Building in Security 28th February 2012

The OWASP Foundation

https://www.owasp.org

OWASP AppSensor Project Real-time attack detection and response

- Colin Watson colin.watson(at)owasp.org
- Project primary contributors
 - Michael Coates
 - Dennis Groves
 - John Melton
 - Ryan Barnett

- Software defences
- Application-specific attack detection
- Architectures
- Signalling
- Example configuration

One issue

Skilled and motivated attackers

Two questions

1) Is the application being attacked now?

2) Have any unknown vulnerabilities been exploited today?

☐ Yes

□ No

Don't know

Three test cases

1) Stepping through a process in the incorrect order

```
Step five, /step5/
then step two /step2/
```

2) Requesting an unauthorised resource identifier

```
Show my account, /updateProfile?id=1005
then show me someone else's /updateProfile?id=1006
```

3) Payment transfer exceeding limit

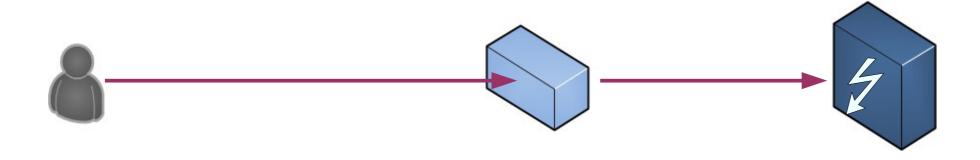
```
Send 27 pounds, /transfer?amount=27.00
then send rather more /transfer?amount=270000
```


Four conventional defenses

- 1) Transport layer security
- 2) Firewall (stateful/deep packet inspection)
- 3) Web application firewall
- 4) Application aware firewall ("next generation")

Transport layer security (SSL)

3) Payment transfer exceeding limit


Send 27 pounds, then send rather more /transfer?amount=27.00
/transfer?amount=270000

☐ Protected

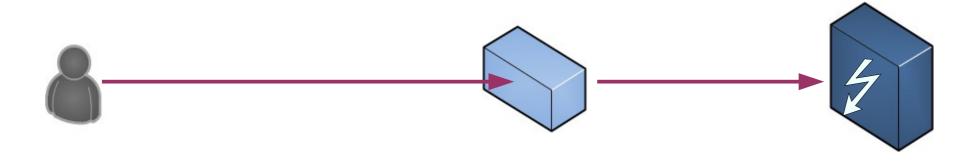
Firewall

3) Payment transfer exceeding limit

Send 27 pounds, then send rather more /transfer?amount=27.00
/transfer?amount=270000

☐ Protected

Web application firewall



2) Requesting an unauthorised resource identifier

```
Show my account, /updateProfile?id=1005
then show me someone else's /updateProfile?id=1006
```

