OLJASP

Open Web Application
Security Project

Covering Your XSS: Attacks in AppLand

Ralph Collum
Email: Ralph.Collum@owasp.org
Twitter: Optimus__ Prime

OWASP Columbia

* OWASP is a worldwide free and open
community focused on improving the
security of application software.

e OWASP Columbia Website ->
https://www.owasp.org/index.php/Columbia

* Sign-Up for LinkedIn Group ->
https://www.linkedin.com/groups/8342350

e Slack and Mailing List -> Contact Frank
DUJHJD

https://www.owasp.org/index.php/Columbia
https://www.linkedin.com/groups/8342350

Outline

* What is XSS?

* What are the Risks?

 What are the Types of XSS?

* How do | test for XSS?
 Demos/Exploitation Exercises

e What are the Countermeasure?
e Questions and Answers

DUJFL)D

Samy Worm

e XSS Worm designed by Samy Kamkar to spread across
the social media site Myspace in Oct. 2005.

* The worm would plant a string on the victims profile
and send Samy a friend request.

* |t impacted over one million user ®

but most of all, samy is my hero

* The exploit was made possible by
put their own JavaScript into blo gl RN RIS e

script.eval(document.all. mycod

JavaScript executed on pages wh(usEs—"—"
have run B=String. fromCharCode(34).va

r

) OLUASP

en Web Application

Securi ty Project

What is XSS?

Cross-Site Scripting (referred to as XSS) is a type of
web application attack where malicious client-side
script is injected into the application output and
subsequently executed by the user’s browser

TL;DR: Not filtering out HTML and JavaScript in
user input = bad

The browser believes that the code is part of the
site and runs it. It can be used to take over a user’s
browser in a variety of ways

| DUJHJD

What are the Risks?

 Malicious Script Execution

e Redirecting to a Malicious Server

* Exploiting User Privileges

 Ads in Hidden IFRAMES and Pop-Ups
 Data Manipulation

e Session Hijacking

* Keylogging and Remote Monitoring
* Credential Theft

 Remote Shell

| D'J.JHJD

Same Origin Policy

* A policy that allows the web browser to run
scripts contained in a webpage, but only | both
webpages have the same origin.

* An origin is defined as a combination of URI
scheme, hostname, and port number.

* This policy is used to prevent a malicious script
onh one page from obtaining access to data on
another webpage.

DUJHJD

How XSS Attacks Work

Perpetrator injects the Website
website with a malicious
script that steals each
visitor's session cookies

For each visit to the
website, the malicious
script is activated

Visitor's session cookie
is sent to perpetrator.

A

Perpetrator Website Visitor

Perpetrator discovers a
website having a vulnerability
that enables script injection

OWASP

Open Web Application

Security Project

Types of XSS Attacks

e Reflected (Non-Persistent — Type 2)

— Malicious Content is bounced backed to the victim

* http://www.example.com/search/?q=<script>alert(‘Alert’)</scr
ipt>&x=0&y=0

e Stored (Persistent — Type 1)
— Malicious Content is stored for everyone on the server
e DOM-Based (Local Persistent — Type 0)

— Malicious Content gets executed on the client and the
server ignores the malicious request

DUJASP

Open Web Application
Security Project

Discovering XSS

e Testing URLs for XSS

— Embed XSS payload in target URL
* www.contoso.com/?id=[Insert XSS]

e Testing Search Fields for XSS
— Insert XSS payload in Search Field
e Testing Comment Fields for XSS
— Insert XSS payload in Comment Field

e Testing User-Agent Header for XSS
— Send XSS payload through UserAgent header

DUJHJD

Filtering XSS

* Whitelists
— Filtering based on “known goods”
— Better Security
— Too Complex

* Blacklists
— Filtering based on “known bads”
— Easier to Bypass
— Too Many Updates

| UUJF-I.)D

UJ b Applicati
S eeeeee y Project

Automated Test for XSS

root@kali: ~# python xsstrike

Made with <3 by Somdev Sangwan : TeamUltimate,

_____ /|
_ I I I I o .

Enter "help" to access help manual

Enter the target URL: http:// /sear
[-]1 The URL you entered doesn't seem to use GET Meth(
Does it use POST method? [Y/n]
Enter post data: author_search_txt=d3v&article_s¢
=Search
[>]

Payloads loaded: 17

[>] Striking the paramter(s)

[>] Testing parameter: author_search_btn

[»] Payloads injected: 17 / 17

[-] 'author_search_btn' parameter not vulnerable.
[>] Testing parameter: article_search_txt

[»>] Payloads injected: 7 / 17

[+] XSS Vulnerability Found!

