The SPaCloS Tool

property-driven and vulnerability-driven security testing for Web-based apps

Luca Compagna, Product Security Research, SAP AG
(on behalf of SPaCloS consortium)

STREP Project number: 257876
Objective ICT-2009.1.4 c: Technology and Tools for Trustworthy ICT

01.10.10 - 31.01.14
WWW.Spacios.eu

driven fault Libraries

inference localization

Property-driven
inference and and vulner ability-driven
adjustment test case generation

Vulnerabilities
Attack Patterns

Security Goals
Test Execution Engine Attacker Models

(System Under Validation)

Sgrtificial
Grenohle)llllP)‘ W SIEMENS I nteligence
l B Kelle . . .

* Rigorous, formal

Automated (at least most of it)

Synergic combination of independent components
Logic workflow of the SUV

Discovering vulnerabilities that others do not find

\ Sgrtificial
Grenoble |u'r)‘ W SIEMENS I nteligence
/I B Kelle . . .

On-going transfers to SAP and

SIEMENS

Technische Universitat Munchen

ETH

d-
SAMLS

2 SIEMENS Overseer Infobase -]
s P Soth, 3011.05-18 13:35 (b [y
P e T M0 Te0 Bescntanes g clobefind 5 Recyde B g Faverees
— [esitory:
Dack GANEL /A
Documests (ermission thered): tota 3)
ion scrs. Q52 18 B)
Down.ame Vo Comment S 3 Updated % Undated by % Lk Perm. Chob. el

OWASP Top 10

roe.
‘r‘ S & Sxmmmox 12348 20110310 1261 aase Lo s A ua
[™ 26 W0 29110315 13:0¢ P St 2 A aa

The SPaCloS Tool

A1

A2

A3

A4

A5

AB
A7

A8
A9

A10

/7

Injection

Broken Authentication &
Session Management

Cross-Site Scripting

Insecure Direct Object
References

Security Misconfiguration

Sensitive Data Exposure

Missing Function Level
Access Control

CSRF

Using Components with
Known Vulnerabilities

Unvalidated Redirects and
Forwards

SAPd

WebGoat lesson: String SQL Injection
WebGoat lesson: Numeric SQL Injection
SIEMENS InfoBase and eHealth

SAML, OpenlD, OAuth: e.g., authentication logic-flaws
Password brute-forcing on SIEMENS InfoBase and eHealth

WebGoat lesson: Stored XSS
WebGoat lesson: Reflected XSS
SIEMENS InfoCase and eHealth

SIEMENS InfoBase and eHealth: File Enumeration and Path Traversal

WebGoat lesson: Forced Browsing (File Enumeration)

SAML, OpenlD, OAuth: data confidentiality logic flaws

WebGoat lesson: Bypass Business Layer Access Control,
WebGoat lesson: Bypass Data Layer Access Control
WebGoat lesson: Role Based Access Control

SIEMENS eHealth

SIEMENS InfoBase and eHealth

SIEMENS @

The SPaCloS tool
and what you can do with it

Use case 1

property-driven security
testing

One example
Company enriching its products with security standards (SAML SSO, OAuth2, ..)

» security standards are highly configurable — which options and recommendations?
« company’s internal requirements — some deviations wrt standard?

« security impact?
SAML SSO - SP-initiated profile

* TLS/SSL everywhere or only in certain places?
» Shall IdP require signed SAML requests?

* |s “SP checking ID” really necessary?

S1.|GET URI

|
Al.|HTTP302 IdP?SAMLRequest=AuthReq(ID. SP}&RelayState-:lURl

SAML Authentication Protocol

A2. GET IdP?SAMLRequesft=AuthReq(ID,SP)&RelayState=URI

‘- EEEEEIEEEEEEEES b '1' IdP builds an authentication assertion
A3. HTTP200 FUM(. . .) ’: AA = Au‘hASSEH(ID. C.IdP. SP:}

(A4. POST SP,Response(ID, SP,ldP,{AA}KH],Re]a}'State{URI)

S2. HTTP200 Resource(URI)

One example
Company enriching its products with security standards (SAML SSO, OAuth2, ..)

« security standards are highly configurable — which options and recommendations?
« company’s internal requirements — some deviations wrt standard?

« security impact?
SAML SSO - SP-initiated profile

* TLS/SSL everywhere or only in certain places?
» Shall IdP require signed SAML requests?

* |s “SP checking ID” really necessary?

S1.|GET URI |

Al.|HTTP302 IdP?SAMLRequest=AuthReq(ID.SP)&RelayState=URI

SAML Authentication Protocol
?SAMLRequest=AuthReq(ID,SP)&RelayState=URI

; B . 0 CLTTTTEEET = ‘; IdP builds an authentication asserfion
» C € ° 3. HTTP200 Form(...) ’,' AA = AuthAssert(ID, C, IdP, SP)

(A4.POST SP,Response(ID, SP.IdP, {AA}y_.), RelayState(URI)

S2. HTTP200 Resource(URI)

() Input
) Output

el

.
7 Security -
~. Impact? Ky
L]

~~-—-_—’~

Property Model

Al.

~

\
/

S1.

GET URI

HTTP302 IdP?SAMLRequest=AuthReq(ID,SP)sRelayState=URI

SAML Authentication Protocol
A2. GET 1dP?SAMLRequesit=AuthReq(ID,SP)&RelayState=RI

*-----.---.-----’ ‘-‘ IdP builds an authentication asserlion
A3. HTT2200 Form(...) / AA=AuthAssent(ID,C,1dP,SP)

A4. POST SP,Response(ID, SP, 1dP, {AA }Kﬁé). RelayState(URI)

S2. HTTP200 Resource(URI)

Security
impact?

1.
2.
3.

Step C 1(..)
Step SP 1(..)
Step C 2 (..)

Y

Model
Checker

() Input
] Output

!

Attack
trace

(24
7

N\ N\
Property] Model J :
\J
L lap ose
S1./GET URI
Al.|HTTP302 IdP?SAMLRequest=AuthReq(ID,SP)sRelayState=URI

A2 GET IdP?SAMLReques|

SAML Authentication Protocol
it=AuthReq(ID, SP)&RelayState=

A3. HTTP200 Form(...)

'-‘ IdP builds an authentication asser]
! AA = AuthAssert(ID, C, IdP, SP)

"SI

A4. POST SP,Response(ID,

SP.1dP, {AA},). RelayState(URI)

1
P

S2. HTTP200

Resource(URI)

URI

ion

Security
impact? ~
%
‘W’,‘

Property] [L Model 1 g

1. Step C 1(..)
2. Step SP 1(..)
3. Step C 2(..)

\4
Model

Checker |
Attack
trace GET http:// ..

HTTP/1.1 200 OK ..
GET http:// ..

[SUV data }% Concretization HTTP/1.1 302..

\

v
A O\

Test execution
Test case ; —
engine -

S1./GET URI
Al.|HTTP302 IdP?SAMLRequest=AuthReq(ID,SP)sRelayState=URI

SAML Authentication Protocol
A2. GET 1dP?SAMLRequesit=AuthReq(ID,SP)&RelayState=RI

S LLLLTIETTILTLED P '-‘ IdP builds an authentication asserlion
A3. HTTP200 Form(...) |, /A = AuhAsser(ID,C,1dP,SP)

A4. POST SP,Response(ID.SP.IdP._{AA}K‘E). RelayState(URI)

|
P

"SI

C_) Input
:] Output S2. HTTP200 Resouree(URI)

Demo

Use case 2

model-inference

~

[L

Property]

y
Model
Checker

L

[L

Attack J
trace

[SUV data H

Concretization

() Input
] Output

Az

~

[L

Test case Jﬁ

Test execution
engine

Models?

W

N

G

/

S1./GET URI
Al.|HTTP302 IdP?SAMLRequest=AuthReq(ID,SP)sRelayState=URI
SAML Authentication Protocol
URI

A2. GET I1dP?SAMLRequesit=AuthReq(ID,SP)&RelayState=

A3. HTTP200 Form(...)

/' AA = AuthAssert(ID, C,1dP, SP)

"SI

A4. POST SP,Res.[:}onse(ID.SP.In:lP._{AA}K‘E). RelayState(URI)

1
P

'-‘ IdP builds an authentication asser]

ion

S2. HTTP200

Resource(URI)

 Black-box model inference
Models?

N
[[Propert] [L Model L 4)
perty]

\
Model

Checker

N V)

[[Attack] Black-box model-

trace inference
N
[SUV data H Concretization

Test execution
Test case ; —
engine -

S1./GET URI

A

.|HTTP302 IdP?SAMLRequest=AuthReq(ID,SP)sRelayState=URI

SAML Authentication Protocol
A2. GET 1dP?SAMLRequesit=AuthReq(ID,SP)&RelayState=RI

S LLLLTIETTILTLED P '-‘ IdP builds an authentication asserlion
A3. HTTP200 Form(...) |, /A = AuhAsser(ID,C,1dP,SP)

"SI

A4. POST SP,Res[:)onse(ID.SP.In:lP._{AA}K‘E). RelayState(URI)

|
P

C_) Input
:] Output S2. HTTP200 Resouree(URI)

 Black-box model inference

~

[L

Property]

y
Model
Checker

[SUV data H

() Input
] Output

[[Attack J
trace
Concretization

[[

Test case Jﬁ

Test execution
engine

Models?

W

N

G

/

S1./GET URI
Al.|HTTP302 IdP?SAMLRequest=AuthReq(ID,SP)sRelayState=URI
SAML Authentication Protocol
URI

A2. GET I1dP?SAMLRequesit=AuthReq(ID,SP)&RelayState=

A3. HTTP200 Form(...)

/' AA = AuthAssert(ID, C,1dP, SP)

"SI

A4. POST SP,Res.[:}onse(ID.SP.In:lP._{AA}K‘E). RelayState(URI)

|
P

'-‘ IdP builds an authentication asser]

ion

S2. HTTP200

Resource(URI)

 Black-box model inference

 White-box model inference Models?

[[Property] [L Model }

\
Model

Checker
[[Attack }
trace

[SUV data H Concretization

N

v
L O\

inference

White-box model-

N\

[

source code }

of system

Test execution
Test case ; —
engine -

S

.|GET URI

A

.|HTTP302 IdP?SAMLReques

t=AuthReq(ID, SP)aRelayState=

(A2 GET IdP?SAMLReques|

SAML Authentication Protocol
t=AuthReq(ID,SP)&RelayState=

A3.

HTTP200 Form(...)

'-‘ IdP builds an authentication asser]
! AA = AuthAssert(ID, C, IdP, SP)

Ad.

"SI

() Input

POST SP,Response(ID,

SP.IdP, {AA}K‘E). RelayState(URI)

|
P

] Output

S2. HTTP200

Resource(URI)

URI

URI

ion

 Black-box model inference
 White-box model inference

~

[L

Property]

[SUV data H

() Input
] Output

Models?

(25

/

y
Model \
Checker
AL \
Attack
trace
Concretization
N ~
Test execution
Test case ;
engine
a uap se
S1.|GET URI

Al.|HTTP302 IdP?SAMLRequest=AuthReq(ID,SP)sRelayState=URI

A2 GET IdP?SAMLReques|

SAML Authentication Protocol
it=AuthReq(ID, SP)&RelayState=

A3. HTTP200 Form(...)

'-‘ IdP builds an authentication asser]
! AA = AuthAssert(ID, C, IdP, SP)

"SI

A4. POST SP,Response(ID,

SP.1dP, {AA},). RelayState(URI)

|
P

S2. HTTP200

Resource(URI)

URI

ion

 Black-box model inference
 White-box model inference

* Sequence diagrams

[L

~

Property] [L

\

Model

Models?

Checker

[SUV data H

[[Attack }
trace
Concretization

() Input
] Output

Ay
L O\

[[

Test case }%

Test execution
engine

[

Sequence }

diagrams

S1./GET URI
Al.|HTTP302 IdP?SAMLRequest=AuthReq(ID,SP)sRelayState=

A2 GET IdP?SAMLReques|

SAML Authentication Protocol
t=AuthReq(ID,SP)&RelayState=

A3. HTTP200 Form(...)

'-‘ IdP builds an authentication asser]
! AA = AuthAssert(ID, C, IdP, SP)

"SI

A4. POST SP,Response(ID,

SP.IdP, {AA}K‘E). RelayState(URI)

|
P

/_

URI

URI

ion

S2. HTTP200

Resource(URI)

 Black-box model inference
 White-box model inference

* Sequence diagrams

~

[L

Property]

y
Model
Checker

[SUV data H

[[Attack]
trace
Concretization

() Input
] Output

N V)
A O\

[[

Test case]ﬁ

Test execution
engine

Models?

U

>
‘W’,‘

/_

S1./GET URI
Al.|HTTP302 IdP?SAMLRequest=AuthReq(ID,SP)sRelayState=

URI

SAML Authentication Protocol

A2. GET I1dP?SAMLRequesit=AuthReq(ID,SP)&RelayState=

A3. HTTP200 Form(..

) AA = AuthAssert(ID, C, IdP, SP)

"SI

A4. POST SP,Response(ID.SP.IdP._{AA}K‘E). RelayState(URI)

|
P

'-‘ IdP builds an authentication asser]

URI

ion

S2. HTTP200

Resource(URI)

 Black-box model inference
 White-box model inference
* Sequence diagrams

e Netwo

() Input
] Output

rk traces

[[Property] [L Model }

\

Model

Models?

Checker

[SUV data H

[[Attack }
trace
Concretization

=
QD
>
n
=
o
=

Network }

traces

[[

Test case }%

Test execution
engine

/_

S1./GET URI
Al.|HTTP302 IdP?SAMLRequest=AuthReq(ID,SP)sRelayState=

URI

A2 GET IdP?SAMLReques|

SAML Authentication Protocol
t=AuthReq(ID,SP)&RelayState=

A3. HTTP200 Form(...)

URI

'-‘ IdP builds an authentication assertion

/' AA = AuthAssert(ID, C,1dP, SP)

"SI

A4. POST SP,Response(ID,

SP.IdP, {AA}K‘E). RelayState(URI)

|
P

S2. HTTP200

Resource(URI)

 Black-box model inference
 White-box model inference
* Sequence diagrams

e Netwo

() Input
] Output

rk traces

[[Property] [L Model }

Models?

[SUV data H

\
Model
Checker
[[Attack }
trace
Concretization

=
QD
>
n
=
o
=

Network
traces

[[

Test case }%

Test execution
engine

collector

Network trace

S1./GET URI
Al.|HTTP302 IdP?SAMLRequest=AuthReq(ID,SP)sRelayState=

URI

A2 GET IdP?SAMLReques|

SAML Authentication Protocol
t=AuthReq(ID,SP)&RelayState=

A3. HTTP200 Form(...)

URI

'-‘ IdP builds an authentication assertion

/' AA = AuthAssert(ID, C,1dP, SP)

"SI

A4. POST SP,Response(ID,

SP.IdP, {AA}K‘E). RelayState(URI)

1
P

S2. HTTP200

Resource(URI)

Use case 3

mutation-based testing

No attack
traces?

a\
:) %ﬁa

/
&Property] [L Model J :

y
Model
Checker

|

[SUV data H Concretization

~

Test execution
Test case ; —
engine -

OWASP WebGoat V5.2

() Input
] Output

[[Property \] [L Model \} W‘ g

y
Model
Checker

[[Attack]
trace

[SUV data H

Concretization

() Input
] Output

No attack
traces?

V

Mutated Mutation
Model engine

Mutation
operators

[[Test case]ﬁ

Test execution
engine »

OWASP WebGoat V5.2

Demo

Use case 4

vulnerability-driven testing

Well-known
vulnerabilities?

[SUV data H Concretization

Test execution
Test case ;
engine

OWASP WebGoat V5.2

() Input
] Output

[SUV data H Concretization

() Input
] Output

Well-known
vulnerabilities?

pattern
models

Instantiation

files

[L Test case Jﬁ

Test execution

engine <

OWASP WebGoat V5.2

Attack Pattern + Instantiation file + SUV data

jon.scm - Eclipse SDK
Run Window Help

y v | - -

T SCM GEF Edstor 1

= file_enum |
IO0=[
" htaccess",

" htaccess.bak",
" . htpasswd",

N

le_enum | =] webgoat.conf

" . meta",
n oeh" '

s I T o Y - S T e B P

"conft™,
"apache/logs/access.log ",
"apache/logs/access log",
"apache/logs/error.log ",
"apache/logs/error log",
"httpd/logs/access.log ",
"httpd/logs/access log",
"httpd/logs/error.log ",
"httpd/logs/error log",
"logs/access. log",
"logs/access.log ",

-] Oy N o W M = O o 0o

Properties

Property
Guard
Input
Output
Source
Target

Value
&l

*& vHttp.snd(URL+I0[iL.coc g
® Node send
¢ Node recv

LD

= B N 8 BT R R I % I T}

URL="http://localhost:8086/WebGoat/attack?Screen=37smenu=20
Cookie="JSESSIONID=E6E32CT70¢ESCCS10AB0S62DDETFCCLIFD"

Method="POST"

Fieldsl={'employee id':'1053"', 'password':'tom', ‘'action':'L
Fields2={'action':'ViewProfile'}

Headerl={'Content-Type': 'application/x-www-form-urlencoded
Header2={'Content-Type': 'application/x-www-form-urlencoded
Bug in WebGoat: After complete the exercise, the success :
Control.”™ will not be always showed, just when one load the
Check Info=["Stage 4: Add Data Layer Rccess Control.", "Imp
Repeat stage 3. Verify that access to other employee's pro

Use case 5

Evolutionary fuzzing
for filtered type-1 and 2 XSS

Use case 6

Testing based on
Business logic patterns

Promising results

Al

A2

A3

A4

A5

A6
A7

A8
A9

Al10

Injection

Broken Authentication &
Session Management

Cross-Site Scripting

Insecure Direct Object
References

Security Misconfiguration

Sensitive Data Exposure

Missing Function Level
Access Control

CSRF

Using Components with
Known Vulnerabilities

Unvalidated Redirects and
Forwards

WebGoat lesson: String SQL Injection
WebGoat lesson: Numeric SQL Injection
SIEMENS InfoBase and eHealth

SAML, OpenlID, OAuth: e.g., authentication logic-flaws
Password brute-forcing on SIEMENS InfoBase and eHealth

WebGoat lesson: Stored XSS
WebGoat lesson: Reflected XSS
SIEMENS InfoCase and eHealth

SIEMENS InfoBase and eHealth: File Enumeration and Path Traversal

WebGoat lesson: Forced Browsing (File Enumeration)

SAML, OpenID, OAuth: data confidentiality logic flaws

WebGoat lesson: Bypass Business Layer Access Control,
WebGoat lesson: Bypass Data Layer Access Control
WebGoat lesson: Role Based Access Control

SIEMENS eHealth

SIEMENS InfoBase and eHealth

Some highlights

SAML SSO authentication flaw and SAML ERRATA corrige

Filtered type-1 and type-2 XSS that other scan tools were not able to find

Shopping for free on several shopping cart web sites (to be published)

Transfers to SAP and SIEMENS
« Vulnerability-driven security testing approach applied on Web Apps at SIEMENS
* Property- and vulnerability-driven approaches applied at SAP: on development of security

standards and security core mechanisms

Thank you!

User Interface

The SPaCloS Tool will be available for public
download end of January 2013
http://www.spacios.eu

Technische Universitat Minchen

\ Sgrtificial
Grenoble |ulr)‘ W SIEMENS | nteligence
/I B Kelle . . .

http://www.spacios.eu/

