(MethodHookParam param)
{
 //execute code before method call  
}

protected void afterHookedMethod(MethodHookParam param)
{

//execute code after method call
}

}

Securing Android
Applications

12@h4oxer

Securing Android Applications

• Use secure best coding practices

• Protect, obfuscate and encrypt your application
code

• Harden your communication

• Take into account the execution environment

13@h4oxer

14@h4oxer

Cryptography

15@h4oxer

Problems

• How to store sensitive information on the
device?

• How to securely generate crypto keys?

• How to manage crypto keys?

• What if the user enables FDE?

16@h4oxer

Crypto 101
• Symmetric Crypto = one key for encryption/decryption

• AES, 3DES, Blowfish, many more

• Public-key Crypto = private and public key

• Encrypt with private key, decrypt with public key =
digital signatures

• Encrypt with public key, decrypt with private key =
confidentiality

• RSA, ElGamal, ECC, many more
17@h4oxer

Securely Generate a PBK

18@h4oxer

 public byte[] getEncryptionKey(char[] strongPassword){

 int iterationCount = 10000;
 int keyLength = 256;
 int saltLength = keyLength / 8;
 SecureRandom random = new SecureRandom();
 byte[] salt = new byte[saltLength];
 random.nextBytes(salt);

 KeySpec keySpec = new PBEKeySpec(strongPassword, salt,
 iterationCount, keyLength);

 SecretKeyFactory keyFactory = SecretKeyFactory
 .getInstance(“PBKDF2WithHmacSHA1");

 return keyFactory.generateSecret(keySpec).getEncoded();

 }

Securely Manage Keys
1. Ask user for password, do not store keys, use

PBKDF2
2. Generate Keys and store in KeyStore

– Vulnerable on rooted devices (hard)
3. Generate Keys and store in SharedPreferences

– Vulnerable on rooted devices (easy)
4. Use hardcoded key in application

– One key, reverse engineering, key leaked, big
problem

5. Store Generated Key in /sdcard/
– Readable by all apps, stop.

19@h4oxer

DONT’S

20@h4oxer

• Hardcoded Crypto Keys
• Save Crypto Keys in /sdcard/
• Log sensitive information
• Use AES in ECB mode
• Use DES, MD5, it’s broken/weak
• Implement DIY crypto
• String objects for sensitive information
• Not fixing the SecureRandom vulnerability < JB

21@h4oxer

Code Protection

22@h4oxer

Problems

23@h4oxer

• How to make reverse engineering harder?

• How to protect your code against
extraction?

• How to protect API keys?

• How to hide cryptographic operations?

Code Protection

24@h4oxer

• Name obfuscation

• String encryption

• Class encryption

• Resources, asset and native library encryption

• Control flow and arithmetic obfuscation

• Hide calls through reflection

For Example …

25@h4oxer

 public String encryptSensitiveMessage()
 {
 String nuclearLaunchCode = "abc123";
 String encryptionKey = “secretkey";

 return CryptoEngine.encrypt(nuclearLaunchCode,
encryptionKey);
 }

Layer 1 - API Call Hiding

26@h4oxer

 public String encryptSensitiveMessage()
 {

 String nuclearLaunchCode = "abc123";
 String encryptionKey = "secretkey";
 Class clazz = Class.forName("CryptoEngine");

 Method meth = clazz.getMethod(“encrypt”, String.class,
String.class);

 return (String) meth.invoke(null, nuclearLaunchCode, encryptionKey);
 }

Layer 2 - String Obfuscation

27@h4oxer

 public String encryptSensitiveMessage()
 {

 String nuclearLaunchCode = Base64.decode("YWJjMTIz");
 String encryptionKey = Base64.decode("c2VjcmV0a2V5");
 Class clazz =
Class.forName(Base64.decode("Q3J5cHRvRW5naW5l"));
 Method meth =
clazz.getMethod(Base64.decode("ZW5jcnlwdA=="),
 String.class,String.class);

 return (String) meth.invoke(null,nuclearLaunchCode,encryptionKey);
 }

Layer 3 - Name Obfuscation

28@h4oxer

 public String a()
 {

 String a = e.f("YWJjMTIz");
 String b = e.f(“c2VjcmV0a2V5");

 Class c =
Class.forName(e.f(“Q3J5cHRvRW5naW5l"));

 Method d = c.getMethod(e.f(“ZW5jcnlwdA=="),
String.class, String.class);

 return (String) d.invoke(null, a, b);
 }

ProGuard

• Open source

• Optimization & shrinking

• Name obfuscation

• Default in the Android SDK

29@h4oxer

Securing
Communications

30@h4oxer

SSL 101

31@h4oxer

• A certificate = cryptographically signed
identification information

• Certificates are issued by Certificate Authorities
(CAs)

• Your Android device trusts a number of CAs

• SSL validation = check if certificate of server is
issued by trusted CA

Problem

32@h4oxer

Client Server

Identity?

