
Runtime Hardening
Hardening the runtime internals

Erez Metula | Founder
Application Security Expert

ErezMetula@AppSec.co.il

September 9th, 2010

Agenda

• Background – Managed Code Rootkits (MCR)

• Customizing VM Runtime Frameworks

• ReFrameworker V1.0

• Disabling Dangerous Methods and Operations

• DEMOS!

Background

• I started playing with the idea of Managed Code language
modification back in late 2008

– It all began with the whitepaper “ .NET Framework Rootkits –
Backdoors inside your Framework”

• Extended the concept from .NET to other managed code
frameworks – Java, Android Dalvik, Adobe AVM, etc..

• Presented in BlackHat, Defcon, CanSecWest, RSA, OWASP, etc..

• The book is coming out soon

– Published by Syngress

– Covering information gathered while researching

MCR

– Covers MCR deployment and attack vector

techniques

Reminder - What are MCR (Managed Code Rootkits)?

• Changing a framework’s runtime internals
– Implementation Code, Methods (Functions), Default

values, Instructions, Event handlers, etc.

• Changing the Runtime influences the execution flow
of applications depending on it
– Creating an “alternate reality” for applications

– Change the “matrix” in which they live in

• The MCR code runs as part of the managed

code VM, acting as “root”

Application

Runtime Class

Libraries

OS APIs and services

static void Main(string[] args)

{ //DO SOMETHING

//EXAMPLE: call RuntimeMethod

RuntimeMethod();

}

public void RuntimeMethod ()

{ //The implementation of RuntimeMethod ()

//DO SOMETHING DIFFERENT

}

public void RuntimeMethod ()

{ //The implementation of RuntimeMethod ()

//Implementation code

//F..

}

Example - class libraries manipulation

The good news – A hardened VM Runtime

• The same “rootkit like” techniques used by malware can
be used by legitimate software for better protection

– Many AV uses rootkit techniques to protect themselves

• It can be used to create “Hardened VM Framework”, to
protect against application level vulnerabilities

– But without touching the applications themselves

• Removing dangerous functionality

• Create a set of restriction rules

– Protecting from errors caused by developers

– Can be used to enforce secure coding practices

• ReFrameworker can be used as a tool that implements
such restriction

Create your own customized hardened framework

• Code that runs on the hardened VM must obey specific
rules

• The VM is fixated to use secure defaults, while disabling
the rest

• Some examples
– Disable dangerous mechanisms

• Example - Disable dynamic SQL queries leading to SQL Injection

– Perform automatic HTML encoding (XSS mitigation)

– Confuse banner grabbing techniques
• Example - Make a Java app to look like a .NET app

– Disable detailed error messages

– Allow only secure crypto algorithms and operations
• Example - Remove the ability to use DES, Remove ECB mode, etc..

– Enforce secure authentication modes
• Example - Encryption in Basic authentication, forms authentication, etc..

Intervention strategies

• Completely remove the code, eliminating its existence for
good.

– The problem with this approach is that removing the offending
code might break references in other sections of the code

• Throw an exception

– Requires less effort, adding small pieces of code to the method
while leaving the rest of the method as is

– Allows us to attach an error message to the exception

• Delay the method invocation

• Halt the application (example: perform an endless loop)

• Reboot the machine (in case identifying a severe event)

8

Attaching into the “Object” class

• All classes automatically extend the class “Object”

• Object contains generic code that is shared among all
the other objects

• Injecting a new method to “Object” class will influence
ALL existing classes

Automating the process with ReFrameworker V1.1

• Things were getting very complicated to implement

• I needed a general purpose Framework
modification tool

• So I wrote one and called it ReFrameworker

– Originally called “.NET-Sploit”.

• Able to perform all previous steps

– Extract target binary from the Framework

– Inject code and perform required modifications

– Generate deployers to be used on target machine

• Easy to extend by adding new code modules

ReFrameworker module concept

• Generic modules concept

– Payload – injected code

– Method – a new method

– Class – a new class

– Reference – external DLL reference

– Item – injection descriptor

• Comes with a set of predefined modules

– Most of the scenarios have a PoC using ReFrameworker

– List of included items (partial list):
• HideFile.item

• HideProcess.item

• Conditional Reverse shell.item

• DNS_Hostname_Fixation.item

• Backdoor forms authentication with magic password.item

• Send Heart Bit method execution signal to remote attacker.item

Item example (simplified)

<Item name=“Reverse Shell">

<Description>open reverse shell to attacker.com at port 1234</Description>

<BinaryName> mscorlib.dll </BinaryName>

<BinaryLocation>c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__b77
a5c561934e089 </BinaryLocation>

<Payload>

<FileName> ReverseShell.payload.il</FileName>

<Location>

<![CDATA[void Run(Form) cil managed]]>

</Location>

</Payload >

</Item>

Injected Code

Target

Hooking point

Location

Disabling Dangerous Methods and Operations

• It would be great if we could disable specific runtime
functionality that is considered insecure.

