Aurlrd

INFORMATION SECURITY

HTML 5

<IDOCTYPE html>

Who is this guy? Qura

Mike Haworth
Aura Information Security
mike@aurainfosec.com

HTML 5 ayura

* Isn't it just markup?

—Nope, Sites now have greater access to
each other's content via new APIs

e HTML 5 features are deployed in major
browsers
—Therefore HTML 5 issues will affect you

even if you aren't building a fancy pants
HTML 5 site

aurd

Features INFORMATION SECURITY
* Video/Audio tags WebSockets
+ Dragand-Brop * Cross Origin Resource
+ \Webworkers Sharing
e LocalStorage * Content Security
* History API Policy

£ bhoxi

 Cross window
messaging *—WebGt

New Elements and Attrs CIUI’CI

* New tags like <audio>, <video> & <canvas>

e Forms now have autofocus attribute

— Gets fired on pageload

e List of new elements

http://www.w3schools.com/htmI5/htmI5 new elements.asp

New Elements — gotchas aurd

* New tags means new XSS vectors
— <input autofocus onfocus="alert(1)">

— <video><source onerror="javascript:alert(1)">

* A whitelisting approach will still protect.

— e.g. Drupal's filter_xss()
— XSS vectors: http://html5sec.org/

Cross Window Messaging @CIUI’CI

* What's it for? Facebook connect etc.

* window.postMessage()

* Requires you explicitly receive a message

* Need a reference to the window your sending to

// sending
win =
document.getElementByld("iframe").contentWindow;

win.postMessage('my msg', "http://recv.com");

Cross Window Messaging Qura

// receiving
window.addEventListener("message", function(e){
if (e.origin !1=="http://sender.com")
return;
document.getElementByld("test").textContent
= e.origin + " said: " + e.data;

Cross Window Messaging @CIUI’CI

* |n the receiver, always check the origin

* Don't trust contents of postMessage() the
data property

* Avoid XSS, e.g Use textContent not innerHTML

* Demo —to show why

DOM Storage Qura

* |ocalStorage and sessionStorage
* Key/Value pairs that cache application state

e sessionStorage available for the lifetime of tab or
child tab

* localStorage available until manually cleared

* |ocalStorage.setltem('mobile’, '021111222");
* mobile = localStorage.getltem('mobile');

Storage — gotchas aura

e sessionStorage for session cookie?

* Obviously sessionStorage is accessable by JS
— Therefore session token theft by XSS is possible.
— Cookie w/ HTTPonly flag set is not accessible by JS

* Use Cookies with HTTPOnly for session
tokens

 Don't store sensitive info in browser storage

aurd

CORS -- Cross Origin Resource Sharing INFORMATION SECURITY

* Relaxing the same-origin policy for AJAX calls

* So now JS running in mysite can make AJAX
GETs AND POSTs to yoursite.

CORS - simple & preflight Qura

* There are 2 types of CORS
* Simple:
— Simple request / response

— GET or POST
— No custom headers

* Preflighted:
— Initial "preflight" request with OPTIONS method
— If response was a 200 do actual request

CORS - preflight example Qura

Browser visits evil.com which make request to.. server on vuln.com

OPTIONS /resources/post-here/ HTTP/1.1
Origin: http://evil.com
Access-Control-Request-Method: POST
Access-Control-Request-Headers: X-PINGOTHER

HTTP/1.1 200 OK

Access-Control-Allow-Origin: http://evil.com
Access-Control-Allow-Methods: POST, GET, OPTIONS
Access-Control-Allow-Headers: X-PINGOTHER
Access-Control-Max-Age: 1728000

POST /resources/post-here/ HTTP/1.1

Content-Type: application/xml; charset=UTF-8
X-PINGOTHER: pingpong

CORS can send Creds CIUI’CI

* Script on site A sends a POST to site B with site
B's session cookie.

* xhr.withCredentials = "true";

* What could possibly go wrong?

