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* Rigorous, formal

Automated (at least most of it)

Synergic combination of independent components
Logic workflow of the SUV

Discovering vulnerabilities that others do not find
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The SPaCloS Tool
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WebGoat lesson: String SQL Injection
WebGoat lesson: Numeric SQL Injection
SIEMENS InfoBase and eHealth

SAML, OpenlD, OAuth: e.g., authentication logic-flaws
Password brute-forcing on SIEMENS InfoBase and eHealth
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The SPaCloS tool
and what you can do with it



Use case 1

property-driven security
testing



One example
Company enriching its products with security standards (SAML SSO, OAuth2, ..)

» security standards are highly configurable — which options and recommendations?
« company’s internal requirements — some deviations wrt standard?

« security impact?
SAML SSO - SP-initiated profile

* TLS/SSL everywhere or only in certain places?
» Shall IdP require signed SAML requests?

* |s “SP checking ID” really necessary?

S1.|GET URI

|
Al.|HTTP302 IdP?SAMLRequest=AuthReq(ID. SP}&RelayState-:lURl

SAML Authentication Protocol

A2. GET IdP?SAMLRequesft=AuthReq(ID,SP)&RelayState=URI

‘- EEEEEIEEEEEEEES b '1' IdP builds an authentication assertion
A3. HTTP200 FUM(. . .) ’: AA = Au‘hASSEH(ID. C.IdP. SP:}

( A4. POST SP,Response(ID, SP,ldP,{AA}KH],Re]a}'State{URI)

S2. HTTP200 Resource(URI)
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Use case 2

model-inference
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 Black-box model inference
 White-box model inference

* Sequence diagrams
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 White-box model inference
* Sequence diagrams
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Use case 3

mutation-based testing
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Use case 4

vulnerability-driven testing
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Attack Pattern + Instantiation file + SUV data

jon.scm - Eclipse SDK
Run Window Help

y v | - -

T SCM GEF Edstor 1

= file_enum |
IO0=[
" htaccess",

" htaccess.bak",
" . htpasswd",

N

le_enum | =] webgoat.conf

" . meta",
n oeh" '

s I T o Y - S T e B P

"conft™,
"apache/logs/access.log ",
"apache/logs/access log",
"apache/logs/error.log ",
"apache/logs/error log",
"httpd/logs/access.log ",
"httpd/logs/access log",
"httpd/logs/error.log ",
"httpd/logs/error log",
"logs/access. log",
"logs/access.log ",
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Properties

Property
Guard
Input
Output
Source
Target

Value
&l

*& vHttp.snd(URL+I0[iL.coc g
® Node send
¢ Node recv
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URL="http://localhost:8086/WebGoat/attack?Screen=37smenu=20
Cookie="JSESSIONID=E6E32CT70¢ESCCS10AB0S62DDETFCCLIFD"

Method="POST"

Fieldsl={'employee id':'1053"', 'password':'tom', ‘'action':'L
Fields2={'action':'ViewProfile'}

Headerl={'Content-Type': 'application/x-www-form-urlencoded
Header2={'Content-Type': 'application/x-www-form-urlencoded
# Bug in WebGoat: After complete the exercise, the success :
Control.”™ will not be always showed, just when one load the
Check Info=["Stage 4: Add Data Layer Rccess Control.", "Imp
Repeat stage 3. Verify that access to other employee's pro



Use case 5

Evolutionary fuzzing
for filtered type-1 and 2 XSS




Use case 6

Testing based on
Business logic patterns




Promising results
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Some highlights

SAML SSO authentication flaw and SAML ERRATA corrige

Filtered type-1 and type-2 XSS that other scan tools were not able to find

Shopping for free on several shopping cart web sites (to be published)

Transfers to SAP and SIEMENS
« Vulnerability-driven security testing approach applied on Web Apps at SIEMENS
* Property- and vulnerability-driven approaches applied at SAP: on development of security

standards and security core mechanisms



Thank you!

User Interface

The SPaCloS Tool will be available for public
download end of January 2013
http://www.spacios.eu
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