A Buffer Overflow Story

From Responsible Disclosure
to Closure

Agenda

1. Why the research was carried out, and how
2. Scope of the research

3. The responsible disclosure process

4. Observed fix

5. A surprise

6. Community response

/. More community response...

e Conclusion

e Questions/Answers/Shrugs

Slashdot U Submit Story Options Account

NIST Announces Round 1 Candidates For SHA-3 Competition Ads Disabled

Posted by Soulskill on Sunday December 21 2008, @02:27PM
from the time-to-pick-them-apart dept.

id writes
"NIST has announced the round 1 candidates for the Cryptographic Hash
Algorithm Challenge. Of the 64 who submitted entries, 51 were accepted. Of
those, in mere days, one has been definitely broken, and three others are

Open Source projects that support cryptography (including the Linux
kernel) which could add support for any of these tomorrow. Does it really matter
if the algorithm is found to be flawed later on, if most of these packages support

algorithms known to be flawed today?

Why the research was carried out
and how

Marcus Ranum:

"Crypto code, as an underlying routine that's
linked all over the place, has to be pretty much
perfect.”

Why the research was carried out
and how

* Fortify SCA, a static analyzer

Why the research was carried out
and how

translate scan

: E(fix) />
| R

3. audit
> |«

report

How...

Fortify Audit Workbench

* A quick live demo

How...

S 1ls

README Reference.txt
md6é mode.c
inttypes.h

md6 nist.c

mdé6 .h

md6 nist.h

md6é compress.c
stdint.h

S

 Compilation = Translation

How...

S gcec -¢c *.c

S

 Compilation = Translation

How...

$ sourceanlayzer -b mdé6 \
gcc — *.cC

S

 Compilation = Translation
* Create a model called “md6”

How...

$ sourceanlayzer -b mdé \
-scan \
-f mdé6. fpr

* Analyze the model with SCA analyzers
* Print the results in a file

How...

S auditworkbench mdé6. fpr
$

* Open the file in the graphical AWB

Summary | Audit Guide | Scan | Reports

Filter Set: [Security Auditor View E) My Issues
[_F} 6 [3 11
Group By: | Category 4

¥ (] Buffer Overflow - [0 / 2]
1u//md6_mode.c:746 (Buffer Overflow)
/' md6_mode.c:753 (Buffer Overflow)

Advanced...

F3)

Analysis Evidence

M md6.h:217 - Buffer hashval Declared

:= md6_mode.c:746 - Assignment to st->hashval
Buffer Size: 64 bytes

Write Length: 128 bytes

[var 0] i: 127

* Open the file|:

Buffer hashval Declared

FORTIFY

AUDIT WORKBENCH

[€ mdé_mode.c 23

742 st->hashval[i] = st->hashval[c*(w/8)-full_or_partial_bytes+i]; —~
743

744 /* zero out following bytes */

745 for (i=full_or_partial_bytes; i<c*(w/8); 14+)

746 st->hashval[i] = 9;

747

748| /* shift result left by (8-bits) bit positions, per byte, if needed */

749 if (bits>0)

750 { for (i=@; i<full_or_partial_bytes; i++)

751 { st->hashval[i] = (st->hashval[i] << (8-bits));

752 if C (141) < c*(w/8))

753 st->hashval[i] |= (st->hashval[i+1] >> bits);

754 }

755 }

756[}

757

758

759//* Final -- no more data; finish up and produce hash value. -
760*/ 4
761 b 1

- <>

Summary | Details Recommendations' Diagram I

labstract:

The function trim_hashval() in md6_mode.c writes outside the bounds of hashval on line 746, which could
corrupt data, cause the program to crash, or lead to the execution of malicious code.

Explanation:

Buffer overflow is probably the best known form of software security vulnerability. Most software
developers know what a buffer overflow vulnerability is, but buffer overﬂow attacks against both legacy and

sewly-deyelgped appllcatlons are still guige cognmon. Pa e to the wide variety of ways
»t'l eoc h rca%one hii used to prevent them.

