éJ‘LihSEC

Python BaS|cs

Web App Pentesters
Part 1

Justin Searle
Managing Partner — UtiliSec
Certified Instructor — SANS Institute
justin@utilisec.com

Copyright 2011 Justin Searle

AJili
Why Python " Sec

e Pre-installed on Mac and Linux

e Easy to install on Windows

e Easy to write scripts that run on all OSes

e Easy to read and collaborate

e Very complete set of standard libraries

e Many stable and powerful 3 party libraries

Copyright 2011 Justin Searle

Aliilic
Python Shell " Sec

e Using an interactive python shell
— type “python” on your command line
— type python commands
— they execute when you hit enter

e Why use the shell?
— Easy way to learn the language
— Great way to debug portions of code
— Nice for PoC functions and loops

e Beyond the basic shell
— Consider ipython or IDLE after you get your feet wet
— Provide richer functionality and productivity

Copyright 2011 Justin Searle 3

Aliilic
Input and Output " Sec

print('This site is protected by SSL.") Basic output

Basic mput

answer = raw_input('Do you wish to continue?)

object oriented bliss it/ theFl / else
conditional
if answer.lower() == 'no’: statements. Notice
print('Exiting the program.’) the colons followed
else: by mandatory line
indentions

print(‘Continuing Program.’)

Copyright 2011 Justin Searle 4

AJili
A Tale of Two Libraries 7Seg

urllib2 httplib
HTTP, HTTPS, & FTP HTTP & HTTPS
Auto Parses URI No URI Parsing
Follows Redirections Doesn’t Follow Redirects
Uses a Cookie Jar Doesn’t Store Cookies
Auth: Basic & Digest Authentication: None
Methods: GET & POST Method: Any
Supports Proxy Servers No Proxy Support

Auto Closes Connections Manually Close Connection

Copyright 2011 Justin Searle

Aliilic
Using httplib 7 Se

Create a “connection” object

import httplib Domain only

connection = httplib.HTTPConnection("secureideas.net")

connection.request("TRACE", "/index.html")
Network request

response = connection.getresponse() made here
payload = response.read()

print(payload) Extract response
Extract payload

Copyright 2011 Justin Searle 6

Aliilic
Using urllib2 7 Se

The library that does the magic This doesn’t make the

request, 1t stmply

import urllib2 packages the request

request = urllib2.Request('http://www.utilisec.com')
response = urllib2.urlopen(request) Don’t for get the “http://
payload = response.read()

This sends the request,
catches the response,
and extracts out the
response payload

print(payload)

Copyright 2011 Justin Searle 7

il
POST Requests 5

import urllib2, urllib

url = 'http://whois.arin.net/ui/query.do' Add your POST

data = { 'flushCache' : 'false', data to a dictionary
'queryinput’ : '198.60.22.2"}

data = urllib.urlencode(data) Then urlencode your data

request = urllib2.Request(url, data) (don’t forget to import urllib)

response = urllib2.urlopen(request) If you provide urllib2

payload = response.read() with request data, it will

assume a POST
print(payload)

Copyright 2011 Justin Searle 8

il
Working with Headers 7S

import urllib2 Add your headers to
a dictionary

url = 'nttp://google.com/#g=samurai-wtf’
headers = { 'User-Agent' : 'Mozilla/5.0 (iPhone)' }
request = urllib2.Request(url, None, headers)

response = urllib2.urlopen(request) If you are doing a GET
headers = response.headers use None for data |

print(headers)

Copyright 2011 Justin Searle

il
Writing to a File 7S

import urllib2
request = urllib2.Request('http://www.utilisec.com')

response = urllib2.urlopen(request) Try opening a file, in

payload = response.read() write and binary
modes

with open(‘index.html’, ‘wb") as file:
file.write(payload)

Write the payload to the file

Copyright 2011 Justin Searle

il
Filtering Responses =S

import urllib2, re
request = urllib2.Request(‘http://inguardians.com/info')
response = urllib2.urlopen(request) gyiid your regex

payload = response.read() using a raw string,
grouping desired text

regex = r'<dt class="title">(.*)</dt>"

results = re.findall(regex , payload) Search payload
for all instances

for result in results: of your regex

print(result) .
Loop through your results printing them

Copyright 2011 Justin Searle

tili
Basic Authentication 7Seg

import urllib2 Setup needed variables

url ='http://browserspy.dk/password-ok.php'

username = 'test'
password = 'test Setup password manager

password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm()
password_mgr.add_password(None, url, username, password) Add paSSWOI”dS
authhandler = urllib2.HTTPBasicAuthHandler(password_mgr)
opener = urllib2.build_opener(authhandler)
urllib2.install_opener(opener)

Connect handler

response = urllib2.urlopen(url) Build and 1install so all
requests automatically use
payload = response.read() the password manager

print(payload)

Copyright 2011 Justin Searle

il
Fuzzing and Brute Force61>J e

import urllib2, re

Create list of 20 Facebook IDs
list = (1533095958 + i for i in range(0, 20))

for item in list:
url = 'nttp://m.facebook.com/people/a/' + str(item)

try:

response = urllib2.urlopen(url) ~ Prevent missing pages from throwing
except IOError: an error and stopping the script

pass
else:

payload = response.read()
regex = r'(["<]*)'
match = re.search(regex, payload)
if match:
name = match.groups()
site = response.geturl().split("?")[0]
print("{0} = {1} {2}".format(item, name[0], site))

Extract name from page

Grab url and remove redirect reference

Format output

Copyright 2011 Justin Searle

Aliilic
New SANS Course o HSec

SEC573: Python for Penetration Testers

e 5 Day Hands-on Class
— Day 1: variables, operators, statements, introspection
— Day 2: lists, loops, tuples, dicts, debugger, sys, files
— Day 3: sockets, exceptions, metasploit, AV, IDS, SQLi
— Day 4: fuzzing web apps, network recon, scapy, pcaps
— Day 5: capstone and capture the flag

e First time in US: Washington DC, June 2013
e First time in AsiaPAC: Singapore, Feb 2014
e http://www.sans.org/course/python-for-pen-testers

Copyright 2011 Justin Searle

Aliilic
Contact Information 7Seg

Justin Searle
Managing Partner - UtiliSec

work: justin@utilisec.com
personal: justin@meeas.com

twitter: @meeas

http://samurai-wtf.org

Copyright 2011 Justin Searle

