
©2011Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice
©2011 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Overcoming the

Quality vs. Quantity

Problem in Software

Security Testing

OWASP AppSec 2012

Rafal M. Los (“@Wh1t3Rabbit”)

Chief Security Evangelist, HP Software

Quantity vs. Quality

…can’t we just have both?

If only it was that easy.

Intended audience:

Corporate software security testers, professionals, or those
otherwise struggling with “too many applications, not enough
time”.

what’s the goal?

why are we here?

better software

better performance

better … FEATURES*

*no features, no app

better security

how to get there?

we influence security

let’s start there

raise level of assurance

trust your software

validate by testing

validate by ^ testing
security

millions of applications

apps in your org?

100?

1,000?

more?

no idea?

increase/decrease daily?

legacy applications

new applications

open-sourced apps

3rd party apps

composite apps

overrun by applications

they multiply!

“rapid app. delivery”

Agile, DevOps, …

wait, wait, stop …

who’s doing the testing?

insourced, outsourced

crowd-sourced

testing window shrinkage

this causes anxiety

“security takes too long”

up against

D

E

A

D

L

I

N

E

S

security is ‘stuck’

you must choose.

be thorough

OR

be speedy

“both” is very difficult

yet…

ideally you need both

you have 3 weapons

rely on strategy

rely on experience

rely on technology

challenge: complexity

challenge: resources

is compromise OK?

quick example

1 page, simple form

2 drop-downs

10 options each

1 check box (optional)

10 x 10 x 2 = 200 options

2 exit paths from form

Path A, Path B

198 combinations go A

2 combinations go B

Odds of testing A & B?

not very good…

it’s never, ever this easy

tech to the rescue?

completeness vs. speed

pick most critical

experience teaches…

speed > completeness

why speed?

projects will go live

some testing > none

balance is difficult

experience has taught me

balance is possible

what matters?

Size of application

application Complexity

available Time to test

available Resources

other considerations

release cycle

application criticality

external support

strategies for balance

1. app segmentation

split the application up

at functional boundaries

apps break into pieces

e.g. register  login

e.g. login  catalog

at trust boundaries

high |<>| low security

unauth | auth

along workflows

use case :: workflow

psst! don’t forget data

2. workload distribution

technology  win

evolving technology

harness compute power

compute in the cloud

vLIMITLESS resources

massively parallel

instant-on scan farms

start on your desktop

push to the cloud

pay for compute time

time: days  hours

billions of iterations

Yay cloud!

3. OPTIMIZE tools

tools give us options

use advanced options

point n’ click

JavaScript operations

number of iterative loops

form variations/submits

page timeouts………..

redundant pages?
redundant
redundant
redundant

cASe SenSITivitY

“start here” capability

many other tech controls

to recap

applications  complex

speed vs. completeness

looking for balance

AS appropriate

balance is possible

have cake, eat it too.

3 ways to achieve

app segmentation

workload distribution

tools optimization

ANY
QUESTIONS?

THANK YOU