In a classm buffer overﬂ xplont the attacker sends data to a program, which it stores in an undersized
stack buffer. The result is that information on the call stack is overwritten, including the function's return
pointer. The data sets the value of the return pointer so that when the function returns, it transfers control

)

v

7

How...

Filter Set: | Security Auditor View | () My Issues

) 6 0 3 11

Group By: | Category 34

¥ (] Buffer Overflow - [0 / 2]
1/ md6_mode.c:746 (Buffer Overflow)
W/ md6_mode.c:753 (Buffer Overflow)

e |ssues list Tl

* Filtering, grouping

How...

—
Analysis Evidence ’

M md6.h:217 - Buffer hashval Declared

:= md6_mode.c:746 - Assignment to st->hashval
Buffer Size: 64 bytes

Write Length: 128 bytes

[var 0] i: 127

* Evidence from the analyzer
e Step through dangerous sequence

] md6_mode.c $3

742 st->hashval[i] = st->hashval[c*(w/8)-full_or_partial_bytes+i];
743
744| /* zero out following bytes */

745 for (i=full_or_partial_bytes; i<c*(w/8); 1++)
746 st->hashval[i] = 9;

747
748| /* shift result left by (8-bits) bit positions, per byte, if needed */
749 1if (bits>0)

750 { for (1=0; i<full_or_partial_bytes; i++)

751 { st->hashval[i] = (st->hashval[i] << (8-bits));

752 if ((1+41) < c*(w/8))

753 st->hashval[i] |= (st->hashval[i+1] >> bits);

/54
/55
756}
/57
/58
759//* Final -- no more data; finish up and produce hash value.
760/*/

/61

e Contextual view of the source code

-

How...

Summary | Details | Recommendations ‘ Diagram ’

lAbstract:

The function trim_hashval() in md6 _mode.c writes outside the bounds of hashval on line 746, which could
corrupt data, cause the program to crash, or lead to the execution of malicious code.

Explanation:

Buffer overflow is probably the best known form of software security vulnerability. Most software

developers know what a buffer overflow vulnerability is, but buffer overflow attacks against both legacy and
newly-developed applications are still quite common. Part of the problem is due to the wide variety of ways
buffer overflows can occur, and part is due to the error-prone techniques often used to prevent them.

In a classic buffer overflow exploit, the attacker sends data to a program, which it stores in an undersized

stack buffer. The result is that information on the call stack is overwritten, including the function's return
pointer. The data sets the value of the return pointer so that when the function returns, it transfers control ¥

* Vulnerability description
e Suitable for a developer, new to security

How...

Summary | Details | Recommendations | Diagram

- Do not rely on tools, such as StackGuard, or non-executable stacks to prevent buffer overflow
vulnerabilities. These approaches do not address heap buffer overflows and the more subtle stack
overflows that can change the contents of variables that control the program. Additionally, many of these
approaches are easily defeated, and even when they are working properly, they address the symptom of the

problem and not its cause.

References: m

[1] AS Buffer Overflow, Standards Mapping - OWASP Top 10 2004 - (OWASP 2004)

(2] APP3510 CAT I, APP3590.1 CAT |, Standards Mapping - Security Technical Implementation Guide
Version 3 - (STIG 3)

[3) Buffer Overflow, Standards Mapping - Web Application Security Consortium 24 + 2 - (WASC 24 + 2) v

* Vulnerability recommendations
e Suitable for auditor, architect...

2. Scope of the research

Joy Forsythe:

"We're not hard-core cryptographers, so we
decided to take a look at the reference
implementations.”

2. Scope of the research

Joy Forsythe:

"We're not hard-core cryptographers, so we
decided to take a look at the reference
implementations.”

Brian Chess:

"The purpose here is not to judge the algorithm
based on some implementation errors, it's to get
the implementation errors fixed so that the best
algorithm is selected and so that mistakes aren't
propagated into production code”

3. The responsible disclosure process

Ron Rivest:

"We greatly appreciate your careful review of
our submitted code, and your reporting your
concerns to us. 1'd like to have them reviewed
quickly, and have any necessary fixes issued
promptly.”

