Forward Note For Reviewers:
This document is a concentration of the OWASP Code Review Guide v2.0 for Beta review. It contains sections 7 through 22, as other sections of the guide were primarilary covered by previous review cycles, included the Alpha review.

For this Beta review, we request that reviewers concentrate on the technical content and ignore formatting/numbering/etc. for now. Unfortunately part of the document development process has messed up the figure/table/etc. numbering, so please look past these clerical issues. In the document creation process figures and tables can move around, so these number are fixed at the very end. We wish to concentrate on the descriptions, potential solutions, and general technical content.

[bookmark: _GoBack]As this portion of the overall guide is 130 pages in length, we suggest that the reviewer takes a quick pass at the document contents, and then reviews technical portions they have expertise in. For example, if you have coded injection protections in C#, review that part of section 7, otherwise if you implemented cryptography methods in Java, concentrate your review on section 12.

This document has been converted into word format to allow reviewers to insert comments, or track changes. Please use this method to relay your comments back to us.

Thank you for taking the time to review, all reviewers will be mentioned in the final document (for release later this summer), so please include your name on the review.

7 A1 – INJECTION
7.1 Overview
What is Injection?
Injection attacks are common, widespread, an easy for a hacker to test if a web site is vulnerable and easy and quick for the attacker to take advantage of. Today they are very common in legacy applications that haven’t been updated.

7.2 SQL Injection
The most common injection vulnerability is SQL injection. Injection vulnerability is also easy to remediate and protect against. This vulnerability covers SQL, LDAP, Xpath, OS commands, XML parsers.

Injection vulnerability can lead to…
1. Disclose/leaking of sensitive information.
2. Data integrity issues. SQL injection may modify data, add new data, or delete data.
3. Elevated privilege.
4. Gain access to back-end network.

Two main points are the cause of injection vulnerabilities…
1. SQL commands are not protected from the untrusted input. SQL parser is not able to distinguish between code and data.

[image:]

Using SQL strings is very common in legacy applications where developers were not considering security. The issue is this coding technique does not tell the parser which part of the statement is code and which part is data. This allows the attacker to modify the SQL statement by adding code to the data that was visible from the web site for the attacker to manipulate.

1. Untrusted input is acceptable by the application. There are several ways to mitigate injection vulnerability, whitelisting, regex, etc. The five best ways are. All five should be used together for a defense in depth approach.

2. HtmlEncode all user input.

3. Using static analysis tools. Most static analysis for languages like .NET, Java, python are accurate. However static analysis can become an issue when injection comes from JavaScript and CSS.

4. Using SQL platform API to parameterize the data so the SQL parser can distinguish between code and data.

5. Using Store Procedures. Store procedures again help the SQL parser to known the difference between code and data. However Store Procedures can be used to build dynamic SQL statements allowing the differentiation of code and data to become blended together causing the Store Procedure to become vulnerability to injection.

6. Provide developer training for best practices for secure coding.

Blind SQL Injection
So if the UI being developed does not return search results, an SQL cannot occur? Unfortunately attackers can still glean information based on the error responses from various UI elements. Blind SQL injection is a type of attack that asks the database true or false questions and determines the answer based on the applications response. Effectively the attacker uses SQL queries to determine what error responses are returned for valid SQL, and which responses are returned for invalid SQL. Then the attacker can probe; for example check if a table called “user_password_table” exists. Once they have that information, they could use an attack like the one described above to maliciously delete the table, or attempt to return information from the table (does the username “john” exist?).

Blind SQL injections can also use timings instead of error messages, e.g. if invalid SQL takes 2 seconds to respond, but valid SQL returns in 0.5 seconds, the attacker can use this information.

Parameterized SQL Queries
Parameterized SQL queries (also called prepared statements) allow the SQL query string to be defined in such a way that the client input can’t be treated as part of the SQL syntax.

