

Practical Invalid Curve Attacks on TLS-ECDH

Tibor Jager, Jörg Schwenk, <u>Juraj Somorovsky</u> Horst Görtz Institute for IT Security Ruhr University Bochum

@jurajsomorovsky

Recent years revealed many attacks on TLS...

- ESORICS 2004, Bard BEAST bility of SSL to Chosen Plainte 2011
- Eurocrypt 2002, Va 2013/14 POODLE, Induced by CBC Padding—Apr. Lucky13
 EC, WTLS
- Crypto 1998, Bleichenbacher: Choose Ciphertext Attacks Aga
 2014 at USENIX Sec RSA Encryption Standard PKCS #1

Another "forgotten" attack

- Invalid curve attack
- Crypto **2000**, Biehl et al.: Differential fault attacks on elliptic curve cryptosystems
- Targets elliptic curves
 - Allows one to extract private keys

• Are current libraries vulnerable?

Overview

- **1. Elliptic Curves**
- 2. Invalid Curve Attacks
- 3. Application to TLS ECDH
- 4. Evaluation
- 5. Bonus Content

Elliptic Curve (EC) Crypto

- Key exchange, signatures, PRNGs
- Many sites switching to EC
- Fast, secure
 - openssl speed rsa2048 ecdhp256
 - ECDH about 10 times faster

Elliptic Curve

 Set of points over a finite field *E*: $y^2 = x^3 + ax + b \mod p$

- Operations: ADD and DOUBLE
- Example:

$$a = 9$$

$$b = 17$$

$$p = 23$$

Elliptic Curve Diffie Hellman (ECDH)

Elliptic Curves in Crypto

• Have to be chosen very carefully: high order

Base Point P

Overview

- **1. Elliptic Curves**
- 2. Invalid Curve Attacks
- 3. Application to TLS ECDH
- 4. Evaluation
- 5. Bonus Content

Invalid Curve Attack

- What if we compute with a point P' outside of curve E?
- P' can have a small order

- Example:
 - E' with 256 bits
 - P' generates 5 points

Invalid Curve Attack

- What is the problem?
- Shared secret has only **5** possible values!

• Example

Server Secret s = 13

 Server attempts to multiply sP

Invalid Curve Attack

- What is the problem?
- Shared secret has only **5** possible values!
- We can compute: $s_1 = s \mod 5$

$$s_2 = s \mod 7$$

$$s_3 = s \mod 11$$

$$s_4 = s \mod 13$$

• Compute *s* with CRT

Practical Invalid Elliptic Curve Attacks on TLS-ECDH Tibor Jager, Jörg Schwenk, Juraj Somorovsky

Overview

- **1. Elliptic Curves**
- 2. Invalid Curve Attacks
- 3. Application to TLS ECDH
- 4. Evaluation
- 5. Bonus Content

Transport Layer Security (TLS)

- EC since 2006
- Static and ephemeral
- TLS server initialized with an EC certificate

- Server has EC key

TLS ECDH

Invalid Curve Attack on TLS

- 1. Generate invalid points with order
 - $p_i = 5, 7, 11, 13 \dots$
- 2. Use TLS server to get equations $s = s_i \mod p_i$
- 3. Compute CRT to get secret key *s*

Overview

- **1. Elliptic Curves**
- 2. Invalid Curve Attacks
- 3. Application to TLS ECDH
- 4. Evaluation
- 5. Bonus Content

RUB

Evaluation

- 8 libraries
 - Bouncy Castle v1.50, Bouncy Castle v1.52, MatrixSSL, mbedTLS, OpenSSL, Java NSS Provider, Oracle JSSE, WolfSSL
- 2 vulnerable
- Practical test with NIST secp256r1

- Most commonly used [Bos et al., 2013]

Evaluation: Bouncy Castle v1.50

- Vulnerable
 - 74 equations
 - 3300 real server queries

RUB

Evaluation: JSSE

 Java Secure Socket Extension (JSSE) server accepted invalid points

• However, the direct attack failed

Evaluation: JSSE

• Problem: invalid computation with some EC points

- Attack possible:
 - 52 equations, 17000 server requests

Impact

- Attacks extract server private keys
- Huge problem for Java servers using EC certificates
 - For example Apache Tomcat
 - Static ECDH enabled per default
- Key revocation

Not only applicable to TLS

 Also to other Java applications using EC

Overview

- **1. Elliptic Curves**
- 2. Invalid Curve Attacks
- 3. Application to TLS ECDH
- 4. Evaluation
- 5. Bonus Content

What's next?

- Hardware Security Modules
- Devices for storage of crypto material

Attacker Model in HSM Scenarios

• Key never leaves HSMs

Attacker Model in HSM Scenarios

• Key never leaves HSMs

How about Invalid Curve Attacks?

- CVE-2015-6924 (with Dennis Felsch)
- Utimaco HSMs vulnerable
- < 100 queries to extract a key

- Only possible thanks to our cooperation
 Provided sample code, fast fix
- Utimaco HSM is FIPS certified

• Other devices?

Practical Invalid Elliptic Curve Attacks on TLS-ECDH Tibor Jager, Jörg Schwenk, Juraj Somorovsky

"Catastrophic" is the right word. On the scale of 1 to 10, this is an 11.

Conclusion

- Old attacks still applicable, we can learn a lot from them
- Bouncy Castle, JSSE and Utimaco broken
- More tools / analyses of crypto applications needed

- <u>https://github.com/RUB-NDS/EccPlayground</u>
- <u>http://web-in-security.blogspot.de/</u>
- <u>http://safecurves.cr.yp.to/</u>