From: "Doug Held" <dheld@fortify.com>

Date: 23 December 2008 21:09:07 EET

To: <rivest@mit.edu>

Subject: Possible buffer overflow in MD6 reference implementation

ello, Dear Professor...

I've taken a look at your proposed MD6 implementation (from
http://csrc.nist.gov/groups/ST/hash/sha-3/Roundl/documents/MD6.zip
) and I may have found a buffer overflow vulnerability.

In md6_mode.c, the memcpy() on line 611 copies the following length:
md6_c*(w/8)

16 * (64 / 8)

128 bytes

into the buffer st->hashval which I believe is defined on line 217 of
md6.h:

(md6_c/2)*(md6_w/8)

=(16/2)*(64/8)

= 64 bytes.

It's entirely possible that I've made a mistake, as I'm taking an
extremely narrow look at your implementation and I'm also new to C.

If I've wasted your time I'd appreciate you letting me know. If you'd
find it interesting I have twelve additional findings that I'd be
happy to share.

Kind Regards,
Douglas Held

4. Observed fix

* MD6 was updated before the cutoff, with a
doubling of the buffer size.

4. Observed fix

----- Original Message -----

From: Ronald L. Rivest <rivest@mit.edu>

To: Doug Held; Joy Forsythe

Cc: Jayant Krishnamurthy <jayantkrishnamurthy@example.com>

Sent: Thu Jan 15 ©07:52:16 2009

Subject: Re: Possible buffer overflow in MD6 reference implementation

Hi Doug and Joy --

I'm writing to thank you again for bringing this issue of a buffer
overflow in our MD6 code to our attention!

We have this week filed an update to our code to NIST. (The deadline
for updates is today.) It adjusts the size of the "hashval" buffer
to be twice as big, which fixes the main problem you detected. (The

Adlhan frrana mananAdAs mnn rbhndbn s ANl Aarnbann AL An Anna win bhavia o nad

5. Surprise

* Brian Chess noticed on someone’s blog that
the Conficker worm was now updated with
the patch.

5. Surprise

* | guess the bad guys read the news, too.

5. Surprise

* | guess the bad guys read the news, too.

* Kind of have to wonder whether | played this
right...?

5. Surprise

* | guess the bad guys read the news, too.

* Kind of have to wonder whether | played this
right...?

e Whose side are we on??

The Public Disclosure

* Fortify Security Research blog
— http://blog.fortify.com

e Slashdot article submission

FORTIFY

Subscribe

Feedburner (RSS)
Local (RSS)
Local (RSS v2.0)

Local (Atom)

Recent Posts

Back to All Posts

Categories

Fortify

Healthcare

News

Random

Research
Vulnerabilities-Breaches

About
Fortify Software
Fortify Resources

Software Security Resources

Products and Services
Recommended Blogs

Justice League
Schneier on Security
SecurityFix

CERIAS

Seruritv Cnrve

Search: | &
A Software Security Blog

Friday, 20 February 2009
SHA-3 Round 1: Buffer Overflows

« Gartner Magic Quadrant for Static Analysis | Main | SHA-3 Analysis Details »

NIST is currently holding a competition to choose a design for the SHA-3 algorithm (Bruce Schneier has a good
description of secure hashing algorithms and why this is important). The reference implementations of a few of the
contestants have bugs in them that could cause crashes, performance problems, or security problems if they are
used in their current state. Based on our bug reports, some of those bugs have already been fixed. Here's the full
story:

The main idea behind the competition is to have the cryptographic community weed out the less secure algorithms
and choose from the remainder. A couple of us at Fortify (thanks to Doug Held for his help) decided to do our part.
We're not hard-core cryptographers, so we decided to take a look at the reference implementations.

This competition is to pick an algorithm, but all of the submissions had to include a C implementation, to
demonstrate how it works and test the speed, which will be a factor in the final choice. We used Fortify SCA to audit
the 42 projects accepted into Round 1. We were impressed with the overall quality of the code, but we did find

significant issues in a few projects, including buffer overflows in two of the projects. We have emailed the
submission teams with our findings and one team has already corrected their implementation.

