
 Why 'Positive Security' is the Next 
Security Game Changer

Jaap Karan Singh
jaap@scw.io

Co-Founder & Chief Singh, Secure Code Warrior



> Today’s challenges with software security



Software developers around the world 
~ Evans Data 

22M
Source: https://evansdata.com/reports/viewRelease.php?reportID=9



Lines of code written by developers 
every year ~ CSO Online

111BN
Source: https://www.csoonline.com/article/3151003/application-development/world-will-need-to-secure-111-billion-lines-of-new-software-code-in-2017.html 



Exploitable Security Bugs in every 50 000 
Lines of Code 

1 to 4
Source: StackOverflow



Security incidents result from defects in 
the design or code ~ DHS

90%
Source: https://www.us-cert.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf



Of data breaches caused by software 
vulnerability ~ Verizon

21%
Source: Verizon, Data Breach Report, 2018 (but in there the last 10 years)



of newly scanned applications had SQL 
injections over the past 5 yrs ~ Cisco

1 in 3
Source: Cybersecurity as a Growth Advantage, Cisco, 2016



Statistics can prove anything? 

Yes, but they can’t all be THAT wrong



> How did we end up here? 



AppSec in 2000

Corporates had a branding website, the
Internet was mostly for geeks

> AppSec was virtually non-existent in corporate world

> Hacking was focussed on exploiting infrastructure 
vulnerabilities (bof, race conditions, fmt str*)

> Research on first web app weaknesses

> OWASP started and Top 10 released!

> Penetration testing was black magic



We’ve got bigger problems (Y2K) than 
worrying about Application Security



AppSec in 2010

Companies started offering web-based services; 
Web 2.0 and Mobile are new

> Penetration testing was THE thing

> Web Application Firewalls will stop everything

> Paper-based secure coding guidelines

> Static Code Analysis Tools (SAST) emerge



Monthly data breaches, 
Hackers everywhere, 
Privacy, GDPR, PCI-DSS, HIPAA
Putin



AppSec in 2019

Everything runs on software. 
Cybersecurity & AppSec are hot topics. 

> SAST is still here… 

> Runtime Application Security Protection (RASP)

> Dynamic Application Security Testing (DAST)

> Interactive Application Security Testing (IAST)

> Crowd-Sourced Security Testing (CSST?)

> DevSecOps is getting traction
- Containerisation
- Integrating security and ops into dev
- Security pipelining

> SHIFT Left



http://www.redkid.net/generator/soup/



Challenge:

Right to Left is Backwards



“We want to provide a service 
that transports stuff from A to B”

A B



Civil Engineering



Software 
Engineering



Customers



Security Experts



Secure Dev



more expensive to fix vulnerabilities at the end of the 

development cycle

30x
Source: National Institute of Standards and Technology (NIST), www.peoplesec.org

http://www.peoplesec.org


Challenge:

Security vs Development is an unfair game



Security experts without coding skills 
SMALL chance of success.

Developers without security skills
BIG problem!



Software Developers (Agile)

A BA

B
A

B

A

B

A

B

A
B

Application Security Experts

100

1





BUILDERS

Know their code

Do not speak security 

BREAKERS

Always points out problems

Not Developers

SQL Injections

XSS

Object 
Deserialization

IDOR

Constructors

JAVA Spring

SWIFT

Angular.JS

Developers and Security speak different languages



Challenge:

“Black Hole” of security knowledge





We’re failing in Learning from Our Mistakes



AppSec @ Work



Solution

Empower developers to code securely



Detect & ReactPrevent

Cost to fix a security bug

Code Repository Application Build
Application 

Deploy
Production

DASTIASTSAST RASP

Developers Code Writing

Shift security to the left



Weaknesses vs Controls



  Distribute Knowledge
Application Security

1
Secure Coding Guidelines

e.g.
● Ensure application logging (Where, What, When, Who, Why)
● Use context  encoding on untrusted user input 



  Distribute Knowledge

200

Secure Coding Guidelines
1. Ensure application logging (Where, What, When, Who, Why)
2. Use context  encoding on untrusted user input 

Project X - Secure Coding rules for 
<insert your favourite coding framework>

1. Use SecureLogger  log_object; 
2. Don’t use GetParameter(), Use LibSafe_GetParam() 



  Distribute Knowledge
Secure Coding Guidelines

1. Ensure application logging (Where, What, When, Who, Why)
2. Use context  encoding on untrusted user input 

Project X - Secure Coding rules for 
<insert your favourite coding framework>

1. Use SecureLogger  log_object; 
2. Don’t use GetParameter(), Use LibSafe_GetParam() 

Application Security

1
Upon Commit

1. Your code violates security rules: You shall not pass!
2. Your code violates security rules: Fill in your get out of jail card 

(JIRA ticket)
3. Points++ for delivering secure code



  Learn from Mistakes
Application Security

1
Developer fixes issue

● Use TLS() for any sensitive data

Security Vulnerabilities
● Sensitive data not 

transported securely



  Learn from Mistakes

Developer fixes issue
● Use TLS() for any sensitive data

Security Vulnerabilities
● Sensitive data not transported securely

Project X - Secure Coding rules for 
<insert your favourite coding framework>

1. Use SecureLogger  log_object; 
2. Don’t use GetParameter(), Use LibSafe_GetParam()
3. Use TLS() for any sensitive data 

200





Building Skills 
Engaging and Competitive



Working hard (or hardly working!)



Secure Developers Are Heroes

Takeaways:

● Focus on positives such as security fundamentals
● Distribute knowledge to scale AppSec
● Define good patterns and re-use
● Put some fun into everything



Jaap Karan Singh
jaap@scw.io

Co-Founder & Chief Singh, Secure Code Warrior


