

Enhancing Web Application Security Using Another Authentication Factor

Karen Lu and Asad Ali

Gemalto, Inc.

Technology & Innovations
Austin, TX, USA

Overview

- × Introduction
- Current State
- Smart Cards
- X Two-Factor Authentication Techniques
- Implementation and deployment
- × Conclusion

Introduction

- Web applications are part of our daily lives
 - Work, communication; social;
 - Banking; shopping; entrainment

- Client side, server side
- Security is critical for high value transactions
 - Account login
 - Transaction authorization
 - Document signing
- User authentication is the door keeper
- Economics of security

- × Introduction
- × Current State
- X Smart Cards
- ▼ Two-Factor Authentication Techniques
- ▼ Implementation and deployment
- × Conclusion

Current State

- Most websites use single factor authentication Password
- Passwords are universally accepted as weak
- What does it take to break a password? *

Numerals 0123456789								
Password		Class of Attack						
Length	Combinations	<u>Class A</u>	Class B	Class C	Class D	Class E	Class F	
2	100	Instant	Instant	Instant	Instant	Instant	Instant	
3	1000	Instant	Instant	Instant	Instant	Instant	Instant	
4	10,000	Instant	Instant	Instant	Instant	Instant	Instant	
5	100,000	10 Secs	Instant	Instant	Instant	Instant	Instant	
6	1 Million	1½ Mins	10 Seconds	Instant	Instant	Instant	Instant	
7	10 Million	17 Mins	1½ Mins	1½ Mins	Instant	Instant	Instant	
8	100 Million	2¾ Hours	17 Mins	1½ Mins	10 Seconds	Instant	Instant	
9	1000 Million	28 Hours	2¾ Hours	17 Mins	1½ Mins	10 Seconds	Instant	

Mixed Alpha and Numerals 0123456789AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz									
	Password	Class of Attack							
Length	Combinations	Class A Class B Class C Class D Class E Class F							
2	3,844	Instant Instant Instant Instant Instant							
3	238,328	23 Secs < 3 Secs Instant Instant Instant Instant							
4	15 Million	24½ Mins 2½ Mins 15 Secs < 2 Secs Instant Instant							
5	916 Million	1 Day 2½ Hours 15¼ Mins 1½ Mins 9 Secs Instant							
6	57 Billion	66 Days 61/2 Days 16 Hours 11/2 Hours 91/2 Mins 56 Secs							
7	3.5 Trillion	11 Years 1 Year 41 Days 4 Days 10 Hours 58 Mins							
8	218 Trillion	692 Years 691/4 Years 7 Years 253 Days 251/4 Days 601/2 Hours							

^{*} http://www.lockdown.co.uk

Current State (Cont.)

Examples

- One major breach lead to release of 32 million passwords *
- Nearly 50% of users used names, slang words, dictionary words or trivial password *

OWASP Top 10 Web Application Security Risks

- A3: Broken Authentication and Session Management
- Threat agents: attackers, users, insiders
- Impact: Severe

Impact of security breaches

- Financial loss and pain to institutions and customers
- Loss of key assets, reputation damage, loss of compliance

^{*} http://www.imperva.com/docs/WP Consumer Password Worst Practices.pdf

Current State: Single Sign-On

- Usability of username/password
 - Easy to use
 - Too many passwords to remember
 - Reuse passwords or use simple passwords
- X Single Sign-On
 - Remember one password instead of dozens
 - Convenient for users
 - Easier to secure one system than to do for many
- Authentication is the key
 - The system depends on the strength of the authentication
 - Most still use username and password

Single Sign-On

- X Even greater need to strength SSO authentication
 - Break one, break all

* http://themarketingguy.files.wordpress.com

Multi-Factor Authentication

- What you know
 - password, passphrase, mother's maiden name
- What you have
 - Smart card, OTP token
- What you are or what you do biometrics
 - Iris, finger print, face, voice, typing dynamics
- Authentications using more than one factors are called strong authentications
- How to add "what you have" factor to provide strong authentication to web applications?

- × Introduction
- Current State
- **X** Smart Cards
- ▼ Two-Factor Authentication Techniques
- ▼ Implementation and deployment
- × Conclusion

Smart Cards

- What is a smart card?
 - A small plastic card with an embedded microprocessor
 - secure memories; ROM, Flash, RAM
 - Hardware cryptographic engine
- X Secure, portable, and tamper-resistant computer
- Multiple form factors...

Smart Cards (Cont.)

