
Delivering Security in Continuous
Delivery Environment

OWASP AppSec Israel 2013

Yaniv Simsolo, CISSP

Agenda
Definitions and

Background

Challenges

Secured Methodology
Concepts

Best Practice
Approach

Proper Disclosure

Definitions and Background

Continuous Delivery - Wikipedia
“Continuous Delivery (CD) is a pattern language used in software
development to automate and improve the process of software
delivery.

Techniques such as automated testing, continuous integration and
continuous deployment allow software to be developed to a high
standard and easily packaged and deployed to test environments,
resulting in the ability to rapidly, reliably and repeatedly push out
enhancements and bug fixes to customers at low risk and with minimal
manual overhead.

The technique was one of the assumptions of extreme programming
but at an enterprise level has developed into a discipline of its own…”

Continuous Delivery - Wikipedia
“Developers used to a long cycle time may need
to change their mindset when working in a CD
environment. It is important to understand that
any code commit may be released to customers
at any point“

Using Feature Toggle: “…The technique allows
you to release a version of a product that has
unfinished features. “

Continuous Delivery Vs. Agile
• Agile is less “continuous”

– Sprints are numbered per version, dated and
known.

– Planed releases and security tests
– Better control of additional or changed code

Traditional System Development &
Security

• Traditionally: design, develop, deploy, sanity,
QA, Security tests, fix & mitigate, release.
– QA and Security tests begin after Code Freeze (CF)

• In CD environment, release must be as close
to CF as possible.
– Testing must start before CF.

Traditional System Development Vs.
Continuous Delivery

• In CD, multiple code components may be
unfinished right up to CF.

Image: msdn.microsoft.com

Challenges

The Time Factor
• Security testing a system consumes time
• Release is adjacent to CF
=>
• No timeframe for security testing
• No timeframe for fixing and mitigation

The Time Factor
• Continuous Delivery chart from Wikipedia -

Where is the Security timeframe?

The Delta Factor
• Code is Continuously developed
• Wild West “Coding in all directions” is feasible
=>
• What is the Delta to test?
• Is progression of security feasible?

Image: CERN Photo Service

The Delta Factor
• Release Management is accurate to a degree
• Change Management is accurate to a degree
=>
• Extrapolating the Delta be from the RM/CM?
• Is progression of security feasible?

Image: CERN Photo Service

The Code Analysis Challenge
• Code analysis can be automated
• For each testing phase – test all (Delta included)
• Mitigation and fixing during normal development
=>
• Code Analysis does not identify all security bugs
• New technologies coverage
• Lack of Human touch, Schneier on Security, Sep.

1999: “The only way to find security flaws in a piece of code … is
to evaluate it. This is true for all code, whether it is open source or
proprietary. And you can't just have anyone evaluate the code, you
need experts in security software evaluating the code. You need
them evaluating it multiple times and from different angles…”

The Automation Challenge
• Security testing can be automated. For each

development phase – perform automatic tests.
• Mitigation and fixing during normal development
=>
• Automatic Security testing does not identify all

security bugs
• Automatic tools are lagging behind - new

technologies coverage
• Turing Machine limitations - lack of Human touch

The Sisyphus Challenge
• Code is Continuously changing
=>
• Rendering all previous security tests irrelevant
• For each test phase – restart from square one!
• Right before CF, security retest!

The Scoping Challenge
When comprehensive development controls are
absent, accurate scoping is not feasible:
• Testing phase 1
• Testing phase 2
• Testing phase 3
• …
• Testing phase n

Pockets of
unwritten code /
Feature Toggle

Pockets
Partially
coded
pocket

Unrecorded
minor changes

3 colors trilogy, kishlovsky

Secured Methodology Concepts

Methodology Concepts
• Several different methodologies are available

for approaching the challenges:
– Partial sampled approach
– Stepped testing
– Resource intensive approach
– Alternative approach

Partial Sampled Methodology
• Test the system partially continuously during

development.
• Pros:

– The partial Sampled approach is highly efficient
– The “Randomized Algorithm” approach to testing the system is

utilized
– Fast, timely results

• Cons:
– Partial coverage of the system’s security
– Efficient?
– Mitigation and fixing may not be feasible for CURRENT release
– Mitigation and fixing costs after deployment

Stepped Testing Methodology
• For each development phase: perform a

security test that is relevant only to said
phase.

• Do not repeat tests.
• Do not retest tested areas.

Stepped Testing Methodology
• Pros:

– Testing all system components is feasible
– Timely results
– Efficient
– Reduced mitigation and fixing costs before deployment

• Cons:
– High probability: Partial coverage of the system’s security.
– Accurate comprehensive RM and CM are mandatory
– Mitigation and fixing may not be feasible for CURRENT

release
– Very large coding peaks in proximity to release

Resource Intensive Methodology
• Before Code Freeze: Perform iterations of the

Partial Sampled approach or the Stepped
approach.