CORS abuse, file upload Qura

Can use XMLHTTPRequest to do file uploads

function fileUpload(url, fileData, fileName) {
var fileSize = fileData.length,
boundary = "xxxxxxxxx",
xhr = new XMLHttpRequest();

// simulate a file MIME POST request.

xhr.open("POST", url, true);

xhr.setRequestHeader("Content-Type", "multipart/form-data, boundary="+boundary);
xhr.setRequestHeader("Content-Length", fileSize);

xhr.withCredentials = "true";

var body ="--" + boundary + "\r\n";

body += "Content-Disposition: form-data; name="'contents’; filename="" + fileName + ""\r\n";
body += "Content-Type: application/octet-stream\r\n\r\n";

body += fileData + "\r\n";
body +="--" + boundary + "--";
xhr.send(body);

return true;

}

H http://blog.kotowicz.net/2011/05/cross-domain-arbitrary-file-upload.html

Cross Domain Upload Qura

 We can do AJAX cross domain posts, now with
credentials.

* We can upload file to victim site (where we
are logged in) from a malicious site.

* Does NOT require victim server to have set
header: "Access-Control-Allow-Origin: *"

DEMO Aura

INFORMATION SECURITY

(Works in FF4/5 and Chrome)

NB: Upload could run without user interaction

Source:
http://j.mp/cors-file-upload

CORS —file upload Qura

* |s there anything really new here?
— Not from a defensive point of view, CSRF (e.g.
form tokens) protections will prevent this
* |If a custom header is set in the POST, then
the request is 'pre-flighted’, checking the
Access-Control-Allow-Origin header on the

receiving server.

XMLHttpRequest cannot load http://vuln.com/recv.php. Origin
http://evil.com is not allowed by Access-Control-Allow-Origin.

CORS — defenses CIUI’CI

* Do not use Origin header in access control
decisions — it could be faked.

if (S SERVER['HTTP_ORIGIN'] == 'nice.com’ {
echo Sjuicy_infos;
} M- bad idea

e Universal allow is bad — i.e. don’t set:
header('Access-Control-Allow-Origin: *');

* Make sure access-control-max-age doesn't allow
caching for too long eg. days/weeks

History API Qura

* Change URL in the browser without a
pageload

* Can't change domain

* history.pushState(state, title, url);
* Back button fires history.popState();

History — gotchas aura

e XSS can now change URL (client side)
* Unlike doc.location no request sent to server

 Make forged pages look more authentic :)
— XSS in site.com/?p=<script>alert(1)</script>
— Change URL to site.com/login

* Yet another way to spoof a referrer header
— Don't trust URL or referrer (still)

Content Security Policy @CIUI’CI

* Prevents injected inline JavaScript
* Only load JS from whitelisted/trusted domains

* Only run scripts that are loaded from same
domain as the page.
— Use: X-Content-Security-Policy: allow 'self’

Content Security Policy Qura

Set the header, now inline js NOT exec'd

<?php

header("X-Content-Security-Policy: allow, 'self'');
echo "
<html><head></head><body><h1>page</h1>
<script>alert(1);</script>

<script src="jquery.js" type="text/javascript>
</body>

</html>":

Content Security Policy Qura

* Can also whitelist image and script source domains
* Can berunin 'report only' mode

* |n use today e.g. lastpass.com
 Works in FF4/5 but not Chrome 12
e Chromium 13 respects header: X-WebKit-CSP

* Policy examples:

— https://developer.mozilla.org/en/Security/CSP/Using_Cont
ent_Security_Policy

WebSockets CIUI’CI

e Server can push to client (no more polling)
* VNC, chat, collaborative editing etc.

* Works by in-channel 'upgrade’

* Client sends headers:
— Connection: Upgrade
— Upgrade: Websocket
— Plus others

WS —

Cache poisoning Qura

Proxy misinterprets WS traffic as HTTP traffic

1.

Attacker's client creates websocket traffic with
attacker's server that looks like a legitimate HTTP
request/response for popular JS file.

Traffic has a forged host header

Some transparent proxies cache based on "Host"
header.

Result is proxy caches attackers copy of js file,
which is served to everyone else.

Attacker wins

WebSockets — not in FF4 CIUI’CI

 WebSockets support removed from FF4, cache
poisoning issue, will be back in FF6.

* Chrome uses a CONNECT request in the
upgrade handshake to avoid this.

e Attack description:

http://j.mp/ws-cache-poison

Summary CIUI’CI

* More app logic is being pushed to the client
—Increased browser attack surface
—Therefore XSS & CSRF is of higher value

* The good news is Content Security Policy
makes XSS harder (if you use Firefox).

