The Hidden Risk of OSS

The Dawn of Software Assembly

=i o= 'i_‘?“.‘f‘,‘:‘fﬂ{gl

The Language of Security is Risk

password %
sitll
'Fido'?" §}

What does the snail tell us?

“...WE OWE A DUTY OF
REASONABLE CARE TO
OUR NEIGHBOR”

Lord Atkin: Donoghue v. Stevenson (1932)

“...a manufacturer of products, which he sells in such
a form as to show that he intends them to reach the
ultimate consumer in the form in which they left him
with no reasonable possibility of intermediate
examination, and with knowledge that the absence
of reasonable care in the preparation or putting up
of products will result in an injury to the consumer's
life or property, owes a duty to the consumer to take
that reasonable care.”

The principles of due care

“IT (BUICK) WAS NOT AT LIBERTY TO
PUT THE FINISHED PRODUCT ON THE
MARKET WITHOUT SUBJECTING THE
COMPONENT PARTS TO ORDINARY
AND SIMPLE TESTS....THE
OBLIGATION TO INSPECT MUST VARY
WITH THE NATURE OF THE THING TO
BE INSPECTED. THE MORE
PROBABLE THE DANGER, THE
GREATER THE NEED OF CAUTION.”

MacPherson v. Buick Motor Company,
217 N.Y. 382, 111 N.E. 1050 (1916)

Justice Benjamin N. Cardozo

What is Risk?

“...JF THE PROBABILITY BE CALLED P; THE
INJURY, I.; AND THE BURDEN, B; LIABILITY
DEPENDS UPON WHETHER B IS LESS THAN L.
MULTIPLIED BY P: I.LE., WHETHER B < PL/.

United States v. Carroll Towing Co.
159 F.2d 169 (2d. Cir. 1947)

Translation: If the Cost of Protecting
Against Harm is less than the Cost of the
Damage Multiplied by the Likelihood of the
Damage, then there is negligence.

Risk = probability x impact

Security spans the Enterprise

Security concerns are across the Enterprise

Features Performance Security
Usability Reliability/Scalability Compliance
Performance Compliance Everything Else
Reliability/Scalability Security

Maintainability Maintainability

Security Features/Usability

Compliance

That pesky hacker Our automated source
won't geet {%’our data code scanner will find all the

holes he could ever “green light” status,

Phew...a PCl compliant

now use

. case closed my friend!

A disproportionate spend against the risk

“

Firewall IDS SIEM
_ / %

Encryption SAST DAM
' i

IPS j DAST . RAST
. |
WebApp Firewall (WAF) R

—V
Evolution of Spend

DAST according to Gartner

T — DAST is a very mature market, but isfocused
primarily late in the development cycle
and not integrated into development.

o Pros
HP . . .
TR ® Finds exploitable issues
Cenzic
Qualys \’i‘vl,fi?:ﬁe"T"‘“ e Mostly language agnostic
Codenomicon pa"‘%‘“‘ S~
P.‘!u'Dyr‘.a':lcs;w . . .
BonSugger i ¢ Finds some infrastructure issues

Cons
e Often requires complex configuration

e Accuracy drops for non-reflected
issues

Source: Gartner (December 2011)

e Used late in SDLC

SAST according to Gartner

Figure 1. Magic Quadrant for Static Application Security Testing S AST iS a mature market but iS
A
challengers leaders under represented outside of
g) financial, health/insurance and
?M retail markets.
% Pros
® HP (Fortify Software)
] V d .
g o Parggot o * Can be leveraged early in the
@ N b development lifecycle
5 G' K'°°‘:°r: e (Can find issues not found
o ramma lec o Checkmarx .
T JArmorize Technologies\ using any DAST
0
Cons
L y e False Positives
niche players visionaries . _ o
L | » - ® Requires security training to
| completeness of vision ——p~ .
As of December 2010 Use eﬁecnvely.

Source: Gartner (December 2010)

e Scanning varies from hours to
days for large applications.