- Applications
 - Access control (physical, logical e.g. Windows logon)
 - Identity (citizen cards, passports, ID cards)
 - Subscriber identification modules (SIM)
 - Banking
 - Etc.
- Smart-card-based USB tokens
 - Embedded smart card
 - Flash memory
- Using smart cards for web applications is a natural extension

4119 1101 1234 0000

Challenges of Using Smart Cards in Web Applications

Communications

- Smart card communication standard
 - PC/SC supported by all major operating systems
- Middleware
- Web browser connection

Usability

- User interface not coupled to web application
- Web application does not have control over the user interaction
- Terminology not understood by non-technical folks

Different architectures for browsers / platforms

- Custom middleware implementations
- Not available for all platforms
- Software upgrade issues
- End user installation issues

- × Introduction
- X Current State
- X Smart Cards
- **X** Two-Factor Authentication Techniques
- ▼ Implementation and deployment
- × Conclusion

Smart Cards for Web Applications

- Two-Factor Strong Authentications
 - What you know: PIN to the smart card
 - What you have: smart card or smart-card-based token
- Authentication methods
 - TLS mutual authentication
 - One Time Password authentication
 - PKI Certificate-based authentication
- ★ Single Sign-On
 - SAML
 - OpenID

TLS Mutual Authentication

- Smart card holds a X.509 certificate and the corresponding {public key, private key}
- The user registers the security token (smart card) with the web browser
- HTTPS connection from a web browser to a web server with TLS mutual authentication
- X Require Middleware
 - CAPI Cryptographic API Windows OS
 - CDSA Common Data Security Architecture Mac OS X
 - PKCS#11 API for cryptographic tokens Firefox, OpenSSL

TLS Mutual Authentication (Cont.)

One-Time Password Authentication

- What is One-time password (OTP)?
 - As the name suggests, it is a password that is used only once
 - Used in addition to username (and password) for authentication
 - Time-based or Event-baesd: The OTP device and the OTP server synchronize through time or event based algorithm
- X Usage...
 - User pushes a button on the device
 - The device generate an OTP
 - User enters the OTP value to the web page

- Less secure than TLS mutual authentication
- Security improved if user forced to enter a PIN to use the OTP token
- Usability?
 - Simple to use; no setup on the client side

PKI Certificate-based Authentication

- Smart card holds a X.509 certificate and the corresponding (public key, private key)
- The server sends a random challenge
- The smart card digitally signs the challenge using the private key stored inside the card
- The smart card sends the signature (response) and its certificate to the server

19

PKI Authentication Example (Cont.)

PKI Authentication - SConnect

- SConnect is a web-browser-based approach
 - Web browser extensions
 - IE, Firefox, Safari, Chrome, Opera
 - Windows, Linux, and Mac OS X
 - Javascript API
 - Based on PC/SC no middleware
- Build-in security features
 - Force HTTPS
 - Server verification
 - Connection key linking to server's SSL certificate
 - User consent for smart card access
- For the first time use, the user is prompted to download a web browser plug-in

Single Sign On / Federation

- Two aspects
 - Login once and access multiple service providers
 - Use one login credential to login to multiple service provider
- Benefit
 - Convenient to users use as few credentials as possible
 - Service providers delegate authentication to identity provider
- Authentication is the key
- ★ (de facto) Standards
 - SAML OASIS standard
 - OpenID Open standard

Actors in Single-Sign On

× User

- Entity that can acquire a federated identity
- Capable of making decisions
- User, Group of individuals, a corporation, a legal entity etc

Identity Provider

- Creates, manages and maintains the identity information of Principal
- Provides user authentication to other service providers within a circle of trust

Service Provider

An entity that provides services to the user

Single Sign-On (Cont.)

24

Standard Bodies

Kantara Initiative (formerly Liberty Alliance)

- OASIS (Organization for the Advancement of Structured Information Standards)
 - SAML
 - WS-*
- × OpenID

Security Assertion Markup Language

- Current Version is SAML 2.0 OASIS Standard
- Consolidate earlier work done in Liberty Alliance
- Assertions, Protocols, and Bindings
 - Generated assertion would contain user's x509 certificate and configured attributes
- Getting adoption in the Government space
- Flexible and Extensible framework
- X SAML 2.0: Browser Single Sign-On profile
 - Redirect Binding

SAML SSO

OpenID

- Developed by OpenID Foundation
- Open, decentralized framework for user-centric digital identity management.
- Current version: OpenID Authentication 2.0
- × Actors
 - OpenID Provider
 - OpenID User
 - OpenID Service Provider
- User chooses which OpenID provider to use when login to a service provider that supports OpenID.
- Mostly used for low-value transaction websites.
- US Government Services Administration's pilot adoption of OpenID for Open Government

- × Introduction
- X Current State
- X Smart Cards
- ▼ Two-Factor Authentication Techniques
- **X** Implementation and deployment
- × Conclusion

Implementation and Deployment

Component

The two-factor authentication can be a component of a website's existing authentication server.

Backend Server

- The two-factor authentication can be a backend server of a website's existing authentication server.
- Example: Existing server handles username/password, OTP server handles OTP.

Delegate to Identity Provider

Service providers redirect the user to the identity provider for authentication (SAML, OpenID, Facebook Connect)

Conclusions

Internet Security...

- Single-factor, knowledge based authentication is weak
- Really "eliminate password", not just push it downstream
- Adoption occurs only when increased security makes economic sense

Smart Cards...

- Traditional roles are necessary, but not always sufficient for future expansion into the increasingly digital world
- Provide enhanced security while working within the constraints of established enterprise and government frameworks

Consumer space...

- More challenging: a wider spectrum of operating environments
- Users do not always like to carry additional tokens
- Need to make devices multi-functional, or leverage existing device deployment

The real challenge...

Love is simple, trust is hard