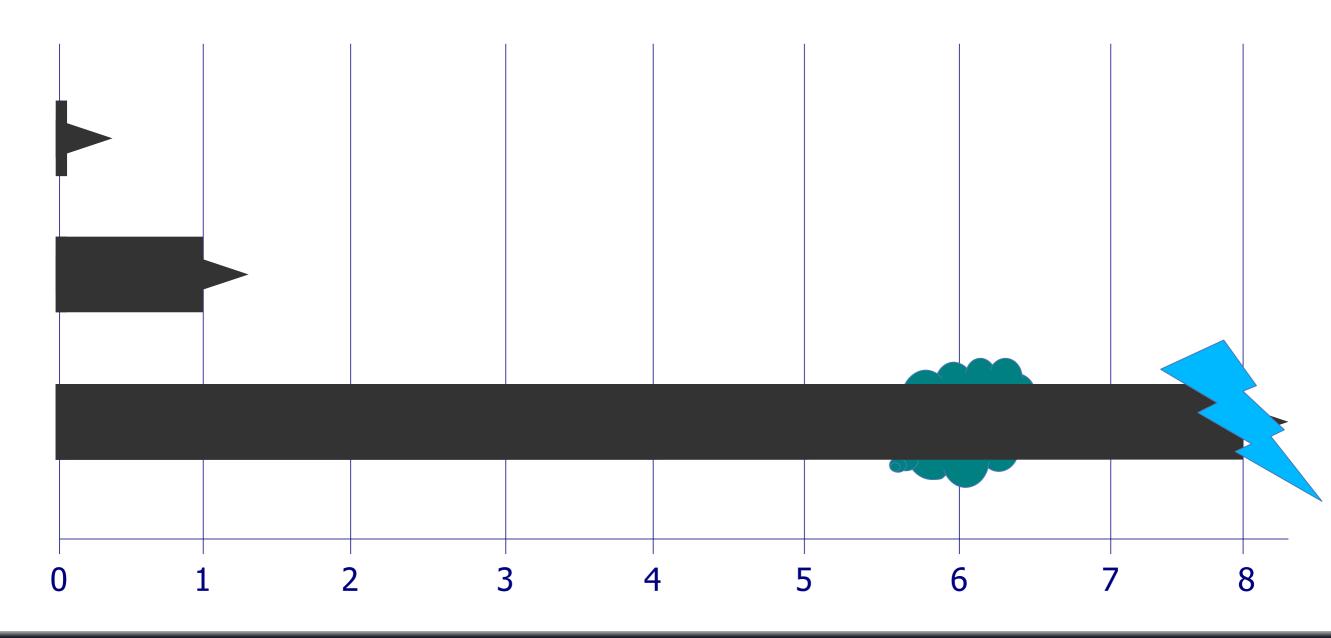

Application aware firewall

1) Stepping through a process in the incorrect order

```
Step five, /step5/
then step two /step2/
```

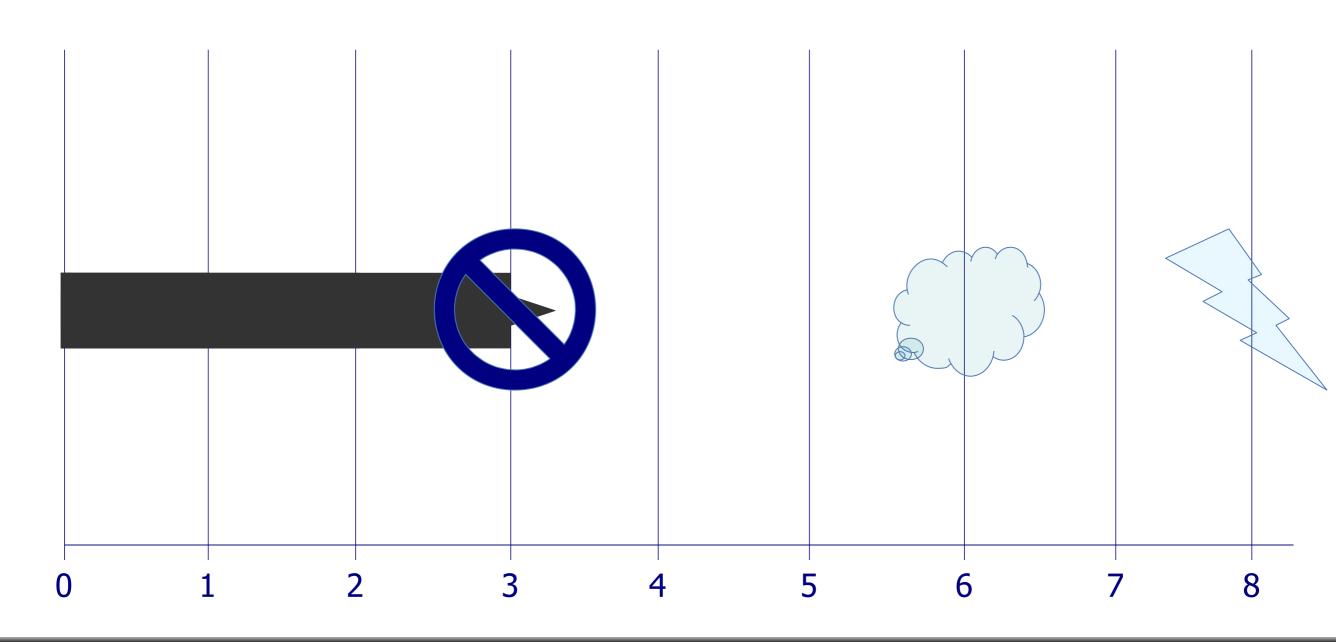

Proper attack detection

- Integrated
 - Understands the application
 - Understands normal vs. malicious use
 - Updated when the business process changes
- Effective
 - Minimal false positives
 - Immediate response
- Scalable and performant
 - Automatic detection
 - Real time