Take the following example:
1	 String query = “SELECT id, firstname, lastname FROM authors WHERE forename = ? and surname = ?”;
2	 PreparedStatement pstmt = connection.prepareStatement(query);
3	 pstmt.setString(1, firstname);
4	 pstmt.setString(2, lastname);

In this example the string ‘query’ is constructed in a way that it does not rely on any client input, and the ‘PreparedStatement’ is constructed from that string. When the client input is to be entered into the SQl, the ‘setString’ function is used and the first question mark “?” is replaced by the string value of ‘firstname’, the second question mark is replaced by the value of ‘lastname’. When the ‘setString’ function is called, this function automatically checks that no SQL syntax is contained within the string value. Most prepared statement APIs allow you to specify the type that should be entered, e.g. ‘setInt’, or ‘setBinary’, etc.

Safe String Concatenation?
So does this mean you can’t use string concatenation at all in your DB handling code? It is possible to use string concatenation safely, but it does increase the risk of an error, even without an attacker attempting to inject SQL syntax into your application.

You should never use string concatenation in combination with the client input. value Take an example where the existence (not the value) of a client input variable “surname” is used to construct the SQL query of the prepared statement;
1 String query = “Select id, firstname, lastname FROM authors WHERE forename = ?”;
2 if (lastname!= NULL && lastname.length != 0) {
3 query += “ and surname = ?”; });
4 query += “;”;
5	
6	 PreparedStatement pstmt = connection.prepareStatement(query);
7	 pstmt.setString(1, firstname);
8	
9	 if (lastname!= NULL || lastname.length != 0) { pstmt.setString(2, lastname); }

Here the value of ‘lastname’ is not being used, but the existance of it is being evaluated. However there is still a risk when the SQL statement is larger and has more complex business logic involved in creating it. Take the following example where the function will search based on firstname or lastname:
1 String query = “select id, firstname, lastname FROM authors”;
2 if (firstname != NULL && firstname.length != 0) {
3 query += “WHERE forename = ?;” }
4 if (lastname!= NULL && lastname.length != 0) {
5 query += “WHERE surname = ?;” }
6 PreparedStatement pstmt = connection.prepareStatement(query):

This logic will be fine when either firstname, or lastname is given, however if neither were given then the SQL statement would not have any WHERE clause, and the entire table would be returned. This is not an SQL injection (the attacker has done nothing to cause this situation, except not passing two values) however the end result is the same, information has been leaked from the database, despite the fact that a parameterized query was used.

For this reason, the advice is to avoid using string concatenation to create SQL query strings, even when using parameterized queries, especially if the concatenation involves building any items in the where clause.

Using Flexible Parameterized Statements
Functional requirements often need the SQL query being executed to be flexible based on the user input, e.g. if the end user specifies a time span for their transaction search then this should be used, or they might wish to query based on either surname or forename, or both. In this case the safe string concatenation above could be used, however from a maintenance point of view this could invite future programmers to misunderstand the difference between safe concatenation and the unsafe version (using input string values directly).

One option for flexible parameterized Statements is to use ‘if’ statements to select the correct query based on the input values provided, for example:
1	 String query;
2	 PreparedStatement pstmt;
3	
4	 if ((firstname!= NULL && firstname.length != 0) &&
5	 lastname!= NULL && lastname.length != 0)) {
6	 query = “Select id, firstname, lastname FROM authors WHERE forename = ? and surname = ?;”
7	 pstmt = connection.prepareStatement(query);
8	 pstmt.setString(1, firstname);
9	 pstmt.setString(2, lastname);
10	 }
11	 else if (firstname != NULL && firstname.length != 0) {
12	 query = “Select id, firstname, lastname FROM authors WHERE forename = ?:”;
13	 pstmt = connection.prepareStatement(query);
14	 pstmt.setString(1, firstname);
15	 }
16	 else if (lastname != NULL && lastname.length != 0){
17	 query = “Select id, firstname, lastname FROM authors WHERE surname= ?:”;
18	 pstmt = connection.prepareStatement(query);
19	 pstmt.setString(1, lastname);
20	 }
21	 else{
22	 throw NameNotSpecifiedException(); }

