

Ryan Hamrick
• CBTS Principal Security Engineer

• Former Software Developer (ASP.net/C#, Perl, Python)

• Professional Security Practitioner for over 12 years

Nate Fair
• CBTS Information Security Engineer

• Adjunct Professor – Penetration Testing @ UC

• Information Security & Penetration Tester for 5 years

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• (AT LEAST ON THE ATTACK SIDE)

• ADVANCED TOPICS LIKE

• PROTOCOL SMUGGLING

• SMTP OVER HTTPS (SNI)

• CR-LF INJECTION

• EXPLOITING URL PARSERS

• CURL (LIBCURL), GO (NET/URL), PHP (PARSE_URL), RUBY

(ADDRESSABLE), NODEJS (URL)

YOU CAN FIND ALL OF THAT AND MUCH MORE HERE

HTTPS://WWW.BLACKHAT.COM/DOCS/US-

17/THURSDAY/US-17-TSAI-A-NEW-ERA-OF-SSRF-EXPLOITING-

URL-PARSER-IN-TRENDING-PROGRAMMING-LANGUAGES.PDF

https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf

Vulnerability class that
encompasses behavior in
which a server request is
initiated by an attacker

Applications will
take a URL from a
user perform
some action

setting your
avatar via URL,
Image/Link
preview in chat

To exploit an SSRF
vulnerability, an
attacker can:

convince server to
make requests on
internal resources

bypass firewall
restrictions to
uncover new
hosts

•

•

•

•

•

•

•

•

•

•

•

•

//getimage.php

$content = file_get_contents($_GET['url']);

file_put_contents(‘image.jpg’, $content);

GET /getimage.php?url=https://website.com/images/cat.jpg

GET /getimage.php?url=http://127.0.0.1/api/v1/getuser/id/1

GET /getimage.php?url=http://169.254.169.254/latest/meta-data/

GET /getimage.php?url=file:///etc/passwd

•

•

•

•

•

•

•

•

•

•

•

•

Source: https://medium.com/@madrobot/ssrf-server-side-request-forgery-types-and-ways-
to-exploit-it-part-1-29d034c27978

https://medium.com/@madrobot/ssrf-server-side-request-forgery-types-and-ways-to-exploit-it-part-1-29d034c27978

•Target application provides a response back to attacker

•Often in the form of HTTP response codes, application errors,
other salient behavior

•High degree of confidence vulnerability is present, exploitability
likely possible

Basic

•Target application does not provide response back to attacker

•Vulnerability presence is unknown/uncertain, exploitability
more difficult

•Often requires more analysis & testing to confirm/deny

Blind

•Largely application specific

•Time Based – inverse mapping through time/responses
variations

•Error Based – “access denied” combined with inverse mapping

Mixed

•

•

•

•

•

• EXTREME VULNERABLE WEB APPLICATION (XVWA)

• PHP/MYSQL

• HTTPS://GITHUB.COM/S4N7H0/XVWA

• OWASP NODEGOAT – TOP 10

• NODE JS/MONGODB, HEROKU APP AVAILABLE

• HTTPS://GITHUB.COM/OWASP/NODEGOAT

• PORTSWIGGER

• WEB SECURITY ACADEMY (AWESOME!)

• HTTPS://PORTSWIGGER.NET/WEB-SECURITY/SSRF

• C1

• HTTPS://APPLICATION.SECURITY/

• INTERACTIVE, RECONSTRUCT DATA BREACH

https://github.com/s4n7h0/xvwa
https://github.com/OWASP/NodeGoat
https://portswigger.net/web-security/ssrf
https://application.security/

•

•

•

•

• EXTREME VULNERABLE WEB APPLICATION (XVWA)

• PHP/MYSQL

• HTTPS://GITHUB.COM/S4N7H0/XVWA

• OWASP NODEGOAT – TOP 10

• NODE JS/MONGODB, HEROKU APP AVAILABLE

• HTTPS://GITHUB.COM/OWASP/NODEGOAT

• PORTSWIGGER

• WEB SECURITY ACADEMY (AWESOME!)