Inside the application

- Applications have:
 - Full knowledge of the business logic
 - An understanding of the roles & permissions of users
 - Knowledge of malicious vs. normal use
 - Access to user and system history and trends
 - Information to instantly detect attackers
 - The ability to respond automatically in real-time such as taking a more defensive posture

The concept


- Detect clearly malicious activity
- Stop an attacker before they can find vulnerabilities and exploit them

Identification of attackers, not particular attacks

• Think tripwires rather than perimeter walls

Existing application countermeasures

- Non-critical functions disabled by a car engine management system when intrusion detected
- Blocking access to an airplane's avionics control system when the source is identified as coming from the passenger network
- Tamper detection erases encryption keys
- Raising an alert when the external time is detected to be different to an internal time reference
- Logging of system power outages
- Application disabled by an operator due to unusual conditions
- Access blocked when single sign on message fails integrity check
- Application logging
- Disable non-core function

Existing countermeasures (continued)

- Terminating a request when blacklisted inputs are received
- Fraud detection
- Adding time delays to each successive failed authentication attempt
- Locking a user account after a number of failed authentication attempts
- Application honey pot functionality
- Logging a user out if the browser's "back" button is used
- Terminating a session if a user's geo-location changes
- Blocking access by certain IP addresses when malicious behavior is detected
- Recording unexpected actions
- Blocking certain HTTP verbs

Attack-Aware with Active Defences

- 1) Event detection
- 2) Analysis
- 3) Attack determination
- 4) Response selection
- 5) Response execution

Application attack detection points

- Request
- Authentication
- Session
- Access control
- Input
- Encoding
- Command injection
- File input/output
- Honey trap
- Custom

- User trend
- System trend
- Reputation

• Existing error/exception/event trapping code

```
IF event1 THEN
    log
    display error message
ENDIF
```

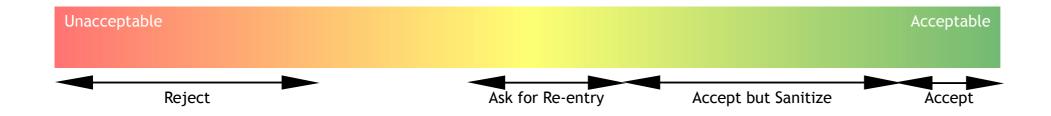
Extend existing

```
IF event1 THEN
  log
  send detection point data to analysis engine
  receive analysis engine response decision
  IF response THEN
      execute response
  ELSE
      display error message
  ENDIF
ENDIF
```


Pseudo code (continued)

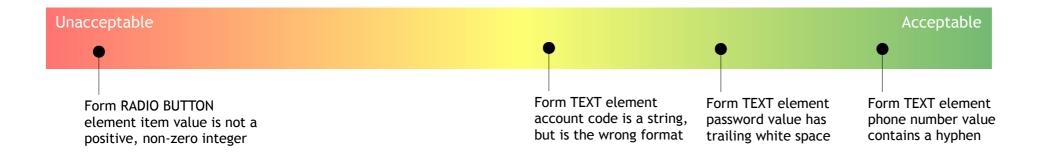
Create new error/exception/event trapping code

```
IF event3 THEN
  log
  send detection point data to analysis engine
  receive analysis engine response decision
  IF response THEN
      execute response
  ENDIF
```