PHP SQL Injection
An SQL injection attack consists of injecting SQL query portions in the back-end database system via the client interface in the web application. The consequence of a successful exploitation of an SQL injection varies from just reading data to modifying data or executing system commands. SQL Injection in PHP remains the number one attack vector, and also the number one reason for Data Compromises

Example 1 :
1 <?php
1 $pass=$_GET[“pass”];
2 $con = mysql_connect(‘localhost’, ‘owasp’, ‘abc123’);
3 mysql_select_db(“owasp_php”, $con);
4 $sql=”SELECT card FROM users WHERE password = ‘”.$pass.”’”;
5 $result = mysql_query($sql);
6 ?>

Suspicious Validation
The most common ways to prevent SQL Injection in PHP are using functions such as addslashes() and mysql_real_escape_string()
but those function can always cause SQL Injections in some cases.

‘’’addslashes :’’’

you will avoid SQL injection using addslashes() only in the case when you wrap the query string with quotes.The following example would still be vulnerable
1	 $id = addslashes($_GET[‘id’]);
2	$query = ‘SELECT title FROM books WHERE id = ‘ . $id;

‘’’mysql_real_escape_string():’’’
mysql_real_escape_string() is a little bit more powerful than addslashes() as it calls MySQL’s library function mysql_real_escape_string, which prepends backslashes to the following characters: \x00, \n, \r, \, ‘, “ and \x1a.

As with addslashes(), mysql_real_escape_string() will only work if the query string is wrapped in quotes. A string such as the following would still be vulnerable to an SQL injection:
Java SQL Injection
1	 $bid = mysql_real_escape_string($_GET[‘id’]);
2	 $query = ‘SELECT title FROM books WHERE id = ‘. $bid

SQL injections occur when input to a web application is not controlled or sanitized before executing to the back-end database.

The attacker tries to exploit this vulnerability by passing SQL commands in her/his input and therefore will create a undesired response from the database such as providing information that bypasses the authorization and authentication programmed in the web application

An example of a vulnerable java code
1 HttpServletRequest request = ...;
2 String userName = request.getParameter(“name”);
3 Connection con = ...
4 String query = “SELECT * FROM Users “ + “ WHERE name = ‘” + userName + “’”;
5 con.execute(query);

The input parameter “name” is passed to the String query without any proper validation or verification. The query ‘SELECT* FROM users where name” is equal to the string ‘username’ can be easily misused to bypass something different that just the ‘name’. For example, the attacker can attempt to pass instead in this way accessing all user records and not only the one entitled to the specific user
“ OR 1=1.

.NET SQL Injection
Framework 1.0 & 2.0 might be more vulnerable to SQL injections than the later versions of .NET. Thanks to the proper implementation and use of design patterns already embedded in ASP.NET such as MVC(also depending on the version), it is possible to create applications free from SQL injections, however, there might be times where a developer might prefer to use SQL code directly in the code.

Example.
A developer creates a webpage with 3 fields and submit button, to search for employees on.
Field name, lastname + id

The developer implements a dynamic SQL statement or stored procedure in the code such as this one:

1 SqlDataAdapter thisCommand = new SqlDataAdapter(
2 “SELECT name, lastname FROM employees WHERE ei_id = ‘” +
 idNumber.Text + “’”, thisConnection);

The first code is equivalent to the following SQL statement, which gets executed:

1 SqlDataAdapter thisCommand = new SqlDataAdapter(
2 “SearchEmployeeSP ‘” + idNumber.Text + “’”, thisConnection);

 SELECT name, lastname FROM employees WHERE idNumber = ‘567892’

A hacker can then insert the following statement and execute the following code:
 SELECT name, lastname FROM authors WHERE au_id = ‘’; DROP DATABASE pubs --’

The semicolon “;” provides SQL with a signal that it has reached the end of the SQL statement, however, the hacker uses this to continue the statement with the malicious SQL code
 ; DROP DATABASE pubs