• We could remove such functionality entirely from the
runtime

• Preventing developers from using it from the first place

– Eliminate the path toward a possible mistake by disabling the
ability to use a feature that might cause the mistake

• Examples

– Usage of dynamic SQL queries leading to SQL injection

– Insecure cryptography algorithms and encryption modes

– Inherently insecure authentication modes such as Basic
authentication

SOME EXAMPLES

Disabling bad crypto modes

• Bad crypto is sometimes worse than not doing crypto at
all

– False sense of security

• Examples:

– Bad crypto algo

– Bad crypto modes

Original image Encrypted (AES, ECB mode)

DEMO:

DISABLING THE USAGE OF UNSECURE
DES ALGORYTHM

Reporting specific events

• The injected method “SendToUrl(string url, string data)"
is used to transfer information to the defender’s collector
page

• Report specific security events

– Login

– Logout

– Detected attacks

– Runtime exceptions

– Connection to external resources (example: DB)

– Etc..

• When such information is detected, it is sent to the
collector mechanism

Protecting specific files

• Manipulate the machine-wide method responsible for
providing a list of files in a given directory

– “ File[] GetFiles()“ in .NET

– “File[] listFiles()” in Dalvik and Java

• Our code controls specific files from the returned array

– Example: Hide the existence of “SensitiveFile.txt”

• Can also be used to

– Create false information about non-existing files

– Redirect the content of other files

– Create “locked”, read only files

– Etc..

DNS manipulation

• Manipulating DNS queries / responses

• Example

– Fixate the runtime DNS resolver to return a specific IP address, a control point
performing content filtering by the defender

• Dns::GetHostAddresses(string host) (.NET)

• InetAddress::getByName(string host) (Java)

– All communication will be directed to us

– Can also be used to ban specific addresses

– Etc..

• Affects ALL network API methods

Enforcing secure coding policy

• Organizations often creates a secure coding policy
stating rules developers must follow when writing code.

– It would probably list prohibited classes or methods, dictate how
certain things should be implemented, and so on.

• Who makes sure the developers follow the document's
instructions?

• Runtime patching can be a low-level technique to
implement such a policy, while making sure no one
changes the policy

– The policy is hard-coded into the runtime

20

DEMO:

PREVENTING SQL INJECTION BY
BANNING DYNAMIC SQL QUERIES

Masking the web application technology using runtime
camouflaging

• Information gathering is a crucial step for the attacker in
terms of determining his next steps

– It also affects the tools and techniques that will soon be utilized.

• Let’s subvert him by planting false information to mask
the real identity of the underlying app technology

– AKA “anti banner grabbing for the application level”

– It will not stop the attacker, but it will confuse him and his tools.

• Confuse information gathering techniques by making an
app to look like it was developed by another technology

Example – making a .NET app look like a Java app

• Adding jsp extension and handler to web.config
<buildProviders>

<add extension=".jsp" type="System.Web.Compilation.PageBuildProvider"/>

</buildProviders>

<httpHandlers>

<add verb="*" path="*.jsp" type="System.Web.UI.PageHandlerFactory"/>

</httpHandlers>

• Adding jsp extension to IIS

Camouflaging deeper at into the application level

• Making View state

• Session id

• And so on..

DEMO:

RUNTIME CAMOUFLAGING
(.NET -> JAVA)

25

Summary

• Malicious code can be hidden inside an application VM

• We as the good guys can embrace similar techniques to
harden the runtime

– Harden the Framework from the inside

– Disabling Dangerous Methods and Operations

• Each framework has its own modification technique

– The concept stays the same

• ReFrameworker simplifies Runtime modifications

– Lot’s of other PoC examples. Look at the modules code

Questions ?

Thank you !

Materials (code, tool, PoC, etc.) can be found here:
http://www.AppSec.co.il

And here (soon):

Feel free to contact me:

ErezMetula@AppSec.co.il