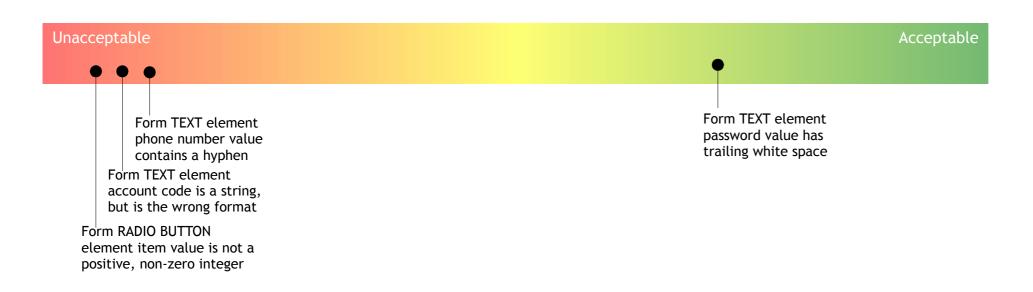


Detecting Malicious Users

"Users" are not perfect



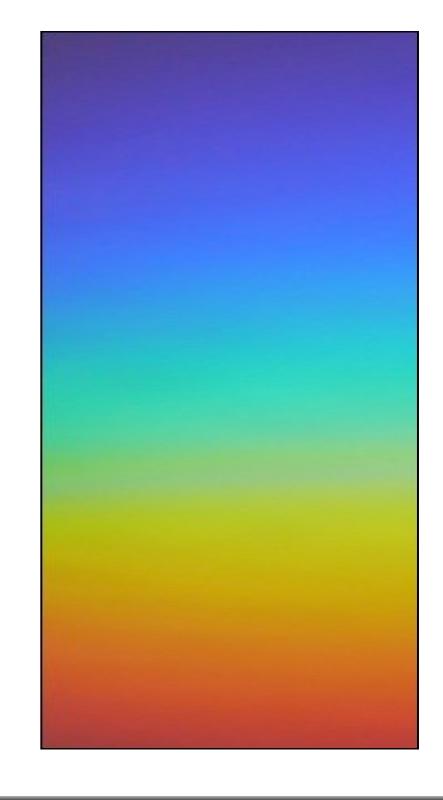
Application-specific actions



Server-side validation only

Server-side with duplicate client-side validation

Conventional attack responses


• No change (e.g. just continue logging)

Process terminated (e.g. reset connection)

Full spectrum responses

- No change
- Logging increased
- Administrator notification
- Other notification (e.g. other system)
- Proxy
- User status change
- User notification
- Timing change
- Process terminated
- Function amended
- Function disabled
- Account log out
- Account lock out
- Application disabled
- Collect data from user

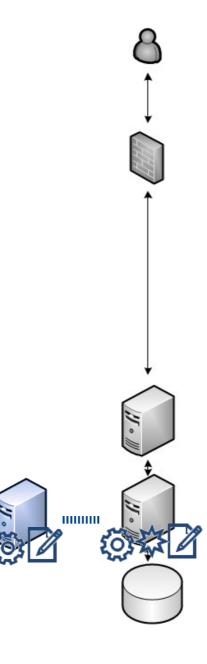
Application response capabilities

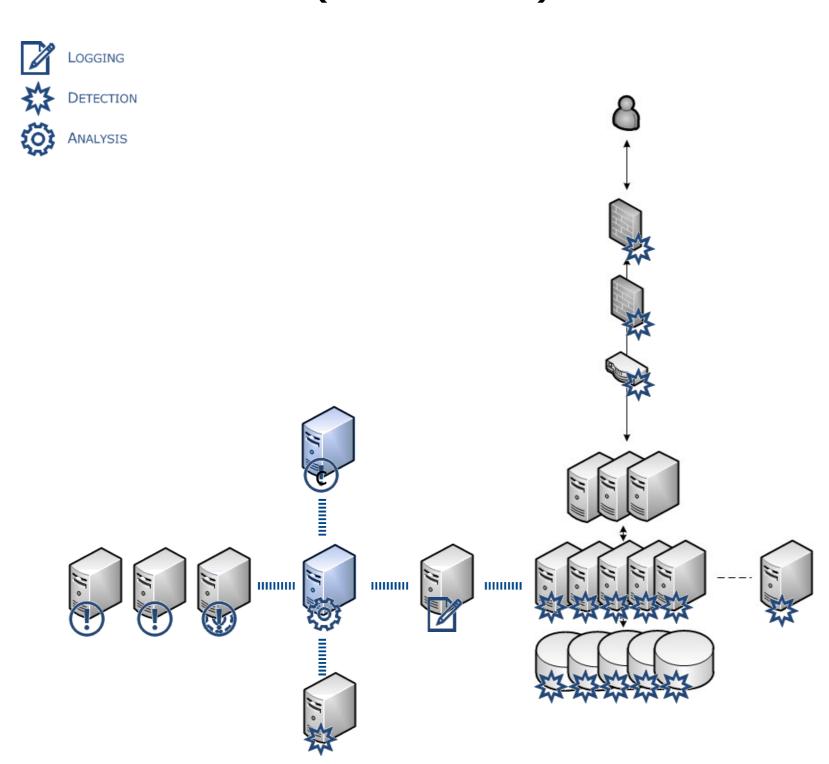
- Often already exist
 - Logging level
 - Alerting (email?)
 - User messages
 - Logout
 - Account lockout
 - Redirects
- Much less likely to exist
 - Proxy
 - Adding delays
 - Disabling individual functions/processes
 - Disabling the application

