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Why Python 

•  Pre-installed on Mac and Linux 
•  Easy to install on Windows 
•  Easy to write scripts that run on all OSes 
•  Easy to read and collaborate 
•  Very complete set of standard libraries 
•  Many stable and powerful 3rd party libraries 
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Python Shell 

•  Using an interactive python shell 
–  type “python” on your command line 
–  type python commands 
–  they execute when you hit enter 

•  Why use the shell? 
–  Easy way to learn the language 
–  Great way to debug portions of code 
–  Nice for PoC functions and loops 

•  Beyond the basic shell 
–  Consider ipython or IDLE after you get your feet wet 
–  Provide richer functionality and productivity 
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Input and Output 

print('This site is protected by SSL.') 
 
 
answer = raw_input('Do you wish to continue? ') 
 
 
if answer.lower() == 'no': 
    print('Exiting the program.') 
else: 
    print('Continuing Program.') 

Basic output 

Basic input 

if / then / else 
conditional 
statements.  Notice 
the colons followed 
by mandatory line 
indentions 

object oriented bliss 
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A Tale of Two Libraries 

urllib2 
HTTP, HTTPS, & FTP 

Auto Parses URI 
Follows Redirections 
Uses a Cookie Jar 

Auth: Basic & Digest 
Methods: GET & POST 
Supports Proxy Servers 
Auto Closes Connections 

  

httplib 
HTTP & HTTPS 
No URI Parsing 

Doesn’t Follow Redirects 
Doesn’t Store Cookies 
Authentication: None 

Method: Any 
No Proxy Support 

Manually Close Connection 
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Using httplib 

 
 
import httplib 
 
connection = httplib.HTTPConnection("secureideas.net") 
connection.request("TRACE", "/index.html") 
 
response = connection.getresponse() 
payload = response.read() 
 
print(payload) 

Create a “connection” object 

Network request 
made here 

Extract payload 
Extract response 

Domain only 
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Using urllib2 

 
 
import urllib2 
 
request = urllib2.Request('http://www.utilisec.com') 
 
response = urllib2.urlopen(request) 
payload = response.read() 
 
print(payload) 

The library that does the magic This doesn’t make the 
request, it simply 
packages the request 

Don’t for get the “http://” 

This sends the request, 
catches the response, 
and extracts out the 
response payload 
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POST Requests 

import urllib2, urllib 
 
url = 'http://whois.arin.net/ui/query.do' 
data = { 'flushCache' : 'false',  
             'queryinput' : '198.60.22.2'} 
data = urllib.urlencode(data) 
request = urllib2.Request(url, data) 
 
response = urllib2.urlopen(request) 
payload = response.read() 
 
print(payload) 
 

If you provide urllib2 
with request data, it will 
assume a POST 

Then urlencode your data 
(don’t forget to import urllib) 

Add your POST 
data to a dictionary 
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Working with Headers 

import urllib2 
 
url = 'http://google.com/#q=samurai-wtf' 
headers = { 'User-Agent' : 'Mozilla/5.0 (iPhone)' } 
request = urllib2.Request(url, None, headers) 
 
response = urllib2.urlopen(request) 
headers = response.headers 
 
print(headers) 

Add your headers to 
a dictionary 

If you are doing a GET, 
use None for data 
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Writing to a File 

import urllib2 
 
request = urllib2.Request('http://www.utilisec.com') 
 
response = urllib2.urlopen(request) 
payload = response.read() 
 
with open('index.html', 'wb') as file: 
    file.write(payload) 

Write the payload to the file 

Try opening a file, in 
write and binary 
modes 
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Filtering Responses 

import urllib2, re 
request = urllib2.Request('http://inguardians.com/info') 
response = urllib2.urlopen(request) 
payload = response.read() 
 
regex = r'<dt class="title">(.*)</dt>' 
results = re.findall( regex , payload ) 
 
for result in results: 
     print(result) 

Build your regex 
using a raw string, 
grouping desired text 

Search payload 
for all instances 
of your regex 

Loop through your results printing them 
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Basic Authentication 

import urllib2 
 
url ='http://browserspy.dk/password-ok.php' 
username = 'test' 
password = 'test' 
 
password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm() 
password_mgr.add_password(None, url, username, password) 
authhandler = urllib2.HTTPBasicAuthHandler(password_mgr) 
opener = urllib2.build_opener(authhandler) 
urllib2.install_opener(opener) 
 
response = urllib2.urlopen(url) 
 
payload = response.read() 
print( payload ) 

Setup needed variables 

Setup password manager 

Add passwords 

Connect handler 

Build and install so all 
requests automatically use 
the password manager 
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Fuzzing and Brute Force 
import urllib2, re 
 

list = (1533095958 + i for i in range(0, 20) ) 
 

for item in list: 
    url = 'http://m.facebook.com/people/a/' + str(item) 
    try: 
        response = urllib2.urlopen(url) 
    except IOError: 
        pass 
    else: 
        payload = response.read() 
        regex = r'<strong>([^<]*)' 
        match = re.search(regex, payload) 
        if match:  
            name = match.groups() 
            site = response.geturl().split("?")[0] 
            print("{0} = {1}    {2}".format(item, name[0], site) ) 

Create list of 20 Facebook IDs 

Prevent missing pages from throwing 
an error and stopping the script 

Extract name from page 

Grab url and remove redirect reference 

Format output 
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New SANS Course 

SEC573: Python for Penetration Testers 
•  5 Day Hands-on Class 

–  Day 1: variables, operators, statements, introspection 
–  Day 2: lists, loops, tuples, dicts, debugger, sys, files 
–  Day 3: sockets, exceptions, metasploit, AV, IDS, SQLi 
–  Day 4: fuzzing web apps, network recon, scapy, pcaps 
–  Day 5: capstone and capture the flag 

•  First time in US: Washington DC, June 2013 
•  First time in AsiaPAC: Singapore, Feb 2014 
•  http://www.sans.org/course/python-for-pen-testers 
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Contact Information 

Justin Searle 
Managing Partner - UtiliSec 

 
work:  justin@utilisec.com 

personal:  justin@meeas.com 
twitter:  @meeas 

 
http://samurai-wtf.org 