• After Code Freeze: retest the system, full
scope, in white box methodology.

Resource Intensive Methodology
• Pros:

– COMPLETE coverage
– Security improvement throughout development

phases
– Ignore RM and CM issues

• Cons:
– Resource intensive. Duplicate testing for each release.
– Partial coverage upon release
– Mitigation and fixing may not be feasible for CURRENT

OR NEXT release
– Mitigation and fixing costs after deployment

Alternative Approach Methodology
(The Sarcastic Approach)

• Do not security test the system
– The CD development environment takes care of

any malcoding
– The QA processes detects all security bugs
– Anyway: In-Depth Security is dead, Security is

dead, hence no need for the extra efforts
– The +GDP from moving to CD is so large, we can

afford security bugs
– Worst case scenario – mitigate for next release

Best Practice Approach

Best Practice Approach
• So, every approach has too many cons…
• Hence, a better approach is required

Best Practice Approach Building Blocks

• Back to the origins:
– New technologies are evaluated out of band
– Example, for Message Queue services: opt

for the best secured of the available
technologies: MQSeries, MSMQ, ActiveMQ,
RabbitMQ.
• One has almost no security for the past

decades, other has no built in security
configuration options.

Back to
Origins

Best Practice Approach Building Blocks

• The holistic approach :
– Thorough design review of each system

component
– Assimilate secure coding practices
– System testing of each component

• Detailed design information extracted out of
user stories.

Back to
Origins

Holistic
Approach

Best Practice Approach Building Blocks
• Collaboration with development teams

– Essential
– Create correlations and timely development

per component.
– Maximal effort in identifying Deltas
– Minimize peak deliveries

• Collaboration level determines much of the
MINUS GDP derived from security & cyber
issues.

Back to
Origins Collaborate

Holistic
Approach

(can the MINUS GDP be calculated?)

Best Practice Approach Building Blocks

• Automate to the max:
– Continuously run automated scanning tools

on everything available
– Continuously test the outermost layers

(user interfaces)
– Build automation tools to handle

technology gaps
– Continuously employ code analysis tools on

identified Delta And tested code
Back to
Origins Collaborate

Holistic
Approach

Automate
to the Max

Best Practice Approach Building Blocks

• Manual testing:
– Efficient testing is mandatory
– Concentrate on weak or sensitive spots
– Seek & identify the shortcuts
– Employ flexible A+ security experts

Back to
Origins Collaborate

Holistic
Approach

Automate
to the Max

Manual
Testing

Best Practice Approach Building Blocks
• Operational Controls:

– Not everything is inherently released when
ready

– Control of code versions
– Control of secured configurations
– Change management in PROD environments
– Control the human “soft spot”… Kevin Mitnick:

“I get hired to hack into computers now and
sometimes it's actually easier than it was years
ago”

Back to
Origins Collaborate

Holistic
Approach

Automate
to the Max

Manual
Testing

Operational
Controls

Best Practice Approach - Conclusion

• New development environment requires new
security testing methodologies.

• High level security testing under Continuous
Delivery environment IS DOABLE.

• Cooperation with the development AND
production teams is essential.

Back to
Origins Collaborate

Holistic
Approach

Automate
to the Max

Manual
Testing

Operational
Controls

Questions?

Yaniv Simsolo, CISSP

Fractal Background: xaxor.com

	Delivering Security in Continuous Delivery Environment
	Agenda
	Proper Disclosure
	Definitions and Background
	Continuous Delivery - Wikipedia
	Continuous Delivery - Wikipedia
	Continuous Delivery Vs. Agile
	Traditional System Development & Security
	Traditional System Development Vs. Continuous Delivery
	Challenges
	The Time Factor
	The Time Factor
	The Delta Factor
	The Delta Factor
	The Code Analysis Challenge
	The Automation Challenge
	The Sisyphus Challenge
	The Scoping Challenge
	Secured Methodology Concepts
	Methodology Concepts
	Partial Sampled Methodology
	Stepped Testing Methodology
	Stepped Testing Methodology
	Resource Intensive Methodology
	Resource Intensive Methodology
	Alternative Approach Methodology (The Sarcastic Approach)
	Best Practice Approach
	Best Practice Approach
	Best Practice Approach Building Blocks
	Best Practice Approach Building Blocks
	Best Practice Approach Building Blocks
	Best Practice Approach Building Blocks
	Best Practice Approach Building Blocks
	Best Practice Approach Building Blocks
	Best Practice Approach - Conclusion
	Questions?

