
Covering Your XSS: Attacks in AppLand

Ralph Collum

Email: Ralph.Collum@owasp.org

Twitter: Optimus__Prime

OWASP Columbia

• OWASP is a worldwide free and open
community focused on improving the
security of application software.

• OWASP Columbia Website ->
https://www.owasp.org/index.php/Columbia

• Sign-Up for LinkedIn Group ->
https://www.linkedin.com/groups/8342350

• Slack and Mailing List -> Contact Frank

https://www.owasp.org/index.php/Columbia
https://www.linkedin.com/groups/8342350

Outline

• What is XSS?

• What are the Risks?

• What are the Types of XSS?

• How do I test for XSS?

• Demos/Exploitation Exercises

• What are the Countermeasure?

• Questions and Answers

Samy Worm

• XSS Worm designed by Samy Kamkar to spread across
the social media site Myspace in Oct. 2005.

• The worm would plant a string on the victims profile
and send Samy a friend request.

• It impacted over one million users within 20 hours.

• The exploit was made possible by allowing users to
put their own JavaScript into blog pages, where
JavaScript executed on pages where they shouldn't
have run.

What is XSS?

• Cross-Site Scripting (referred to as XSS) is a type of
web application attack where malicious client-side
script is injected into the application output and
subsequently executed by the user’s browser

• TL;DR: Not filtering out HTML and JavaScript in
user input = bad

• The browser believes that the code is part of the
site and runs it. It can be used to take over a user’s
browser in a variety of ways

What are the Risks?

• Malicious Script Execution

• Redirecting to a Malicious Server

• Exploiting User Privileges

• Ads in Hidden IFRAMES and Pop-Ups

• Data Manipulation

• Session Hijacking

• Keylogging and Remote Monitoring

• Credential Theft

• Remote Shell

Same Origin Policy

• A policy that allows the web browser to run
scripts contained in a webpage, but only I both
webpages have the same origin.

• An origin is defined as a combination of URI
scheme, hostname, and port number.

• This policy is used to prevent a malicious script
on one page from obtaining access to data on
another webpage.

How XSS Attacks Work

Types of XSS Attacks

• Reflected (Non-Persistent – Type 2)

– Malicious Content is bounced backed to the victim

• http://www.example.com/search/?q=<script>alert(‘Alert’)</scr
ipt>&x=0&y=0

• Stored (Persistent – Type 1)

– Malicious Content is stored for everyone on the server

• DOM-Based (Local Persistent – Type 0)

– Malicious Content gets executed on the client and the
server ignores the malicious request

Discovering XSS

• Testing URLs for XSS
– Embed XSS payload in target URL

• www.contoso.com/?id=[Insert XSS]

• Testing Search Fields for XSS
– Insert XSS payload in Search Field

• Testing Comment Fields for XSS
– Insert XSS payload in Comment Field

• Testing User-Agent Header for XSS
– Send XSS payload through UserAgent header

Filtering XSS

• Whitelists

– Filtering based on “known goods”

– Better Security

– Too Complex

• Blacklists

– Filtering based on “known bads”

– Easier to Bypass

– Too Many Updates

Automated Test for XSS

Exploring/Exploiting XSS

• To trigger a pop-up, you can simply use the following
payload: alert(1).
If you are injecting inside HTML code, you will need to tell
the browser that this is JavaScript code. You can use the
<script> tag to do that:

<script>alert(1);</script>.

Demo Time

Countermeasure for XSS

• Validate all headers, cookies, query strings, form
fields, and hidden fields against a rigorous set of test.

• Use testing tools during the design phase to eliminate
possible XSS vulnerabilities before it goes to
production.

• Use a web application firewall to block the execution
of malicious scripts.

• Encode input and output and filter metacharacters in
the inputs.

• Implement filtering on the client to also help defeat
XSS vulnerabilities presented by website.

Decoding and Parsing Order

HTTP Response Headers
HTTP Response Headers Description

X-XSS-Protection: 1; mode=block This header will enable the browser’s built-in
Anti-XSS filter.

X-Frame-Options: deny This header will deny the page from being
loaded into a frame.

X-Content-Type-Options: nosniff This header will prevent the browser from
doing MIME-type sniffing

Content-Security-Policy: default-src ‘self’ This header enforces policies on loading
objects and executing it from URLs or
contexts.

Set-Cookie: key=value; HttpOnly The Set-Cookie header with the HttpOnly
flag will restrict JavaScript from accessing
your cookies.

Content-Type: type/subtype; charset=utf-8 Always set the appropriate Content Type and
Charset. (plaintext = text/html)

Control XSS

• Almost all client-side script injection comes down to the
following characters:

< > () { } [] " ' ; / \

• There are various ways to take care of these characters, but it
is too context-dependent to give a one-size-fits-all answer

• The shortest answer is, make sure you’re only getting
characters you expect when a user enters any kind of
information - make sure you never display a user-entered
string without properly encoding it

Questions & Answers