Parameter collections
Parameter collections such as SqlParameterCollection provide type checking and length validation. If you use a parameters collection, input is treated as a literal value, and SQL Server does not treat it as executable code, and therefore the payload can not be injected. Using a parameters collection lets you enforce type and length checks. Values outside of the range trigger an exception. Make sure you handle the exception correctly. Example of the SqlParameterCollection:
Hibernate Query Language (HQL)
1 using (SqlConnection conn = new SqlConnection(connectionString)) {
2 DataSet dataObj = new DataSet();
3 SqlDataAdapter sqlAdapter = new SqlDataAdapter(“StoredProc”, conn); sqlAdapter.SelectCommand.CommandType =
4 CommandType.StoredProcedure;
5 sqlAdapter.SelectCommand.Parameters.Add(“@usrId”, SqlDbType.VarChar, 15);
6 sqlAdapter.SelectCommand.Parameters[“@usrId “].Value = UID.Text;

Hibernate facilitates the storage and retrieval of Java domain objects via Object/Relational Mapping (ORM).

It is a very common misconception that ORM solutions, like hibernate, are SQL Injection proof. Hibernate allows the use of “native SQL” and defines a proprietary query language, called HQL (Hibernate Query Language); the former is prone to SQL Injection and the later is prone to HQL (or ORM) injection.

What to Review
· Always validate user input by testing type, length, format, and range.

· Test the size and data type of input and enforce appropriate limits.

· Test the content of string variables and accept only expected values. Reject entries that contain binary data, escape sequences, and comment characters.

· When you are working with XML documents, validate all data against its schema as it is entered.

· Never build SQL statements directly from user input.

· Use stored procedures to validate user input, when not using stored procedures use SQL API provided by platform. i.e. Parameterized Statements.

· Implement multiple layers of validation.

· Never concatenate user input that is not validated. String concatenation is the primary point of entry for script injection.

You should review all code that calls EXECUTE, EXEC, any SQL calls that can call outside resources or command line.OWASP References
• https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet OWASP SQL Injection Prevention Cheat Sheet

• https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet OWASP Query Parameterization Cheat Sheet

• https://www.owasp.org/index.php/Command_Injection OWASP Command Injection Article

• https://www.owasp.org/index.php/XXE OWASP XML eXternal Entity (XXE) Reference Article

• https://www.owasp.org/index.php/ASVS ASVS: Output Encoding/Escaping Requirements (V6)

• https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005) OWASP Testing Guide: Chapter on SQL Injection Testing

External References
• http://cwe.mitre.org/data/definitions/77.html CWE Entry 77 on Command Injection

• http://cwe.mitre.org/data/definitions/89.html CWE Entry 89 on SQL Injection

• http://cwe.mitre.org/data/definitions/564.html CWE Entry 564 on Hibernate Injection

Livshits and Lam, 2005 “Finding Security Vulnerabilities in Java Applications with Static Analysis” available at https://www.usenix.org/legacy/event/sec05/tech/full_papers/livshits/livshits_html/#sec:sqlinjexample

 • http://www.php.net/manual/en/book.pdo.php PDO

• https://technet.microsoft.com/en-us/library/ms161953(v=sql.105).aspx

7.3 Client side JavaScript
JavaScript has several known security vulnerabilities, with HTML5 and JavaScript becoming more prevalent in web sites today and with more web sites moving to responsive web design with its dependence on JavaScript the code reviewer needs to understand what vulnerabilities to look for. JavaScript is fast becoming a significant point of entry of hackers to web application. For that reason we have included in the A1 Injection sub section.

The most significant vulnerabilities in JavaScript are cross-site scripting (XSS) and Document Object Model, DOM-based XSS.

Detection of DOM-based XSS can be challenging. This is cause by the following reasons.
• JavaScript is often obfuscated to protect intellectual property.
• JavaScript is often compressed out of concerned for bandwidth.