• HTTPS://PORTSWIGGER.NET/WEB-SECURITY/SSRF

• C1

• HTTPS://APPLICATION.SECURITY/

• INTERACTIVE, RECONSTRUCT DATA BREACH

https://github.com/s4n7h0/xvwa
https://github.com/OWASP/NodeGoat
https://portswigger.net/web-security/ssrf
https://application.security/

•WAF for North/South

•East/West firewalling is critical for this sort of
attack detection

•Position to inspect traffic between web server
and back end infrastructure/data sources

North/South and East/West

•Centralized logging from WAF, additional
firewalls, web server, other infrastructure systems

•Due to the nature of the exploit, there will be
many failed requests, watch for scanning type
activity

•Ensure that logging levels are correct to capture
all the potential events. Debugging not
necessary, but INFO level should be collected
and reviewed.

Logging!!!

• Sanitize and filter user input, limiting to
known good data inputs

• Potential for regex-style data matching
for validation

Input
Filtering

• Restrict access to internal resources
using a specific whitelist of
organizational domains

• Log ALL requests, highlight improper
requests and alert

Domain
Whitelisting

• User and group access review and
validation, especially important in cloud
environments (Capital One)

• Proper error and response handling!!!
(Again, Capital One)

Additional
Strategies

•

https://twitter.com/BugBountyHQ/status/868242771617792000

https://twitter.com/BugBountyHQ/status/868242771617792000

•

https://medium.com/bugbountywriteup/piercing-the-veil-server-

side-request-forgery-to-niprnet-access-c358fd5e249a

https://medium.com/bugbountywriteup/piercing-the-veil-server-side-request-forgery-to-niprnet-access-c358fd5e249a

• HTTPS://PORTSWIGGER.NET/WEB-SECURITY/SSRF

• HTTPS://MEDIUM.COM/SWLH/SSRF-IN-THE-WILD-E2C598900434

• HTTPS://TACTIFAIL.WORDPRESS.COM/2019/07/26/THREE-VULNS-FOR-THE-PRICE-OF-ONE/

• HTTPS://MEDIUM.COM/@LOGICBOMB_1/THE-JOURNEY-OF-WEB-CACHE-FIREWALL-BYPASS-TO-SSRF-TO-AWS-
CREDENTIALS-COMPROMISE-B250FB40AF82

• HTTPS://HACKERONE.COM/REPORTS/713

• HTTPS://WWW.HACKERONE.COM/BLOG-HOW-TO-SERVER-SIDE-REQUEST-FORGERY-SSRF

• HTTPS://DOCS.GOOGLE.COM/DOCUMENT/D/1V1TKWZTRHZRLY0BYXBCDLUEDXGB9NJTNIJXA3U9AKHM/EDIT

• HTTPS://WWW.ACUNETIX.COM/BLOG/ARTICLES/SERVER-SIDE-REQUEST-FORGERY-VULNERABILITY/

• HTTPS://DZONE.COM/ARTICLES/THE-SERVER-SIDE-REQUEST-FORGERY-VULNERABILITY-AND

https://portswigger.net/web-security/ssrf
https://medium.com/swlh/ssrf-in-the-wild-e2c598900434
https://tactifail.wordpress.com/2019/07/26/three-vulns-for-the-price-of-one/
https://medium.com/@logicbomb_1/the-journey-of-web-cache-firewall-bypass-to-ssrf-to-aws-credentials-compromise-b250fb40af82
https://hackerone.com/reports/713
https://www.hackerone.com/blog-How-To-Server-Side-Request-Forgery-SSRF
https://docs.google.com/document/d/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM/edit
https://www.acunetix.com/blog/articles/server-side-request-forgery-vulnerability/
https://dzone.com/articles/the-server-side-request-forgery-vulnerability-and

