
Making the web secure by design

Glenn ten Cate

Security Engineer
@Schuberg Philis

Riccardo ten Cate

Security Researcher

Agenda

• Why SKF
• What you will get/learn
• Stages of development
• Intro & how to
• Hands on - testing
• ASVS
• Getting involved
• Questions?

3

Why S.K.F.
• Missing security at design
• Missing defensive coding approach
• Missing security guidance
• Missing security requirements
• Security is hard
• Security information should be available for everybody

4

What you will get/learn
• Guide to secure programming

Do security by design, not implementing security afterwards.

• Security awareness
It’ll inform you about threats even before you wrote a single line of
code.

• Central place for security reference
Provides information applicable for your specific needs on the spot.

5

Stages of development
• Pre development stage

Here we detect threats before hand and we provide developers
with secure development patterns as well as providing feedback
and solutions on how to handle their threats.

• Post development stage
By means of checklists we guide developers through a process
where we harden their application infrastructure and functions by
providing feedback and solutions

6

Demo:
https://securityknowledgeframework.org/demo.php

7

Hands on - testing
• Visit the web application

Check out this new web application developed by SloppyCode INC.
Visit the website on http://192.168.8.133

• Source of SloppyCode INC available at: https://github.
com/blabla1337/skf-workshop

• Learn the hackers mindset
In order to defend we first must think like an attacker.

8

Some hacking exercises
• Cross site scripting

• Reflective file download

• Directory/path traversal

• Identifier injection

 9

Cross site scripting
• Attack vector:

If you can imagine it, you can do it. Under the right conditions XSS
can do almost anything. For example: http://beefproject.com/

• Objective
Due to the variety of attacks and encodings there are a lot of
different possible attack strings to execute an XSS attack. For this
exercise though you will only need a simple : <script>alert(1337);
</script>. Now find the XSS injection in the application.

10

Reflective file download
• Attack vector:

Reflective file download occurs whenever an attacker can "forge" a
download through misconfigurations in your "disposition" and
"content type" headers. This attack can lead to compromising the
victim’s entire workstation.

• Objective
Try tamerping with the filenames and see if you can forge your own
download on the web application. Try to make your attack access a
local file on your machine.

11

Directory/path traversal
• Attack vector:

A Path Traversal attack aims to access files and directories that are
stored outside the web root folder. By browsing the application, the
attacker looks for absolute links to files stored on the web server.
By manipulating variables that reference files with dot-dot-slash (..
/); sequences and its variations, it may be possible to access
arbitrary files and directories stored on file system.

• Objective
Try to read the “secrets.txt” from the webserver by doing a path
traversal attack.

12

Identifier injection
• Attack vector:

An application uses parameters in order to process data. These
parameters can also be used to assign certain roles and retrieve

 content corresponding with those parameters. Whenever these
 parameters are tampered with an attacker might gain access to
 other users data.

• Objective
Watch the applications operation and look out for identifiers like
user= or id= when you are searching for identifier injection. Let’s
see if we can read some user data not intended for our eyes.

13

OWASP ASVS

• ASVS lvl1 Opportunistic
It adequately defends against application security vulnerabilities
that are easy to discover.

• ASVS lvl2 Standard
 It adequately defends against prevalent application security
 vulnerabilities whose existence poses moderate-to-serious risk.

• ASVS lvl3 Advanced
It adequately defends against all advanced application security
vulnerabilities, and also demonstrates principles of good security
design.

14

Getting involved?

• Website
secureby.design

Together we can make it big, strong and helpful!

15

Questions?

16