Implementation

- New project requirements
- Retrofitting existing applications
- Preliminary requirements
 - Application logging
 - Application risk assessment
 - Secure coding
- Monitoring and tuning

Architectures




Architectures (continued)

Architectures (continued)

No 1 - Ecommerce Website Base Configuration

- Key risks
 - Product pricing errors, discounts and fiddles
 - Order process manipulation
 - Payment card mis-use
 - Personal data loss
- AppSensor detection points
 - General request filtering
 - Catalogue, basket and payment functions
 - Database

No 1 - Detection Points

Area	Identifier	#	AppSensor ID(s)	Notes
Request	R01	R	RE1, RE2, RE3, RE4	Invalid and incorrect HTTP verb
	R02	R	CIE1	SQL injection attempt
	R03	R	IE1	Cross site scripting (XSS) attempt
Catalogue	C01		IE4	Product value mismatch
Basket	B01		IE4	Basket value mismatch
Payment	P01		-	Card authorisation failure
	P02		IE4	Price mismatch between order and payment
Database	D01	+	CIE2	Returned record set size incorrect
	D02	+	IE5	Database table integrity fault

AppSensor detection point type identities and descriptions https://www.owasp.org/index.php/AppSensor_DetectionPoints

No 1 – Response Actions

Area/Sensors	Description	Threshold	AppSensor ID(s)
Request R01, R02, R03	Block request	1	G
	Log out authenticated user	3	J
	Block IP address (and customer account if known) for whole site (manual reset)	6	L (and K)
Catalogue/Basket C01, C02	Alert operations staff	1	В
	Block IP address for dynamic areas (1 day, auto reset)	2	I
Payment P01	Alert operations staff / Redirect back to from checkout pages to the shopping basket summary	3	B/G
Payment P02	Alert operations staff / Put order on hold / Block future order check-out for the customer (manual reset)	1	B/D/I
Database D01	Alert operations staff / Abort process / Display error page / Block customer account (manual reset)	1	B/G/E/K
Database D02	Alert DBA and operations staff	1	В
[AII]	Increase application logging granularity / Indicate on monitoring dashboard	1	A/C

AppSensor response action type identities and descriptions https://www.owasp.org/index.php/AppSensor_ResponseActions

Unknown attacks

• [This list is intentionally left blank]

Two question revisited

1) Is the application being attacked now?

2) Have any unknown vulnerabilities been exploited today?

☐ Yes ☐ No ☐ Don't know

Further Explanations and Detailed Documentation

- Video presentations by Michael Coates, AppSensor Project Leader:
 - Automated Application Defenses to Thwart Advanced Attackers, June 2010 http://michael-coates.blogspot.com/2010/06/online-presentation-thursday-automated.html
 - Attack Aware Applications, April 2011
 https://www.owasp.org/index.php/Minneapolis_St_Paul#tab=Video.2FAudio.2FSlides.2FHandouts
- Videos of AppSensor attack detection demonstrations:
 - AppSensor Project media
 https://www.owasp.org/index.php/Minneapolis_St_Paul#tab=Video.2FAudio.2FSlides.2FHandouts
- Written guidance:
 - OWASP AppSensor, v1.1, Michael Coates, 2008 https://www.owasp.org/images/2/2f/OWASP_AppSensor_Beta_1.1.pdf
 - Implementation Planning Methodology, Colin Watson, 2010 https://www.owasp.org/index.php/File:Appsensor-planning.zip
 - Developer Guide (for use with ESAPI)
 https://www.owasp.org/index.php/AppSensor_Developer_Guide

Make contact

Colin Watson

colin.watson(at)owasp.org

AppSensor Project

https://www.owasp.org/index.php/Category:OWASP_AppSensor_Project