[+] Parameter: article_search_txt

[+] Payload: '"><svg/onload=alert()>

I____J“. vt
I

root@kali:~/XsSCan# python

AsSCan.py -u liveexpert.ru

Usage: XsSCan.py -u website.com (Not
Comprehensive Scan: python XsSCan.py
Verbose logging: python XsSCan.py -u
Cookies: python XsSCan.py -u website,

-u website.com -e
website.com -v
complex -c name=val name=val

Description: XsSCan is a python tool for finding Cross Site Scripting
vulnerabilities in websites. This tool is the first of its kind.
Instead of just checking one page as most of the tools do, this tool
traverses the website and find all the links and subdomains first.
After that, it starts scanning each and every input on each _and every
page that it found while its traversal. It uses small yet effective
payloads to search for XSS vulnerabilities. XSS in many high

profile websites and educational institutes has been found

by using this very tool.

Started finding XSS
Link: http://www.liveexpert.ru/help/support, Payload: <svg

Link: http://www.liveexpert.ru/login/forgot, Payload: <svg
email
t@kali:~/XsSCan#

Doing a short traversal.
Finding all the links of the website http://www.liveexpert:
Number of links to test are: 38

OWASP

Open Web Application

www.website.com OR http://www.website.com)

ru

"ons>, Ele

"ons>, Ele

Security Project

Exploring/Exploiting XSS

* To trigger a pop-up, you can simply use the following
payload: alert(1).
If you are injecting inside HTML code, you will need to tell
the browser that this is JavaScript code. You can use the
<script> tag to do that:

vulnerable/xss/examplel.php?name=<script>alert(1)</script>

sterLab.com Home

'.‘ The page at vulnerable says:
1

'

S~

oK

| UUJF-I.)D

UJ b Applicati
S eeeeee y Project

Demo Time

ek |

SENORGIEACOM

SIEEE

Open Web Application
Security Project

Countermeasure for XSS

Web Client/ Web Browser Web Application / Server

Security Headers with CSP

Ve

SIEEE

en Web Application
Security Project

Decoding and Parsing Order

Parsing Orderin Browser

HTML Parser >> (55 Parser >> JavaScript Parser

Decoding Orderin Browser

-

HTML Decoding >> URL Decoding >> JavaScript Decoding

EIVEEE

Security Project

HTTP Response Headers

X-XSS-Protection: 1; mode=block

X-Frame-Options: deny

X-Content-Type-Options: nosniff

Content-Security-Policy: default-src ‘self’

Set-Cookie: key=value; HttpOnly

Content-Type: type/subtype; charset=utf-8

This header will enable the browser’s built-in
Anti-XSS filter.

This header will deny the page from being
loaded into a frame.

This header will prevent the browser from
doing MIME-type sniffing

This header enforces policies on loading
objects and executing it from URLs or
contexts.

The Set-Cookie header with the HttpOnly
flag will restrict JavaScript from accessing
your cookies.

Always set the appropriate Content Type and
Charset. (plaintext = text/html)

) OLUASP

Open Web Application
Security Project

Control XSS

* Almost all client-side script injection comes down to the
following characters:

<>(){H1""5 7\

* There are various ways to take care of these characters, but it
is too context-dependent to give a one-size-fits-all answer

* The shortest answer is, make sure you’re only getting
characters you expect when a user enters any kind of
information - make sure you never display a user-entered
string without properly encoding it

DUJASP

Open Web Application
Security Project

Questions & Answers

| D'J.JHJD

