
Sleeping Easy
Secure development in the real world

Mark Young
mark@developer.geek.nz

WARNING:
I’m not a pen tester
(I’m not even a member of anonymous...
... or LulzSec)

pics.myspew.com

• On time

• Under budget

• Functionally complete

• With a happy client…

• …and a sane team

• That perform well

• Are maintainable

• Look good...

• …and are secure

Deliver Projects...

How do you build secure web applications without it costing you
a fortune in money or sleep?

1. Architecting a secure culture in your business

2. Architecting secure applications

Low friction security...

Why?

Security costs!

Ponemon Institute: First Annual Cost of Cyber Crime Study

• Insecure applications are in the wild – lots!

• People ready to exploit your applications are in the wild

Security costs

Ponemon Institute: First Annual Cost of Cyber Crime Study

• “Close enough’s good enough, don’t worry about that
stuff”

• “they’re not testing that”

• “we’re not being paid to do that”

• “it won’t happen to us”

• “Just get it to production, we don’t have time to fix any of
that now”

• “What’s what?”

Why doesn’t everyone work securely?

Architecting your business for security

• Become a prophet of doom – “repent or be hacked”

• Scare people again

• Advocate best practice

• Demonstrate vulnerabilities using
real well-known applications

• Include management

1. Increase the awareness of security

http://johngushue.typepad.com/

• Ensure security is part of non-functional requirements

• Document specific risks in risk registers

• Customer information disclosure

• Negative news media

• Loss of IP

• Business disruption

• Revenue loss

• Include security checklist in gating processes

• Schedule reviews in project plans

2. Make security a first class citizen in projects

• Demonstrate the fun side of application security

• Train
• Make sure they at least know the top 10 and how vulnerabilities can

be exploited

• Challenge
• Turn your developers into testers

• OWASP WebGoat (http://code.google.com/p/webgoat/)

• OWASP LiveCD
(https://www.owasp.org/index.php/Category:OWASP_Live_CD_Project)

• Web Security Dojo (http://sourceforge.net/projects/websecuritydojo/)

3. Empower your developers

http://code.google.com/p/webgoat/
http://code.google.com/p/webgoat/
https://www.owasp.org/index.php/Category:OWASP_Live_CD_Project
http://sourceforge.net/projects/websecuritydojo/
http://sourceforge.net/projects/websecuritydojo/

• Be humble

• Suspect everything

• Always keep a security eye patch on

4. Review

Architect your code for security

• When designing solutions and applications, include security

• Document how you’ll meet the OWASP Top 10 up front at the
beginning of the project

• Assume developers will follow the path of least resistance –
don’t rely on them

• Learn from your mistakes – if at all possible incorporate into
a framework.

Design for security

1. Secure by default

2. Defence in depth

3. Reduce your attack surface

4. Understand your frameworks
• Authentication

• Resource inclusion

• Rendering

• Validation

5. Make it easy

Security Design Principles

• Internal sites are still susceptible

• How many companies have a sharepoint server called “intranet”,

“moss” or “sharepoint”?

• Make sure monitoring plans are in place for production

systems

• Application security is just one piece of the puzzle

• Look to limit social exploits as well

Also remember…

• A4: Insecure Direct Object References

• A2: Cross-Site Scripting (XSS)

• A5: Cross-Site Request Forgery (CSRF)

• Weak uses of encryption / custom rolled authentication

Most common flaws

XSS

<h2>
 Hi <%= Model.Name %>!
</h2>
<%= Model.GoogleMapHtml() %>

<h2>
 Hi <%= Html.Encode(Model.Name) %>!
</h2>
<%= Model.GoogleMapHtml() %> <h2>
 Hi <%= Model.Name %>!
</h2>
<%= Model.GoogleMapHtml().AsHtml() %>

<h2>
 Hi <%: Model.Name %>!
</h2>
<%= Model.GoogleMapHtml() %>

CSRF

<form method="POST"
action="/cart/purchase/">
 <input name="bookid" type="hidden" />
 <input type="submit" value="Buy Now!" />
</form>

<form method="POST" action="/cart/purchase">
 <%= Html.AntiForgeryToken() %>
 <input name="bookid" type="hidden"
value="1234" />
 <input type="submit" value="Buy Now!" />
</form>

<% using (Html.BeginFormWithAntiForgery("purchase", "cart"))
 { %>
 <input name="bookid" type="hidden" />
 <input type="submit" value="Buy Now!" />
<% } %>

<form method="POST"
action="/cart/purchase/?key=12345">
 <input name="bookid" type="hidden" />
 <input type="submit" value="Buy Now!" />
</form>

Insecure Direct Object References

GET /user/details?id=1234

public ActionResult Details(string id)
{
 var user = _users.FindById(id);
 return View(user);
}

GET /user/details?id=12

public ActionResult Details(string id)
{
 var user = _users.FindById(
 Session.UserIdMap.TranslateId(id)
);
 return View(user);
}

GET /user/account?id=12

public ActionResult Account([MapReference("UserId")] string id)
{
 var user = _users.FindById(Session.UserIdMap.GetId(id));
 return View(user);
}

GET /user/account?id=12

[Authorize(Roles="Admin")]
[HttpGet]
public ActionResult Account([MapReference("UserId")] string id)
{
 var user = _users.FindById(Session.UserIdMap.GetId(id));
 if (user == null)
 return HttpNotFound();
 return View(user);
}

• Don’t do it! Unless you know what you’re doing

• Get it reviewed, and reviewed again…

• Padding oracles, known plaintext, chosen chipher-text
attacks

• Use MACs

Broken Encryption

RijndaelManaged symmetricKey = new RijndaelManaged() { Mode = CipherMode.CBC };

// Reuse shared secret as IV
ICryptoTransform decryptor = symmetricKey.CreateDecryptor(
 symmetricKeyBytes, symmetricKeyBytes);

• Start off by changing mindsets in your business

• If necessary scare people

• If they still won’t listen, scare them some more

• Continue by empowering your team

• Finish by designing applications so that the “path of least
resistance” follows secure development practices

So, How do we build secure apps in a low-friction
manner?