Confirmed issues:

Implementation |Buffer Overflow |Qut-of-bounds Read |Memory Leak |Null Dereference
Blender 1 0 0 0
Crunch 0 0 4
FSB 0 0 3 11
MD6 3 2 0 0
Vortex 0 0 1 15

iEpRTIFY'

Off by on Search: |Q

A Software Security Blog

__ Subscribe

Feedburner (RSS)
Local (RSS)

Local (RSS v2.0)
Local (Atom)

. Recent Posts

» Back to All Posts
__ Categories

» Fortify

» Healthcare

» News

» Random

» Research

» Vulnerabilities-Breaches

___ About
Fortify Software

. Fortify Resources

Software Security Resources
Products and Services

__ Recommended Blogs

Justice League
Schneier on Security
SecurityFix

CERIAS

Seruritv Curue

vy v v v w

Friday, 20 February 2009
SHA-3 Round 1: Buffer Overflows

« Gartner Magic Quadrant for Static Analysis | Main | SHA-3 Analysis Details »

NIST is currently holding a competition to choose a design for the SHA-3 algorithm (Bruce Schneier has a good
description of secure hashing algorithms and why this is important). The reference implementations of a few of the
contestants have bugs in them that could cause crashes, performance problems, or security problems if they are
used in their current state. Based on our bug reports, some of those bugs have already been fixed. Here's the full
story:

The main idea behind the competition is to have the cryptographic community weed out the less secure algorithms
and choose from the remainder. A couple of us at Fortify (thanks to Doug Held for his help) decided to do our part.
We're not hard-core cryptographers, so we decided to take a look at the reference implementations.

This competition is to pick an algorithm, but all of the submissions had to include a C implementation, to
demonstrate how it works and test the speed, which will be a factor in the final choice. We used Fortify SCA to audit
the 42 projects accepted into Round 1. We were impressed with the overall quality of the code, but we did find

significant issues in a few projects, including buffer overflows in two of the projects. We have emailed the
submission teams with our findings and one team has already corrected their implementation.

Confirmed issues:

Implementation |Buffer Overflow |Out-of-bounds Read |Memory Leak |Null Dereference
Blender 1 0 0 0
Crunch 0 0 0 4
FSB 0 0 3 11
MD6 3 2 0 0
Vortex 0 0 1 15

[FORTIFY

Off by on Search: | |Q

A Software Security Blog

__ Subscribe

Feedburner (RSS)
Local (RSS)

Local (RSS v2.0)
Local (Atom)

__ Recent Posts

» Back to All Posts
__ Categories

» Fortify

» Healthcare

» News

» Random

» Research

» Vulnerabilities-Breaches

__ About
Fortify Software

__ Fortify Resources

Software Security Resources
Products and Services

___ Recommended Blogs

» Justice League

» Schneier on Security
» SecurityFix
» CERIAS

B

Seruritv Curua

Friday, 20 February 2009
SHA-3 Round 1: Buffer Overflows

« Gartner Magic Quadrant for Static Analysisil VMain Vli SHA-3 Analysis Details »

NIST is currently holding a competition to choose a design for the SHA-3 algorithm (Bruce Schneier has a good
description of secure hashing algorithms and why this is important). The reference implementations of a few of the
contestants have bugs in them that could cause crashes, performance problems, or security problems if they are
used in their current state. Based on our bug reports, some of those bugs have already been fixed. Here's the full
story:

The main idea behind the competition is to have the cryptographic community weed out the less secure algorithms
and choose from the remainder. A couple of us at Fortify (thanks to Doug Held for his help) decided to do our part.
We're not hard-core cryptographers, so we decided to take a look at the reference implementations.

This competition is to pick an algorithm, but all of the submissions had to include a C implementation, to
demonstrate how it works and test the speed, which will be a factor in the final choice. We used Fortify SCA to audit
the 42 projects accepted into Round 1. We were impressed with the overall quality of the code, but we dic find
significant issues in a few projects, including buffer overflows in two of the projects. We have emailed the
submission teams with our findings and one team has already corrected their implementation.

