
Software Development: The Next

Security Frontier

James E. Molini, CISSP, CSSLP

Microsoft

Member, (ISC)² Advisory Board

of the Americas

jmolini@microsoft.com

http://www.codeguard.org/blog

mailto:jmolini@microsoft.com

• De-perimiterization of networks places more burden
on the security of individual machines and applications

• Malware increased by 200-300% over the past year

• More incidents of data loss could result in greater
government oversight and regulation
– 38 out of 50 states in US have now enacted breach disclosure

laws

• 2008 (ISC)² Global Information Security Workforce
Study (GISWS) report found significant costs result
from data breaches
– US $50 to $200 per record lost (not including reputation

damage and loss of trust)

• XSS Attacks (Ongoing)

– Cross Site Scripting (XSS) is becoming the new “buffer overflow”

– In 2007, XSS accounted for 80% of documented vulnerabilities

– OWASP site recommends proper web site coding practices

• SQL Injection Attacks (Ongoing)

– Recently several security sites were attacked using this technique

– Data entry fields on websites are loaded with SQL commands

– Bypasses the firewall and many web gateways

– Input validation reduces the exposure from this attack (see OWASP

Notes on SQL Injection)

• Recent worms exploit patching latency
– Conficker worm released 1 month after the patch from Microsoft

– This exposes a flaw in patch management practices

Software Vulnerabilities:
Opening the Door to Criminals

Taken from Microsoft Security Intelligence Report: Volume 6. Jul – Dec 2008

Vulnerability Rates 2003 - 2008

0%

20%

40%

60%

80%

100%

Vulnerability

Types 2008

O S

Browser

Other Apps

What Is Software Security?

• Security is a distinct property of a software system or application. It is

composed of Confidentiality, Integrity, Availability, Authenticity, and other

related attributes*.

• Software Security vs. Secure Software

– Secure software can be delivered by rigorously applying all the

techniques of a software security plan

• Software Security vs. Secure Coding

– Secure coding is one aspect of an overall software security plan

• Software Security vs. Software Quality

– High quality software can also be insecure (e.g. medical device

software)

– Security requires specialized skills

*Definition derived from description provided in Software Assurance BoK from DHS.

• Many eyeballs won’t solve the security problem. (e.g.
recent DNS bug took 10 years to discover)

• If you have seen a SQL Injection attack, or a Buffer
Overflow consider this:
– The IDE should have enforced ASLR for all production code

– The requirements document should have specified
composition parameters for all incoming data

– The design should have defined an input validator that
rejected input which failed to meet specifications

– The code should have called validation routines for all
external data requests

– The tester should have included injection attacks and fuzzing
as part of the testing process

Can’t We Just Learn How to
Write Secure Code?

Can Secure Systems Really Prevent

Intrusions?

1999 2000 2001 2002 Total

Firewall-A 3 15 10 4 32

Firewall-B 0 0 0 0 0

• Vulnerabilities listed by US Natl. Vulnerability Database: 1999-2002

To perform your own search, visit: http://web.nvd.nist.gov/view/vuln/statistics?execution=e2s1

• Two Firewalls. Two manufacturers. Two development

methodologies.

• One was based on a Trusted OS & Security Development

Lifecycle.

• One was not.

http://web.nvd.nist.gov/view/vuln/statistics?execution=e2s1

COMMON ELEMENTS OF A

SOFTWARE SECURITY

PROGRAM

Overview

• Security must become an integral process

throughout the SDLC

• Software security requires:

1) Technology – Layered and maintained

2) Process -- targeted and structured

3) People -- trained and qualified (first line of defense and

organization’s most critical asset)

• Employ people, process, &

technology to get the job done.

Secure Software Concepts

• Confidentiality, Integrity, Availability Authentication, Authorization,

and Auditing

• Security Design Principles

• Risk Management (e.g., vulnerabilities, threats and controls)

• Regulations, Privacy, and Compliance

• Software Architecture (e.g., layers)

• Software Development Methodologies

• Legal (e.g., Copyright, IP and trademark)

• Standards (e.g., ISO 2700x, OWASP)

• Security Models (e.g., Bell-LaPadula, Clark-Wilson & Brewer-Nash)

• Trusted Computing (e.g., TPM, TCB)

• Acquisition (e.g., contracts, SLAs and specifications)

Getting Started

• Training and Awareness

– Start with basic concepts

– Train developers and testers first

– When you train – train well.