In both of these cases it is strongly recommended the code review be able to review the JavaScript before it has been obfuscated and or compressed. This is a huge point of contention with QA software professionals because you are reviewing code that is not in its production state.

Another aspect that makes code review of JavaScript challenging is its reliance of large frameworks such as Microsoft .NET and Java Server Faces and the use of JavaScript frameworks, such as JQuery, Knockout, Angular, Backbone. These frameworks aggravate the problem because the code can only be fully analyzed given the source code of the framework itself. These frameworks are usually several orders of magnitude larger then the code the code reviewer needs to review.

Because of time and money most companies simple accept that these frameworks are secure or the risks are low and acceptable to the organization.

Because of these challenges we recommend a hybrid analysis for JavaScript. Manual source to sink validation when necessary, static analysis with black-box testing and taint testing.

First use a static analysis. Code Reviewer and the organization needs to understand that because of event-driven behaviors, complex dependencies between HTML DOM and JavaScript code, and asynchronous communication with the server side static analysis will always fall short and may show both positive, false, false –positive, and positive-false findings.

Black-box traditional methods detection of reflected or stored XSS needs to be preformed. However this approach will not work for DOM-based XSS vulnerabilities.

Taint analysis needs to be incorporated into static analysis engine. Taint Analysis attempts to identify variables that have been ‘tainted’ with user controllable input and traces them to possible vulnerable functions also known as a ‘sink’. If the tainted variable gets passed to a sink without first being sanitized it is flagged as vulnerability.

Second the code reviewer needs to be certain the code was tested with JavaScript was turned off to make sure all client sided data validation was also validated on the server side.

Code examples of JavaScript vulnerabilities.
<html>
<script type=”text/javascript”>
var pos=document.URL.indexOf(“name=”)+5;
document.write(document.URL.substring(pos,document.URL.length));
</script>
<html>

Explanation: An attacker can send a link such as “http://hostname/welcome.html#name=<script>alert(1)</script>” to the victim resulting in the victim’s browser executing the injected client-side code.
var url = document.location.url;
var loginIdx = url.indexOf(‘login’);
var loginSuffix = url.substring(loginIdx);
url = ‘http://mySite/html/sso/’ + loginSuffix;
document.location.url = url;

Line 5 may be a false-positive and prove to be safe code or it may be open to “Open redirect attack” with taint analysis the static analysis should be able to correctly identified if this vulnerability exists. If static analysis relies only on black-box component this code will have flagged as vulnerable requiring the code reviewer to do a complete source to sink review.

Additional examples and potential security risks
Source: document.url
Sink: document.write()
Results: document.write(“<script>malicious code</script>

Cybercriminal may controlled the following DOM elements including… document.url,document.location,document.referrer,window.location

Source: document.location
Sink: windon.location.href
Results: windon.location.href = http://www.BadGuysSite; - Client code open redirect.

Source: document.url
Storage: windows.localstorage.name
Sink: elem.innerHTML
Results: elem.innerHTML = <value> =Stored DOM-based Cross-site Scripting

eval() is prone to security threats, and thus not recommended to be used.
Consider these points:
1. Code passed to the eval is executed with the privileges of the executer. So, if the code passed can be affected by some malicious intentions, it leads to running malicious code in a user’s machine with your website’s privileges.
2. A malicious code can understand the scope with which the code passed to the eval was called.
3. You also shouldn’t use eval() or new Function() to parse JSON data.

The above if used may raise security threats. JavaScript when used to dynamically evaluate code will create a potential security risk.

eval(‘alert(“Query String ‘ + unescape(document.location.search) + ‘”);’);

eval(untrusted string); Can lead to code injection or client-side open redirect.

JavaScripts “new function” also may create a potential security risk.

Three points of validity are required for JavaScript
1. Have all the logic server-side, JavaScript validation be turned off on the client
2. Check for all sorts of XSS DOM Attacks, never trust user data, know your source and sinks
3. Check for insecure JavaScript libraries and update them frequently.