Confirmed issues:

Implementation |Buffer Overflow |Out-of-bounds Read |Memory Leak |Null Dereference
Blender 1 0 0 0
Crunch 0 0 0 4
FSB 0 0 3 11
MD6 3 2 0 0
Vortex 0 0 1 15

Subscribe

Recent Posts

ck to A

Categories

rt .'\

Search:

A Software Security Blog

Friday, 20 February 2009
SHA-3 Round 1: Buffer Overﬂows

tner Magic Quadrant Static Ana s | Main | SHA-3 Analysis Details »
NIST is currently holding a competition to choose a design for the SHA-3 algorithm (Bruce Schneier has a good
description of secure has algorithms and why this is important). The reference implementations of a few of the

contestants have bugs in tf.err that could cause crashes, performance problems, or security problems if they are
used in their current state. Based on our bug reports, some of those bugs have already been fixed. Here's the full
story:

The main idea behind the competition is to have the cryptographic community weed out the less secure algorithms
and choose from the remainder. A couple of us at Fortify (thanks to Doug Held for his help) decided to do our part.
We're not hard-core cryptographers, so we decided to take a look at the reference implementations.

This competition is to pick an algorithm, but all of the submissions had to include a C implementation, to
demonstrate how it works and test the speed which will be a factor in the final choice. We used Fortify SCA to audit
the 42 projects accepted into Round 1. We were impressed with the overall quality of the code, but we did find
sngmﬁcant issues in a few projects, mcludmg buffer overflows in two of the projects. We have emailed the

submission teams with our findings and one team has already corrected their implementation.

Confirmed issues:

Implementation |Buffer Overflow |Out-of-bounds Read |Memory Leak |Null Dereference
Blender 1 0 0 0

Crunch 0 0 0 4

FSB 0 0 3 11

MD6 3 2 0 0

Vortex 0 0 1 15

Security Review Summary of NIST SHA-3 Round 1 Ads Disable

1aNKS d
Posted by timothy on Sunday February 22 2009, @07:15PM
from the works-in-progress dept.

great

FormOfActionBanana writes

"The security firm Fortify Software has undertaken an automated code review of the NIST
SHA-3 round 1 contestants (previously Slashdotted) reference implementations. After a
followup audit, the team is now reporting summary results. According to the blog entry,
‘This just emphasizes what we already knew about C, even the most careful, security
conscious developer messes up memory management.'

6. Community response

ELMSFORD
- 12 GALAXIES
\' (ESJROGRENICAL ERGONONICS

WASPHI]\IBEHII(ll

*k
11& 1H

1| smnmsrnmlcm |

6. And more community response
e AL NO, HE's I

Leave me
alone, or 1
will taunt
you with
another sign!

6. Community response

"It's not security”

by SoapBox17 (1020345) &) on Sunday February 22 2009, @07:57PM (#26950787) Homepage

From TFA (and TFS):

This just emphasizes what we already knew about C, even the most careful, security conscious developer messes up memory management.
This doesn't follow from TFA. The blog points out two instances of buffer overflows. The first one you could argue they messed up "memory management”
because they used the wrong bounds for their array in several places... but they don't sound very "careful" or "security conscious" since checking to make

sure you understand the bounds of the array you're using is pretty basic.

But that's not what bothered me. The second example is a typo where TFA says someone entered a "3" instead of a "2". In what dimension is mis-typing
something "messing up memory management"? That just doesn't follow.

Re: Exactly, how are we supposed to trust their algorithm that is barely understandable by 1 in 400 million people when they cannot get a simple C

6. Community response

"It's not security”

In defense of C (Score:4, Insightful)

by phantomfive (622387) < on Sunday February 22 2009, @08:18PM (#26950937) Joumal

The summary is kind of a troll, since most of the submissions actually managed to get through without ANY buffer overflows.

Buffer overflows are not hard to avoid, they are just something that must be tested. If you don't test, you are going to make a mistake, but they are easy to
find with a careful test plan or an automated tool. Apparently those authors who had buffer overflows in their code didn't really check for them.