Foundations of Application Security

Over the past decade there are have been two
predominant security technologies focused at
application security.

e DAST — Dynamic Application Security Testing (Blackbox)

e SAST - Static Application Security Testing (Whitebox)

Over the last couple of years a third as emerged
but has not gained significant adoption

e RAST — Runtime Application Security Testing (Glassbox)

A Sea Change in Application Development

s Assembled 9 0 o/o

Source: 2012 / 2013 Sonatype analysis of more than 1,000 enterprise applications

The Ice-Caps are Melting

Presentation Layer

Component Layer
Proprietary Components

3rd Party Components

(Libraries, Frameworks, Utilities & Other Components)

Database

Operating System

Firmware

Network

Development Must Keep Up with Pace Of Innovation

Development must cha

Requirements

()

Test & Feedback

Architecture &
Design

L/

Development

Component Usage Has Exploded

8,000
$Scala

7,000

e

6,000 = T
8 B I I I IO n java.net

5,000 2012 Open Source Component Requests -
J\.
G000 -+ el

ORACLE
3,000 ccrereeeeeeeeee e (R S

Requests in Millions

Google
2000 A

§) Spring

1,000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

“But we don’t use Open Source”

Usage of OSS in large enterprises

It's no longer a question
of whether you use
OSS, it's how many

components are being
used & where

Deep transitive
dependency with
high risk vulnerability

Components you
integrated into
your application

Hidden dependency
licensed under GPLv3

No “Throat to Choke”

Discovering a security issue
is half the battle

Transitive and hidden
dependencies make it
extremely difficult to assign
responsibility to propagate
fixes throughout the
component chain

Complexity

One component may
rely on 00s
of others

Diversity

40,000 Projects
200MM Classes
400K Components

/ Apache

ORACLE

A Highly Complex Ecosystem

Volume Change

Typical Enterprise
Consumes
000s of

Components Monthly

Typical Component
Is Updated 4X
per Year

A Highly Immature Ecosystem

No visibility to what components are used,
where they are used and where there is risk
Visibility
No way to govern/enforce component usage.
o Policies are not integrated with development .

Control

N O No efficient way to fix existing flaws.

Fix

A Massive Supply Chain Problem

4 6 Insecure downloads in 2012
Million

8 organizations downloaded Struts

framework with "severe" security flaw

Thousand

organizations downloaded Struts 1.x
with known security flaws

Thousand

Extended Software Supply Chain

/\

| | | | .
46 million 5oecmree:

' D & Q ® Q ' ___________

The Practical Reality

Enterprise Software Factory

Production Apps

ontain at least
one Cntlcal vulnerability 7 I
in their direct dependencies

cy of applications
© contain Critical
or Severe
security flaws

©
=
=
G
§2)
A
o
)
=
-
o
o)
e
0
/)]
©
Q
O
-
7))

The Problem is Not Problem Discovery

* When our software development
ecosystem looks like this it is
easy to find problems

* The real challenge is to develop
at scale and deliver continuous
value continuously when
everything else is a mess

Go Fast, Be Secure

“Haven't | heard this story before?”

/ /

Y \
B-B-8-0-18

DESIGN IT DEVELOP IT BUILDIT RELEASE IT MANAGE IT

Component Lifecycle Management

u a a o a

Secure Consumption Govern Development Profile Exposures Remediate Risk Monitor Threats

@ Fix Flaws

4 .
m Integrate | AP Monitor :

Production

Release

Develop

You Have to Ask the Right Questions

e How do you choose components to include in your application?
o Thoughtfully select and identify components using quality,

secunty, and licensing information.

How do your developers know what components to use, and
when they should upgrade?

Provide your team with real-time information and updates directly
within the tools they use every day

0 Do you monitor and control what makes it into a build?
Enforce policy through your build and continuous integration
infrastructure.

Q Do you know your full bill of materials?

o Develop and maintain component inventory for every application.

Do you know when vulnerabilities are found in deployed
components?

Monitor component bill of materials for new security flaws and
identify applications for critical updates.

o Do you have global visibility into open source usage?
o Know how, when, and where comp

organization-wide to identify risks t

Components Can be Compromised

Google

Component Repositories

Non-vetted components
enter the dev process from
many sources

8 e

Development Repositories Integrate Build Deploy

Components can be
compromised throughout
the lifecycle

Automated Policy Management Throughout the Lifecycle

DATA FEEDS

Policy Management Centralized policy
administration simplifies

enterprise o -
Role-based :
Workfiov Reporti Alerts
y Policies poring

-y v >——— v — v v —

Lifecycle appropriate actions
enforce policy automatically

/
B-8-8-0-8

Design Develop Build Release Manage

Building A Better Bridge Between Dev, Ops and Security

* Need to recognize that the
priorities are different

« Tooling needs to adopt the
practice of the practitioner not
the other way around

« ATool is not a process and a
process is not a tool learn to

leverage both.

Supply Chain Mgt. for Modern Software Development

Go Fast.
Be Secure.

Build security in from the start
Enforce policy in the tools you already use

Reduce risk by automating governance
throughout the lifecycle

Reduce cost by fixing early in the process

React to new threats by knowing what they
are and where to fix them

Go fast by using tools your developers
already know