References:
• http://docstore.mik.ua/orelly/web/jscript/ch20_04.html
• https://www.owasp.org/index.php/Static_Code_Analysis
• http://www.cs.tau.ac.il/~omertrip/fse11/paper.pdf
• http://www.jshint.com

7.4 JSON (JavaScript Object Notation)
JSON (JavaScript Object Notation)is an open standard format that uses easy to read text to transmit data between a server and web applications. JSON data can be used by a large number of programming Languages and is becoming the de-facto standard in replacing XML.

JSON main security concern is JSON text dynamically embedded in JavaScript, because of this injection is a very real vulnerability. The vulnerability in the program that may inadvertently to run a malicious script or store the malicious script to a database. This is a very real possibility when dealing with data retrieved from the Internet.

The code reviewer needs to make sure the JSON is not used with Javascript eval. Make sure JSON.parse(…) is used.
Var parsed_object = eval(“(“ + Jason_text + “)”); // Red flag for the code reviewer.
 JSON.parse(text[, reviver]); .. // Much better then using javascript eval function.

Code reviewer should check to make sure the developer is not attempting to reject known bad patterns in text/string data, Using regex or other devices is fraught with error and makes testing for correctness very hard. Allow only whitelisted alphanumeric keywords and carefully validated numbers.

Do not allow JSON data to construct dynamic HTML. Always us safe DOM features like innerText or CreateTextNode(…)

Object/Relational Mapping (ORM)
Object/Relation Mapping (ORM) facilitates the storage and retrieval of domain objects via HQL (Hibernate Query Language) or .NET Entity framework.

It is a very common misconception that ORM solutions, like hibernate are SQL Injection proof. They are not. ORM’s allow the use of “native SQL”. Thru proprietary query language, called HQL is prone to SQL Injection and the later is prone to HQL (or ORM) injection. Linq is not SQL and because of that is not prone to SQL injection. However using excutequery or excutecommand via linq causes the program not to use linq protection mechanism and is vulnerability to SQL injection.

Bad Java Code Examples
List results = session.createQuery(“from Items as item where item.id = “ + currentItem.getId()).list();

NHibernate is the same as Hibernate except it is an ORM solution for Microsoft .NET platform. NHibernate is also vulnerable to SQL injection if used my dynamic queries.

Bad .NET Code Example
string userName = ctx.GetAuthenticatedUserName();
 String query = “SELECT * FROM Items WHERE owner = ‘”
 + userName + “’ AND itemname = ‘”
 + ItemName.Text + “’”;
 List items = sess.CreateSQLQuery(query).List()

Code Reviewer Action
Code reviewer needs to make sure any data used in an HQL query uses HQL parameterized queries so that it would be used as data and not as code.

7.5 Content Security Policy (CSP).

Is a W3C specification offering the possibility to instruct the client browser from which location and/or which type of resources are allowed to be loaded. To define a loading behavior, the CSP specification use "directive" where a directive defines a loading behavior for a target resource type. CSP helps to detect and mitigate certain types of attacks, including Cross Site Scripting (XSS) and data injection attacks. These attacks are used for everything from data theft to site defacement or distribution of malware

Directives can be specified using HTTP response header (a server may send more than one CSP HTTP header field with a given resource representation and a server may send different CSP header field values with different representations of the same resource or with different resources) or HTML Meta tag, the HTTP headers below are defined by the specs:

· Content-Security-Policy : Defined by W3C Specs as standard header, used by Chrome version 25 and later, Firefox version 23 and later, Opera version 19 and later.

· X-Content-Security-Policy : Used by Firefox until version 23, and Internet Explorer version 10 (which partially implements Content Security Policy).

· X-WebKit-CSP : Used by Chrome until version 25

Risk
· The risk with CSP can have 2 main sources:
· Policies misconfiguration,
· Too permissive policies.

What to Review
Code reviewer needs to understand what content security policies were required by application design and how these policies are tested to ensure they are in use by the application.