C is just a tool, like any other, and it has tradeoffs. The fact that you are going to have to check for buffer overflows is just something you have to add to the
final estimate of how long your project will take. But C gives you other advantages that make up for it. Best tool for the job, etc.

/. Community response

Blame the language!

/. Community response

Blame the language!
XOR

Blame the developer!

/. Community response

Blame the language!

ANSI C (Score:4, Insightful)
by chill (34294) <) on Sunday February 22 2009, @07:23PM (#26950515) Journal

That is what they get for mandating the code be in ANSI C. How about allowing reference implementation in SPARK, ADA or something else using design-
by-contract. After all, isn't something as critical as a international standard for a hash function the type of software d-b-c was meant for?

/. Community response

Blame the language!

by MobyDisk (75490) 2 on Sunday February 22 2009, @08:46PM (#26951135) Homepage ‘

| suspect the problem is related to the poor coding practices used in academia. | see college professors who write code that barely compiles in GCC
without a bunch of warnings about anachronistic syntax. Some of the C code used constructs that are unrecognizable to someone who learned the
language within the past 10 years, and is completely type unsafe.

| can't tell much from the code on the link, but | do see #define used for constants which is no longer appropriate (yet is EXTREMELY common to see). C99
had the const keyword in it, probably even before that.

/. Community response

Blame the language!

Comment: C++ Coder at Sun, 22 Feb 2:07 PM

Apaprently
they ARENT the most security concious developers. C is by far the most powerful flexible language, and a
truely aware team can write secure code. To attack C is ludicrous.

/. Community response

Blame the language!

Re:this is why... (Score:3, Insightful)

by tepples (727027) Gl <{slash2006} {at} {pineight.com}> on Monday February 23 2009, @02:57AM (#26953863) Homepage Journal

If you're still writing unmanaged code, you get what you deserve. It's 2009, not 1989.

Try running managed code in the 4 MB RAM of a widely deployed handheld computer. Now try making that managed code time-competitive and space-
competitive with an equivalent program in C++ compiled to a native binary.

Re:ANSI C (Score:5, Insightful)

by Anonymous Coward on Sunday February 22 2009, @07:44PM (#26950683)

Maybe instead of switching to SPARK, the 5 teams that fucked up could ask the 37 that didn't for some tips on how to write correct C.
Re: Mod parent up. Thanks. Annoying SLASHVERTISEMENT!

dandelion orchard (Score:3, Insightful)

by epine (68316) J on Sunday February 22 2009, @10:30PM (#26951935)
This just emphasizes what we already knew about C, even the most careful, security conscious developer messes up memory management.

| know nothing of the sort. How about asking some developers who have a history of getting both the security and the memory management correct
which intellectual challenge they lose the most sleep over?

Memory management is a subcase of resource management with a particularly harsh way of delivering the news: you suck. A mer

/. Community response

Blame the language!

The developer simply mistyped, using 3 instead of 2 for the array access.

This just emphasizes what we already knew about C, even the most careful, security conscious developer messes up
memory management.

/. Community response
Blame the language!

In defense of C (Score:4, Insightful)

by phantomfive (622387) Qon Sunday February 22 2009, @08:18PM (#26950937) Journal

The summary is kind of a troll, since most of the submissions actually managed to get through without ANY buffer overflows.

Buffer overflows are not hard to avoid, they are just something that must be tested. If you don't test, you are going to make a mistake, but they are easy to
find with a careful test plan or an automated tool. Apparently those authors who had buffer overflows in their code didn't really check for them.

/. Community response

Blame the developer!

memory leak... WTF??? (Score:0) why the fuck dynamic memory allocation is used in a C implementation of a hashing algorithm?

/. Community response

Blame the language!

Re:dandelion orchard (Score:3, Insightful)

by Luke has no name (1423139) 9 <'moc.liamg' 'ta' 'emanonsahekul> on Monday February 23 2009, @01:23AM (#26953323)
What | get out of this:

“We're going to give you more shit to think about by making you use C. if you can't deal with all the stupid shit C throws at you, you suck."

