
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this
document under the terms of the OWASP License.

The OWASP
Foundation

OWASP

http://www.owasp.org

Application Bug Chaining

Mark Piper
OWASP User
Catalyst IT Ltd.
markp@catalyst.net.nz

July 2009

2OWASP

Welcome!

• My name is Mark :)

 Today's Goals:
 Propagate the basic idea of bug “chaining”
 Demonstrate that rating web vulnerabilities by severity can be

difficult
 Discuss how we may better classify bug severity
 Have a little fun

 The Agenda:
 A look at bug severity
 Rating bugs
 Chaining bugs
 Examine a real world case study

3OWASP

How severe is a bug?

How to rate a bug?
Where do we begin?
The basics:

 What is the impact?
 Server compromise?
 Client compromise?
 Is authentication required?
 Other prerequisites?

4OWASP

How severe is a bug? (Cont...)

 How is access to the application obtained?
 Where does the application reside?
 What is the underlying database / OS?

 Stacked queries?
 File-system write permissions?
 File-system read permissions?

 What information is compromised?
 Application availability?
 Can the vulnerability be exploited en

masse?

5OWASP

How severe is a bug? (Cont...)

 Classic classification “rules”:
 Server-Side: Higher severity
 Client-Side: Lesser severity
 Un-authenticated: Higher severity
 Authenticated: Lesser severity
 Internet facing: Higher severity
 Internal network: Lower severity
 Mass exploitability: Higher severity
 Targeted exploitability: Lower severity

6OWASP

Additional Considerations

 Are there additional mitigations in place?
 Web application firewalls?
 Is there timing issues in exploiting the bug?

7OWASP

The Severity Game

8OWASP

Rate The Following Bugs

 Have a crack at rating the severity as:
 Low → Medium
 Medium → High
 High → Critical
 Critical!

9OWASP

Round #1

 Issue: SQL Injection
 Underlying DB: MySQL (non-stackable)
 Requires: User-Authentication, GET
 Notes: results in 'non-standard' error page
 URL Example:

http://site/index.php?
file=TagCloud&module=Leads&action=LeadsAjax&recordid=14&ajx
action=GETTAGCLOUD&recordid=1SQL

 Result:
SELECT tag,tag_id,COUNT(object_id) AS quantity FROM site_freetags
INNER JOIN site_freetagged_objects ON (site_freetags.id = tag_id)
WHERE 1=1 AND tagger_id = 2 AND module = 'Leads' AND object_id
= 1SQL GROUP BY tag,tag_id ORDER BY quantity DESC

10OWASP

Round #2:

 Issue: Arbitrary File Upload
 Requires: User-Authentication, POST
 Notes: resulting file location partially

known

 Example:

“.php” = BAD. “.PHP”, “.phtml” = GOOD.

11OWASP

Rate the following (Round #3):

 Issue: Local File Disclosure
 Requires: User-Authentication, GET
 Notes: None

 URL Example:

http://site/index.php?
action=PortalAjax&mode=ajax&module=Portal&file=../../../../../../
../proc/self/environ%00&datamode=data

12OWASP

Rate the following (Round #4):

 Issue: Cross-Site Scripting
 Requires: User-Authentication, GET
 Notes: Reflective

 URL Example:

http://site/index.php?
module=Calendar&action=index&parenttab=%22%3E%3Cscript
%3Ealert(document.cookie);%3C/script%3E

13OWASP

Severity?

 Authenticated SQL Injection?
 Medium → High

 Authenticated File Upload?
 Medium → High

 Authenticated Local File Include?
 Low → Medium

 Cross-Site Scripting?
 Low → Medium

14OWASP

Bonus Round!

15OWASP

Question #1

 If the victim of a Cross-Site scripting attack
is authenticated to the target application,
is the attacker then considered
authenticated for any subsequent attacks
agaisnt the same application?

16OWASP

Question #2

 Consider the previous 4 bugs. What
happens to the severity of the bugs if we
combine them?

1+2...2+3...2+4?

17OWASP

Severity?

 Authenticated SQL Injection?
 Medium → High

 Authenticated File Upload?
 Critical!

 Authenticated Local File Include?
 Medium → High

 Cross-Site Scripting?
 Critical!

 New finding: “Un-authenticated” Script
Execution

 Critical!

18OWASP

Bug Chaining

 Exactly what the name implies!
 Is a mind set more than a “bug class”
 The art of chaining multiple bugs to create

exploitable vulnerabilities
 Avoiding pointillistic thinking
 “Glue code”
 Often considered more complex to

develop and deliver

19OWASP

Bug Chaining (Cont...)

 Many potential exploit conditions exist
 Client bugs to target server

 XSS / CSRF / Web Service Clients → server
 Server bugs to target the client

 SQL injection → client malware
 Server bugs to target other server bugs

 Shared application resources
 RPC attacks

 Client bugs to target multiple servers:
 Client → Application 1 → SSO → Application 2

20OWASP

Bug Chaining (Cont...)

 It is 2009!
 Generally, external is tighter than

internal
 That “gooey marshmallow centre” is

now the target
 In order to reach the target some

creativity is now required by attackers
 A number of frameworks to create

complex exploits

21OWASP

Chaining Examples

 PHPMyAdmin <= 3.1.3:
 Bug #1: Insecure permissions
 Bug #2: Script injection
 Exploit: PHP script execution

 SugarCRM <= 5.2.0e:
 Bug #1: Flawed extention validation
 Bug #2: Predictable file name
 Bug #3: Direct file request (?)
 Exploit: PHP script execution

22OWASP

A better way?

 How may we better determine the severity of a
bug?

 CVSSv2?
 Common Vulnerability Scoring System v2.0
 Adopted by many organisations
 Considers exploit complexity, application

location, authentication, target likelihood etc.
 Can get very complex
 Can often be time consuming
 Can be difficult to follow

23OWASP

The VtigerCRM Example

 "You can explain this stuff all day, but
when network admins actually see you do
it, that's when they learn" - Brett Moore

24OWASP

The VtigerCRM Example

 Large Open-Source CRM system
 Reported issues in 2008
 Fixed in 5.0.4 “Security Update 1”
 Patched version is not the default

download
 Combine bugs #2 and #4 to create &

execute a remote command execution
exploit (connect-back)

 This is a very common condition
 We wont cover XSS delivery

25OWASP

Chaining #2 & #4

 Use XSS to control the users browser
 Generate a file to upload

 Connect-back shellcode
 Have the user upload on our behalf

 HTTP POST via AJAX
 Have the user discover & request the file

 Only have a partial location
 We may not be able to directly request
 Brute force

26OWASP

Chainging #2 & #4 (Cont...)

Introducing BeEF:
 By Wade of NGS / bindshell.net
 Browser Exploitation Framework
 Modular exploits
 Autorun modules
 Control multiple victims
 Originally written to demonstrate Inter-Protocol

Exploitation (IPE)

27OWASP

Chaining #2 & #4 (Cont...)

 VtigerCRM Beef Module:
 Javascript (client payload)
 PHP (attack assistance)
 No requirement for the user browser to

remain open
 Maybe be executed as an auto-run module
 Written for this demo in < 2 hours

http://freedomisnothingtofear.com/xplt_vtiger.tar.gz

28OWASP

DEMO!

29OWASP

References / Links

• http://www.first.org/cvss/
• http://www.owasp.org/
• http://vtiger.com/
• http://bindshell.net/
• http://nostarch.com/js2.html
• http://secunia.com/

30OWASP

Questions?

markp@catalyst.net.nz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