• Appoint or hire a Security Lead

– Becomes local authority on software security

– Coordinates security activities and drive SDL

– Establishes risk management process

– Consider certification for security specialists

Advice:

~ RoleSeparation() { …}

• Security process decisions must be conscious
risk decisions.

• Do not let the development group separate
security off into another segment of the
process.

• Every subsystem team and every developer
must have a coherent understanding of the
security design

• Tuning and testing teams must understand
security requirements

Secure Software Requirements

• Policy Decomposition

– Confidentiality, Integrity, Availability Requirements

– Authentication, Authorization, and Auditing

Requirements

– Internal and External Requirements

• Identification and Gathering

– Data Classification

– Use Cases

– Abuse Cases (inside and outside adversaries)

Secure Software Requirements:

Getting Started

• Create a baseline for security

• Build boilerplate requirements for use in new
projects

• Understand how requirements differ for:

– In-house development

– Product Development

– Software Acquisition

• Develop common abuse cases

• Begin Risk Management Process
– Threat Model Development

– Feature/Component Risk Analysis

Secure Software Design

• Design Processes

– Attack surface evaluation, Threat modeling, Control Identification, Control
prioritization

• Design Considerations

– Confidentiality, Integrity, Availability, Authentication, Authorization, and
Auditing

– Security design principles, Interconnectivity, Security management interfaces,
Identity management

• Architecture

– Distributed, Service-oriented, Rich Internet applications, Pervasive computing

– Integration with existing architectures

– Software as a Service

• Technologies

– IAM, Audit, DRM, Flow control (e.g., proxies, firewalls, middleware)

– Data protection (e.g., DLP, encryption and database security)

– Computing environment (e.g., programming languages, virtualization, and
operating systems

– Integrity (e.g., code signing)

Secure Software Design:

Getting Started

Saltzer & Schroeder: Security Design Principles

• Economy of mechanism

• Fail Safe Defaults

• Complete Mediation

• Open Design

• Separation of Privilege

• Least Privilege

• Least Common Mechanism

• Psychological acceptability

Secure Coding:

Key Concepts
• Declarative versus programmatic security (e.g.,

bootstrapping, cryptographic agility, and handling
configuration parameters)

• Common software vulnerabilities and countermeasures

• Defensive coding practices (e.g., type safe practices, locality,
memory management, error handling)

• Exception management

• Configuration management (e.g., source code and versioning)

• Build environment (e.g., build tools)

• Code/Peer review

• Code Analysis (static and dynamic)

• Anti-tampering techniques (e.g., code signing)

• Interface coding (e.g., proper authentication and third party
API)

Secure Coding: Getting

Started

• Never build your own crypto or

authentication mechanisms

• Develop a list of banned functions

• Train developers to avoid most common

flaws

• Develop with least privilege

Secure Software Testing:

Key Concepts

• Testing for Security Quality Assurance
– Functional Testing (e.g., reliability, logic, performance and scalability)

– Security Testing (e.g., white box and black box)

– Environment (e.g., interoperability)

– Bug tracking (e.g., defects, errors and vulnerabilities)

– Attack surface validation

• Test types
– Penetration Testing

– Fuzzing, Scanning, Simulation Testing (e.g., environment and data)

– Testing for Failure

– Cryptographic validation (e.g., environment and data)

• Impact Assessment and Corrective Action

• Standards for software quality assurance (e.g., ISO 9126, SSE-CMM
and OSSTMM)

• Regression testing

Secure Software Testing:

Getting Started

• Use security testing tools to discover

common vulnerabilities.

• Implement static analysis testing for all

Internet facing code.

• Add security bug categories to the bug

tracking system

Secure Software Acceptance &

Deployment: Key Concepts

• Pre-release or pre-deployment
– Completion Criteria (e.g., documentation, BCP)

– Risk Acceptance

– Documentation (e.g., DRP and BCP)

• Post-release
– Validation and Verification (e.g., Common Criteria)

• Independent testing (e.g., third-party)

• Installation and Deployment
– Bootstrapping (e.g., key generation, access management)

– Configuration Management (e.g., elevated privileges,
hardening, platform change)

Secure Software Acceptance &

Deployment: Getting Started

• Develop an official security signoff during

release

• Define rules for software security

acceptance

• Implement a security documentation

standard

Secure Software Operations &

Maintenance: Key Concepts

• Operations and Maintenance

– Monitoring (e.g., Metrics and Audits)

– Incident Management

– Problem Management (Root Cause Analysis)

– Patching

• End of life policies

Secure Software Maintenance:

Getting Started

• Implement patch security testing and

delivery mechanisms

• Develop a Security Response Plan for

software vulnerabilities

Security Lifecycle Results

25
Download the report at: http://www.microsoft.com/ downloads/details.aspx?FamilyID=aa6e0660-dc24-4930-affd-e33572ccb91f&displaylang=en

Taken from Microsoft Security Intelligence Report: Volume 6. Jul – Dec 2008

http://www.microsoft.com/

The Security Imperative

• We must move from vulnerability
management to security engineering

– Identify security needs up front in the concepts
and requirements stage

– Define adequate security controls in the design
stage

– Code appropriately to reduce security bugs

– Test for failures in the process

– Maintain code with security in mind

– Participate in community activities (e.g. (ISC)2,
OWASP, SANS

What You Can Do

• Get involved in the software development security process now.

• Support one of the active independent organizations that is

advocating improvements to the discipline:

– (ISC)2, ISSA, OWASP, SANS.

• Educate software developers and managers regarding the need for

adequate risk management.

• Promote better software security practices throughout the SDLC,

including design, testing deployment, and ultimately disposal of

software.

For more on software security, visit: http://www.codeguard.org/blog

Warning: I speak for myself and do my own analysis. Viewers should not presume that my comments represent the official policies of any

organization listed in this presentation.

http://www.codeguard.org/blog

What is CSSLPCM?

• Certified Secure Software Lifecycle Professional (CSSLP)

• Base credential (no other certification is required as a
prerequisite)

• Professional certification program

• Takes a holistic approach to security in the software lifecycle

• Tests candidates competency (KSAs) to significantly mitigate
the security concerns

• Purpose
– Addresses building security throughout the entire software

lifecycle – from concept and planning through operations and
maintenance, to the ultimate disposal.

– Provides a credential that speaks to the individual’s ability to
contribute to the delivery of secure software through the use of
standards and best practices.

– The target professionals for this certification includes all
stakeholders involved in the Software Lifecycle.

CSSLP
CM

Industry Supporters

• Microsoft

• Cisco

• Xerox

• SAFECode

• Symantec

• BASDA

• SANS

• DSCI (NASSCOM)

• SRA International

• ISSA

“As the global dependence on information and communications technology

has grown, users have become increasingly concerned over the security of

software, especially those in the government, critical infrastructure and

enterprise sectors. By offering software professionals a means to increase

and validate their knowledge of best practices in securing applications

throughout the development lifecycle, (ISC)²‟s CSSLP is helping the

industry take an important step forward in addressing the „people‟ part of

the solution.”

Paul Kurtz, executive director, SAFECode

CSSLPCM Certification Requirements

By Examination:

• Process
– The first public exam will be held at the end of June 2009

– Candidate must submit:

• Completed examination registration form

• Proof of 4 years experience in the Software Development
Lifecycle (SDLC) or 3 years experience with a one year waiver
for 4-year degree or equivalent in an IT related field

• Pay a Fee of $549 early-bird or $599 standard

– Candidate must

• Pass the official (ISC)²® CSSLP certification examination

• Complete the endorsement process

– The Associate of (ISC)² Program applies to those who have
passed the exam but need to acquire the necessary minimum
experience requirements

For more information, please contact:

• Glenn Johnson, (ISC)² , Certification Consultant

– gjohnson@isc2.org

• Vehbi Tasar, (ISC)² Manager of Professional Programs

– vtasar@isc2.org

Visit www.isc2.org/csslp

mailto:gjohnson@isc2.org
mailto:vtasar@isc2.org

References

• Secure Software Assurance: A guide to the Common Body of Knowledge to

Produce, Acquire, and Sustain Secure Software, S. Redwine, Ed., US

Department of Homeland Security, 2005.

• The Trustworthy Computing Security Development Lifecycle, S. Lipner, et al,

Microsoft, March 2005. http://msdn.microsoft.com/en-

us/library/ms995349.aspx

• OWASP: http://www.owasp.org/index.php/Main_Page

• Microsoft Security Site for Developers: http://msdn.microsoft.com/en-us/security/default.aspx

• Books:

• The Security Development Lifecycle, M. Howard & S. Lipner Microsoft

Press, 2006

http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://www.owasp.org/index.php/Main_Page
http://msdn.microsoft.com/en-us/security/default.aspx
http://msdn.microsoft.com/en-us/security/default.aspx
http://msdn.microsoft.com/en-us/security/default.aspx