Which is a shit argument. Just use a better language that gives people less to worry about, and develop from there. Having to debug the shit out
of a program for obscure memory management issues shouldn't be a test of your competence. You should be able to focus on the task at hand,
nothing else.

Parent

3. Community response

* |t's only a reference implementation

* |t’s only a competition

Comment: Nick at Sun, 22 Feb 1:05 PM

Why not analyze these functions for something that /matters/? Like collision resistance, differential
cryptanalysis resistance, hash length extension attacks, etc.?

Oh, right, because that requires actual knowledge of cryptography. You fail.

Comment: PaulWay at Sun, 22 Feb 4:58 PM

| think some commenters are mlssmg the point here - these code tests are only one of the tests being

applied to the algonthms ere is, of cour exnaustive cryptanalysis being applied to ther parallel tc

check for the more fundamental problems in the algorithms. However, testing the reference code for
andard coding errors is vital as reference code _does_ get used a lot, even wnere faster or more secure
molementations miont exist esewnere. Having this kind of code audit is vital to the security process but it

~

is by no means the only step.

Comment: Hacksaw at Tue, 24 Feb 4:23 AM

mandolin: ORLY? Why do people think great mathematical skills mean you're also a great programmer? A
mathematician may be good at designing concepts and high-level algorhythms but actual programming is
frequently too low-level. It's only human to overestimate your skills in one area you know a bit about if you
excel in a related area.

Writing *correct* code has nothing to do with *security*. Of course, an incorrectly implemented, yet securely
designed algorhythm, will likely compromise security but correctly implemented code is not secure per se at
all. You wade deep in snake oil already - or just fail horribly at human language - if you use these terms as
loosely.

I can tell that most people coding in C I've known, have never read any of the C standards. They only
practiced learning by doing and sooner or later they'll become totally ignorant and arrogant towards the
standards, so that whenever someone points out what they're doing is either not portable or obviously not
standards-conform, these guys frequently ignore you, even if you provide a correction, or worse try to
offend you and bash the standards for being stupid or whatever.

Schwern: C has never been a portable assembly language. Unfortunately, many people see it this way and try
to use the same "tricks" that were acceptable in assembly language on a specific machine but a strictly
forbidden in C. | see a parallel between modern languages and modern politics. C is one of these languages
which give you a lot of freedom but also responsibility. Nowadays nobody wants to take responsibility
anymore but everyone is crying for security despite knowing that perfect security exists nowhere except in
theory perhaps. Likewise, this also means less freedom. I'm not saying this means anything in this context, |
just find it interesting that this parallel exists.

By the way, you can do high-level programming in C, too. It'll simply take more effort but the result is likely
more readable and maintainable. There are no rules that you have to obfuscate your code, use unintelligible
identifiers, use brain-dead library functions etc. People who do this without any need and are even proud of
it are simply abusing the freedom given to them by C.

lang: Then why are they already providing optimized code for MD67?

Last but not least, it's fairly pathetic to see these professionals don't seem to use verification tools that have
been around for years.

only a reference implementation

Comment: Brian at Sun, 22 Feb 4:31 PM

Bugs in the reference implementations have the potential to effect performance. Under-allocating a buffer
can also skew the cost estimate for an embedded system. In other words, these bugs have the potential to
effect the outcome of the competition.

The purpose here is not to judge the algorithm based on some implementation errors, it's to get the
implementation errors fixed so that the best algorithm is selected and so that mistakes aren't propagated
into production code.

only a reference implementation

Comment: Matt at Mon, 23 Feb 7:04 AM

Sorry to all those in the ivory tower but in the real world the reference implementations often show up in real
code (especially open source). The purpose of the competition is not to produce code snippets for use in real
code but that is what happens. The comments of Brian, Brian and DaveM are spot on. In addition this is not
just Fortify grandstanding but rather them providing valuable feedback to an important program. |
personally appreciate this sort of industry involvement in the process. Correcting these defects early in the
process is critical to insuring that clean, safe and secure code propagates in to production software.