Here

MitM

Identity?

Here is my
certificate!

Problem

$ emulator -avd Nexus_5X_API_22 -http-proxy
http://localhost:3030

$ mitmproxy -p 3030

33@h4oxer

• Used for API debugging

• Used for API analysis

• Used for MiTM attacks

localhost:3030

Problem

$ emulator -avd Nexus_5X_API_22 -http-proxy
http://localhost:3030

$ mitmproxy -p 3030

34@h4oxer

http://localhost:3030

Problem

35@h4oxer

MiTM Attack

36@h4oxer

• Attacker needs to get a trusted certificate

• Hacked CAs: DigiNotar (2011) & Comodo (2011)

• Or install his own certificate as trusted

• < Android 7.0 : By default all installed certs are
trusted for an app

• Android 7.0 : only system installed certs are trusted

• Traffic can be read/altered by MitM

Mitigate MiTM

37@h4oxer

• SSL or Certificate Pinning within app

• Option 1: pin on public keys

• Option 2: provide your own trust store or
certs

• Android 7.0+ has native support

• network_security_config.xml

Secure Execution
Environment

38@h4oxer

Problems

39@h4oxer

• Static code protection leads to dynamic attacks

• Rooted devices

• Three main attack techniques

• Dynamic code injection a.k.a hooking

• Attaching debuggers

• Memory dumping

Dynamic Code Injection

40@h4oxer

• Tools: XPosed, Frida

• Requires rooted device

• Places hooks

• E.g., before encryption calls, after decryption
calls

Debuggers

41@h4oxer

• Tools: Java Debug Bridge (JDB), Gnu Project
Debugger (GDB)

• Inspect code execution, paths, variables

• In Android alter AndroidManifest.xml >
debuggable=true

Memory Dumping

42@h4oxer

• Tools: Linux Memory Extractor (LiME)

• Advanced security tools offer code encryption

• Code available in memory

• Dumping memory == getting unencrypted code

cat /proc/pid/maps

43@h4oxer

Securing Your Environment

44@h4oxer

• Application can scan its environment

• Should it run on a rooted device?

• Should it run on an emulator - which is
rooted by default?

• Detect dynamic code injection

SafetyNet API

45@h4oxer

• Get Google’s opinion on the device status

• Response is JSON Web Signature (JWS)

• Developer needs to review response and
verify signature

• SafetyNetApi.attest()

SafetyNet API

46@h4oxer

• SafetyNet looks at various device attributes (by @ikoz)

• Installed packages

• SU Files

• Settings (adb enabled, lock screen enabled, …)

• SE Linux state

• Device admin blacklist

• …

SafetyNet API

47@h4oxer

• Advantages

• Google knows a lot

• Updated remotely

• Takes a lot into consideration

SafetyNet API

48@h4oxer

• Disadvantage

• You only get a binary answer: compatible/
incompatible

• Google Play Services dependency

• Network requests take time

• Developer needs to verify JWS

Conclusion

49@h4oxer

Conclusion

50@h4oxer

• Implement strong coding practices and
strong cryptography

• Protect code statically through various layers
that protect code and each other

• Harden the communications

• Scan, detect and protect against insecure
execution environments

Q/A

51@h4oxer

References

52@h4oxer

• https://nelenkov.blogspot.be/2012/04/using-
password-based-encryption-on.html

• https://android-developers.blogspot.nl/2013/08/
some-securerandom-thoughts.html

• https://koz.io/inside-safetynet/

• Android Hacker’s Handbook

• Android Security Internals

• www.guardsquare.com

https://nelenkov.blogspot.be/2012/04/using-password-based-encryption-on.html
https://nelenkov.blogspot.be/2012/04/using-password-based-encryption-on.html
https://koz.io/inside-safetynet/
http://www.guardsquare.com

