
1 Copyright 2011 Justin Searle!

Python Basics
for

Web App Pentesters
Part 1

Justin Searle

Managing Partner – UtiliSec
Certified Instructor – SANS Institute

justin@utilisec.com

2 Copyright 2011 Justin Searle!

Why Python

•  Pre-installed on Mac and Linux
•  Easy to install on Windows
•  Easy to write scripts that run on all OSes
•  Easy to read and collaborate
•  Very complete set of standard libraries
•  Many stable and powerful 3rd party libraries

3 Copyright 2011 Justin Searle!

Python Shell

•  Using an interactive python shell
–  type “python” on your command line
–  type python commands
–  they execute when you hit enter

•  Why use the shell?
–  Easy way to learn the language
–  Great way to debug portions of code
–  Nice for PoC functions and loops

•  Beyond the basic shell
–  Consider ipython or IDLE after you get your feet wet
–  Provide richer functionality and productivity

4 Copyright 2011 Justin Searle!

Input and Output

print('This site is protected by SSL.')

answer = raw_input('Do you wish to continue? ')

if answer.lower() == 'no':
 print('Exiting the program.')
else:
 print('Continuing Program.')

Basic output

Basic input

if / then / else
conditional
statements. Notice
the colons followed
by mandatory line
indentions

object oriented bliss

5 Copyright 2011 Justin Searle!

A Tale of Two Libraries

urllib2
HTTP, HTTPS, & FTP

Auto Parses URI
Follows Redirections
Uses a Cookie Jar

Auth: Basic & Digest
Methods: GET & POST
Supports Proxy Servers
Auto Closes Connections

httplib
HTTP & HTTPS
No URI Parsing

Doesn’t Follow Redirects
Doesn’t Store Cookies
Authentication: None

Method: Any
No Proxy Support

Manually Close Connection

6 Copyright 2011 Justin Searle!

Using httplib

import httplib

connection = httplib.HTTPConnection("secureideas.net")
connection.request("TRACE", "/index.html")

response = connection.getresponse()
payload = response.read()

print(payload)

Create a “connection” object

Network request
made here

Extract payload
Extract response

Domain only

7 Copyright 2011 Justin Searle!

Using urllib2

import urllib2

request = urllib2.Request('http://www.utilisec.com')

response = urllib2.urlopen(request)
payload = response.read()

print(payload)

The library that does the magic This doesn’t make the
request, it simply
packages the request

Don’t for get the “http://”

This sends the request,
catches the response,
and extracts out the
response payload

8 Copyright 2011 Justin Searle!

POST Requests

import urllib2, urllib

url = 'http://whois.arin.net/ui/query.do'
data = { 'flushCache' : 'false',
 'queryinput' : '198.60.22.2'}
data = urllib.urlencode(data)
request = urllib2.Request(url, data)

response = urllib2.urlopen(request)
payload = response.read()

print(payload)

If you provide urllib2
with request data, it will
assume a POST

Then urlencode your data
(don’t forget to import urllib)

Add your POST
data to a dictionary

9 Copyright 2011 Justin Searle!

Working with Headers

import urllib2

url = 'http://google.com/#q=samurai-wtf'
headers = { 'User-Agent' : 'Mozilla/5.0 (iPhone)' }
request = urllib2.Request(url, None, headers)

response = urllib2.urlopen(request)
headers = response.headers

print(headers)

Add your headers to
a dictionary

If you are doing a GET,
use None for data

10 Copyright 2011 Justin Searle!

Writing to a File

import urllib2

request = urllib2.Request('http://www.utilisec.com')

response = urllib2.urlopen(request)
payload = response.read()

with open('index.html', 'wb') as file:
 file.write(payload)

Write the payload to the file

Try opening a file, in
write and binary
modes

11 Copyright 2011 Justin Searle!

Filtering Responses

import urllib2, re
request = urllib2.Request('http://inguardians.com/info')
response = urllib2.urlopen(request)
payload = response.read()

regex = r'<dt class="title">(.*)</dt>'
results = re.findall(regex , payload)

for result in results:
 print(result)

Build your regex
using a raw string,
grouping desired text

Search payload
for all instances
of your regex

Loop through your results printing them

12 Copyright 2011 Justin Searle!

Basic Authentication

import urllib2

url ='http://browserspy.dk/password-ok.php'
username = 'test'
password = 'test'

password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm()
password_mgr.add_password(None, url, username, password)
authhandler = urllib2.HTTPBasicAuthHandler(password_mgr)
opener = urllib2.build_opener(authhandler)
urllib2.install_opener(opener)

response = urllib2.urlopen(url)

payload = response.read()
print(payload)

Setup needed variables

Setup password manager

Add passwords

Connect handler

Build and install so all
requests automatically use
the password manager

13 Copyright 2011 Justin Searle!

Fuzzing and Brute Force
import urllib2, re

list = (1533095958 + i for i in range(0, 20))

for item in list:
 url = 'http://m.facebook.com/people/a/' + str(item)
 try:
 response = urllib2.urlopen(url)
 except IOError:
 pass
 else:
 payload = response.read()
 regex = r'([^<]*)'
 match = re.search(regex, payload)
 if match:
 name = match.groups()
 site = response.geturl().split("?")[0]
 print("{0} = {1} {2}".format(item, name[0], site))

Create list of 20 Facebook IDs

Prevent missing pages from throwing
an error and stopping the script

Extract name from page

Grab url and remove redirect reference

Format output

14 Copyright 2011 Justin Searle!

New SANS Course

SEC573: Python for Penetration Testers
•  5 Day Hands-on Class

–  Day 1: variables, operators, statements, introspection
–  Day 2: lists, loops, tuples, dicts, debugger, sys, files
–  Day 3: sockets, exceptions, metasploit, AV, IDS, SQLi
–  Day 4: fuzzing web apps, network recon, scapy, pcaps
–  Day 5: capstone and capture the flag

•  First time in US: Washington DC, June 2013
•  First time in AsiaPAC: Singapore, Feb 2014
•  http://www.sans.org/course/python-for-pen-testers

15 Copyright 2011 Justin Searle!

Contact Information

Justin Searle
Managing Partner - UtiliSec

work: justin@utilisec.com

personal: justin@meeas.com
twitter: @meeas

http://samurai-wtf.org