The last word on:
“It’s only a reference implementation”

Comment: Marcus Ranum at Sat, 21 Feb 11:05 AM

Good write-up. You're absolutely correct, too - crypto code, as an underlying routine that's linked all over
the place, has to be pretty much perfect.

It’s only a competition

Re:ANSI C (Score:3, Interesting)

by RichardJenkins (1362463) & on Sunday February 22 2009, @07:29PM (#26950549)

Why do they even have a reference implementation for a hash function in a programming language? Wouldn't just defining the function mathematically
be less error prone and just as effective?

Parent

The reason is in the summary... (Score:5, Insightful)

by pathological liar (659969)) on Sunday February 22 2009, @07:36PM (#26950607)

... because implementation is where people screw up.

Re: 1. Because we, rank and file developers, have to use it afterward (and some of us write in C or C-derived languages, like oh, | don't know,

Re: Ummmm... because it wouldn't be a reference implementation if it wasn't actually implemented?

Re:ANSI C (Score:4, Insightful)

by John Hasler (414242)) on Sunday February 22 2009, @07:42PM (#26950665)

Presumably one of the things they want to evaluate is performance.

Re:ANSI C (Score:4, Insightful)

by IversenX (713302)) on Sunday February 22 2009, @07:44PM (#26950681) Homepage

Because you can't compile a mathematical definition.

Reference implementation (Score:4, Informative)

by rgmoore (133276)) <glandauer@charter.net> on Sunday February 22 2009, @07:49PM (#26950723) Homepage

In a word, no. A reference implementation is supposed to be a working version of the code, not just a mathematical description. With a working
version, it's possible to do things like test its real world performance or cut and paste directly into a program that needs to use the function. That's
obviously only possible if you have a version that works on real-world processors.

Comment: lang at Mon, 23 Feb 12:57 PM

However | think it is not really efficient at this stage to insist on secure programming for submission
implementations. For the simple reason that there are 42 submissions, and 41 of those will be thrown away,
more or less. There isn't much point in making the 41 secure; better off to save the energy until “the one" is
found. Then concentrate the energy, no?

The developer simply mistyped, using 3 instead of 2 for the array access.

A Some of you are saying, so what? These are reference implementations and this is only
Round 1. There are a few problems with that thought.

Reference implementations don't disappear, they serve as a starting point for future implementations or are used
directly. A bug in the RSA reference implementation was responsible for vulnerabilities in OpenSSL and two separate
SSH implementations. They can also be used to design hardware implementations, using buffer sizes to decide how
much silicon should be used.

Re: | think that since only 5 of the 42 projects garnered your attention that a better quote to include in the summary would have been: We were

Re:Disclaimer

by FormOfActionBanana (966779) <slashdot2@douglasheld.net> on Sunday February 22 2009, @08:36PM (#26951075) Homepage

| want the winning entry for this competition to be flawless to the extent that's feasible. Right now, my job includes finding SHA-1 for cryptographic

key generation, and telling people to replace that with something better. | don't want to be pulling out SHA-3 in a couple years, too.

Comment: kilmo at Sat, 21 Feb 4:10 PM

Why?

These reference code is _NOT_ the code that will be used in real life applications. It was written for a specific
input, and no one should ever use it in any application...

A complete waste of time...

Comment: Dynamo at Sun, 22 Feb 12:58 PM

Kilmo is really wrong on this. Reference code lasts and lasts and lasts. In fact, people are reluctant to change
it, precisely because they feel that it has been looked at carefully.

Please continue the good work.

9. Conclusions

* Humans still don't get it right.
— Civilization is not ready to move on from C.
— Pointing fingers is unlikely to help.

9. Conclusions

* Humans still don't get it right.
— Civilization is not ready to move on from C.
— Pointing fingers is unlikely to help.

* Set good examples for:
— responsible disclosure

— helping to fix problems
— Improving processes

Questions

FORTIFY

An HP Company

Douglas Held
Fortify, an HP Company
douglas.held@hp.com