Useful security-related HTTP headers
In most architectures these headers can be set in web servers configuration ([http://httpd.apache.org/docs/2.0/mod/mod_headers.html Apache], [http://technet.microsoft.com/pl-pl/library/cc753133(v=ws.10).aspx IIS]), without changing actual application's code. This offers significantly faster and cheaper method for at least partial mitigation of existing issues, and an additional layer of defense for new applications.

	Header name
	Description
	Example

	Strict-Transport-Security

https://tools.ietf.org/html/rfc6797
	HTTP Strict-Transport-Security (HSTS) enforces secure (HTTP over SSL/TLS) connections to the server. This reduces impact of bugs in web applications leaking session data through cookies and external links and defends against Man-in-the-middle attacks. HSTS also disables the ability for user's to ignore SSL negotiation warnings.
	Strict-Transport-Security: max-age=16070400; includeSubDomains

	X-Frame-Options

https://tools.ietf.org/html/draft-ietf-websec-x-frame-options-01

Frame-Options

https://tools.ietf.org/html/draft-ietf-websec-frame-options-00

	Provides Click jacking protection. Values: deny - no rendering within a frame, sameorigin - no rendering if origin mismatch, allow-from: DOMAIN - allow rendering if framed by frame loaded from DOMAIN
	X-Frame-Options: deny

	X-XSS-Protection

[http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx X-XSS-Protection]
	This header enables the Cross-site scripting (XSS) filter built into most recent web browsers. It's usually enabled by default anyway, so the role of this header is to re-enable the filter for this particular website if it was disabled by the user. This header is supported in IE 8+, and in Chrome (not sure which versions). The anti-XSS filter was added in Chrome 4. Its unknown if that version honored this header.
	X-XSS-Protection: 1; mode=block

	X-Content-Type-Options

https://blogs.msdn.microsoft.com/ie/2008/09/02/ie8-security-part-vi-beta-2-update/
	The only defined value, "nosniff", prevents Internet Explorer and Google Chrome from MIME-sniffing a response away from the declared content-type. This also applies to Google Chrome, when downloading extensions. This reduces exposure to drive-by download attacks and sites serving user uploaded content that, by clever naming, could be treated by MSIE as executable or dynamic HTML files.
	X-Content-Type-Options: nosniff

	Content-Security-Policy, X-Content-Security-policy,X-WebKit-CSP

https://www.w3.org/TR/CSP/
	Content Security Policy requires careful tuning and precise definition of the policy. If enabled, CSP has significant impact on the way browser renders pages (e.g., inline JavaScript disabled by default and must be explicitly allowed in policy). CSP prevents a wide range of attacks, including Cross-site scripting and other cross-site injections.
	Content-Security-Policy: default-src 'self'

	Content-Security-Policy-Report_Only

https://www.w3.org/TR/CSP/
	Like Content-Security-Policy, but only reports. Useful during implementation, tuning and testing efforts.
	Content-Security-Policy-Report-Only: default-src 'self'; report-uri http://loghost.example.com/reports.jsp

References”
Apache: http://httpd.apache.org/docs/2.0/mod/mod_headers.html
IIS : http://technet.microsoft.com/pl-pl/library/cc753133(v=ws.10).aspx

7.6 Input Validation
Input validation is one of the most effective technical controls for application security. It can mitigate numerous vulnerabilities including cross-site scripting, various forms of injection, and some buffer overflows. Input validation is more than checking form field values.

All data from users needs to be considered untrusted. Remember one of the top rules of secure coding is “Don’t trust user input”. Always validate user data with the full knowledge of what your application is trying to accomplish.

Regular expressions can be used to validate user input, but the more complicated the regular express are the more chance it is not full proof and has errors for corner cases. Regular expressions are also very hard fro QA to test. Regular expressions may also make it hard for the code reviewer to do a good review of the regular expressions.

Data Validation
All external input to the system should undergo input validation. The validation rules are defined by the business requirements for the application. If possible, an exact match validator should be implemented. