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Welcome!

• My name is Mark :)

 Today's Goals:
 Propagate the basic idea of  bug “chaining” 
 Demonstrate that rating web vulnerabilities by severity can be 

difficult
 Discuss how we may better classify bug severity
 Have a little fun 

 The Agenda:
 A look at bug severity
 Rating bugs 
 Chaining bugs
 Examine a real world case study
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How severe is a bug?

How to rate a bug?
Where do we begin?
The basics:

 What is the impact?
 Server compromise? 
 Client compromise?
 Is authentication required? 
 Other prerequisites?
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How severe is a bug? (Cont...)

 How is access to the application obtained?
 Where does the application reside? 
 What is the underlying database / OS? 

 Stacked queries?
 File-system write permissions?
 File-system read permissions?

 What information is compromised? 
 Application availability? 
 Can the vulnerability be exploited en 

masse?
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How severe is a bug? (Cont...)

 Classic classification “rules”:
 Server-Side: Higher severity 
 Client-Side: Lesser severity 
 Un-authenticated: Higher severity 
 Authenticated: Lesser severity
 Internet facing: Higher severity 
 Internal network: Lower severity
 Mass exploitability: Higher severity 
 Targeted exploitability: Lower severity



6OWASP

Additional Considerations

  Are there additional mitigations in place?
 Web application firewalls?
 Is there timing issues in exploiting the bug?
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The Severity Game
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Rate The Following Bugs

 Have a crack at rating the severity as: 
 Low → Medium
 Medium → High
 High → Critical
 Critical!
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Round #1

 Issue: SQL Injection
 Underlying DB: MySQL (non-stackable) 
 Requires: User-Authentication, GET
 Notes: results in 'non-standard' error page
 URL Example: 

http://site/index.php?
file=TagCloud&module=Leads&action=LeadsAjax&recordid=14&ajx
action=GETTAGCLOUD&recordid=1SQL

 Result:
SELECT tag,tag_id,COUNT(object_id) AS quantity FROM site_freetags 
INNER JOIN site_freetagged_objects ON (site_freetags.id = tag_id) 
WHERE 1=1 AND tagger_id = 2 AND module = 'Leads' AND object_id 
= 1SQL GROUP BY tag,tag_id ORDER BY quantity DESC
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Round #2:

 Issue: Arbitrary File Upload 
 Requires: User-Authentication, POST
 Notes: resulting file location partially 

known

 Example: 

“.php” = BAD. “.PHP”, “.phtml” = GOOD.
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Rate the following (Round #3):

 Issue: Local File Disclosure 
 Requires: User-Authentication, GET
 Notes: None

 URL Example: 

http://site/index.php?
action=PortalAjax&mode=ajax&module=Portal&file=../../../../../../
../proc/self/environ%00&datamode=data
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Rate the following (Round #4):

 Issue: Cross-Site Scripting
 Requires: User-Authentication, GET
 Notes: Reflective

 URL Example: 

http://site/index.php?
module=Calendar&action=index&parenttab=%22%3E%3Cscript
%3Ealert(document.cookie);%3C/script%3E
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Severity?

 Authenticated SQL Injection?
 Medium →  High 

 Authenticated File Upload? 
 Medium → High

 Authenticated Local File Include?
 Low → Medium

 Cross-Site Scripting?
 Low → Medium
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Bonus Round!
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Question #1

   If the victim of a Cross-Site scripting attack 
is authenticated to the target application, 
is the attacker then considered 
authenticated for any subsequent attacks 
agaisnt the same application?
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Question #2

   Consider the previous 4 bugs. What 
happens to the severity of the bugs if we 
combine them? 

1+2...2+3...2+4?



17OWASP

Severity?

 Authenticated SQL Injection?
 Medium →  High 

 Authenticated File Upload? 
 Critical! 

 Authenticated Local File Include?
 Medium → High

 Cross-Site Scripting?
 Critical!

 New finding: “Un-authenticated” Script 
Execution

 Critical!
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Bug Chaining

 Exactly what the name implies!
 Is a mind set more than a “bug class”
 The art of chaining multiple bugs to create 

exploitable vulnerabilities
 Avoiding pointillistic thinking
 “Glue code”
 Often considered more complex to 

develop and deliver 
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Bug Chaining (Cont...)

  Many potential exploit conditions exist
  Client bugs to target server

 XSS / CSRF / Web Service Clients → server
  Server bugs to target the client

 SQL injection → client malware
  Server bugs to target other server bugs

 Shared application resources 
 RPC attacks

  Client bugs to target multiple servers:
 Client → Application 1 → SSO → Application 2
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Bug Chaining (Cont...)

 It is 2009!
 Generally, external is tighter than 

internal
 That “gooey marshmallow centre” is 

now the target
 In order to reach the target some 

creativity is now required by attackers
 A number of frameworks to create 

complex exploits 



21OWASP

Chaining Examples

 PHPMyAdmin <= 3.1.3:
 Bug #1: Insecure permissions
 Bug #2: Script injection 
 Exploit: PHP script execution

 SugarCRM <= 5.2.0e: 
 Bug #1: Flawed extention validation 
 Bug #2: Predictable file name
 Bug #3: Direct file request (?)
 Exploit: PHP script execution  
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A better way?

 How may we better determine the severity of a 
bug?

 CVSSv2? 
 Common Vulnerability Scoring System v2.0
 Adopted by many organisations
 Considers exploit complexity, application  

location, authentication, target likelihood etc.
 Can get very complex
 Can often be time consuming
 Can be difficult to follow
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The VtigerCRM Example

   "You can explain this stuff all day, but 
when network admins actually see you do 
it, that's when they learn" - Brett Moore
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The VtigerCRM Example

 Large Open-Source CRM system
 Reported issues in 2008 
 Fixed in 5.0.4 “Security Update 1”
 Patched version is not the default 

download
 Combine bugs #2 and #4 to create & 

execute a remote command execution 
exploit (connect-back)

 This is a very common condition
 We wont cover XSS delivery
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Chaining #2 & #4

 Use XSS to control the users browser 
 Generate a file to upload 

 Connect-back shellcode
 Have the user upload on our behalf 

 HTTP POST via AJAX 
 Have the user discover & request the file

 Only have a partial location
 We may not be able to directly request 
 Brute force
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Chainging #2 & #4 (Cont...)

Introducing BeEF: 
 By Wade of NGS / bindshell.net
 Browser Exploitation Framework 
 Modular exploits 
 Autorun modules 
 Control multiple victims 
 Originally written to demonstrate Inter-Protocol 

Exploitation (IPE)
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Chaining #2 & #4 (Cont...)

  VtigerCRM Beef Module: 
 Javascript (client payload) 
 PHP (attack assistance)
 No requirement for the user browser to 

remain open
 Maybe be executed as an auto-run module
 Written for this demo in < 2 hours

http://freedomisnothingtofear.com/xplt_vtiger.tar.gz
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DEMO!
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References / Links

• http://www.first.org/cvss/
• http://www.owasp.org/
• http://vtiger.com/
• http://bindshell.net/
• http://nostarch.com/js2.html
• http://secunia.com/
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Questions?

markp@catalyst.net.nz
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