
The Hidden Risk of OSS
The Dawn of Software Assembly

The Language of Security is Risk

What is Risk

What does the snail tell us?

“…we owe a duty of
reasonable care to

our neighbor”

Lord Atkin: Donoghue v. Stevenson (1932)

Huh?

“…a manufacturer of products, which he sells in such
a form as to show that he intends them to reach the
ultimate consumer in the form in which they left him
with no reasonable possibility of intermediate
examination, and with knowledge that the absence
of reasonable care in the preparation or putting up
of products will result in an injury to the consumer's
life or property, owes a duty to the consumer to take
that reasonable care.”

MacPherson v. Buick Motor Company,
217 N.Y. 382, 111 N.E. 1050 (1916)

Justice Benjamin N. Cardozo

“It (Buick) was not at liberty to
put the finished product on the
market without subjecting the
component parts to ordinary
and simple tests….The
obligation to inspect must vary
with the nature of the thing to
be inspected. The more
probable the danger, the
greater the need of caution.”

The principles of due care

What is Risk?

“…if the probability be called P; the
injury, L; and the burden, B; liability
depends upon whether B is less than L
multiplied by P: i.e., whether B < PL”.

United States v. Carroll Towing Co.
159 F.2d 169 (2d. Cir. 1947)

Translation: If the Cost of Protecting
Against Harm is less than the Cost of the
Damage Multiplied by the Likelihood of the
Damage, then there is negligence.

Risk = probability x impact

Security spans the Enterprise

Development Operations Security

Features Performance Security

Usability Reliability/Scalability Compliance

Performance Compliance Everything Else

Reliability/Scalability Security

Maintainability Maintainability

Security Features/Usability

Compliance

Security concerns are across the Enterprise

A disproportionate spend against the risk

Prevention Detection Monitoring

Firewall IDS SIEM

Encryption SAST DAM

IPS DAST RAST

WebApp Firewall (WAF)

Evolution of Spend

DAST is a very mature market, but isfocused
primarily late in the development cycle
and not integrated into development.

Pros

•  Finds exploitable issues

•  Mostly language agnostic

•  Finds some infrastructure issues

Cons

•  Often requires complex configuration

•  Accuracy drops for non-reflected
issues

•  Used late in SDLC

DAST according to Gartner

SAST is a mature market, but is
under represented outside of
financial, health/insurance and
retail markets.

Pros

•  Can be leveraged early in the
development lifecycle

•  Can find issues not found
using any DAST

Cons

•  False Positives

•  Requires security training to
use effectively.

•  Scanning varies from hours to
days for large applications.

SAST according to Gartner

Over the past decade there are have been two
predominant security technologies focused at
application security.

•  DAST – Dynamic Application Security Testing (Blackbox)

•  SAST – Static Application Security Testing (Whitebox)

Over the last couple of years a third as emerged
but has not gained significant adoption

•  RAST – Runtime Application Security Testing (Glassbox)

Foundations of Application Security

90% Assembled

A Sea Change in Application Development

Written

Source: 2012 / 2013 Sonatype analysis of more than 1,000 enterprise applications

The Ice-Caps are Melting

Development Must Keep Up with Pace Of Innovation

Development must change

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

R
eq

u
es

ts
 in

 M
il

li
o

n
s 8 Billion

2012 Open Source Component Requests

Component Usage Has Exploded

“But we don’t use Open Source”

It’s no longer a question
of whether you use
OSS, it’s how many

components are being
used & where

•  Discovering a security issue
is half the battle

•  Transitive and hidden
dependencies make it
extremely difficult to assign
responsibility to propagate
fixes throughout the
component chain

No “Throat to Choke”

A Highly Complex Ecosystem

Complexity Diversity Volume Change

One component may
rely on 00s
of others

40,000 Projects
200MM Classes

400K Components

Typical Enterprise
Consumes

 000s of
Components Monthly

Typical Component
is Updated 4X

per Year

A Highly Immature Ecosystem

No
Visibility

No
Control

No
Fix

No visibility to what components are used,
where they are used and where there is risk

No way to govern/enforce component usage.
Policies are not integrated with development .

No efficient way to fix existing flaws.

A Massive Supply Chain Problem

46
Million

18
Thousand

4
Thousand

Insecure downloads in 2012

organizations downloaded Struts
framework with "severe" security flaw

organizations downloaded Struts 1.x
with known security flaws

The Practical Reality

Success Requires Discipline

The Problem is Not Problem Discovery

•  When our software development
ecosystem looks like this it is
easy to find problems

•  The real challenge is to develop
at scale and deliver continuous
value continuously when
everything else is a mess

Go Fast, Be Secure

“Haven’t I heard this story before?”

Component Lifecycle Management

Secure Consumption
with the use of certified
components & integrity
checking throughout
the lifecycle

Govern Development
to ensure policy
compliance without
disrupting developer
productivity

Profile Exposures
to proactively identify
and prioritize action

Remediate Risk
by preventing &
quickly fixing security
& IP vulnerabilities

Monitor Threats
in production
applications to ensure
continuous trust in
critical operations

1 2 3 4 5

You Have to Ask the Right Questions

Build Deploy Integrate Development Repositories

Non-vetted components
enter the dev process from

many sources

Components Can be Compromised

Components can be
compromised throughout

the lifecycle

Component Repositories

Automated Policy Management Throughout the Lifecycle

Lifecycle appropriate actions
enforce policy automatically

Centralized policy
administration simplifies
enterprise management

Building A Better Bridge Between Dev, Ops and Security

•  Need to recognize that the
priorities are different

•  Tooling needs to adopt the
practice of the practitioner not
the other way around

•  A Tool is not a process and a
process is not a tool learn to
leverage both.

Go Fast.
Be Secure. Build security in from the start

Enforce policy in the tools you already use

Reduce risk by automating governance
throughout the lifecycle

Reduce cost by fixing early in the process

React to new threats by knowing what they
are and where to fix them

Go fast by using tools your developers
already know

Supply Chain Mgt. for Modern Software Development

Thank You!

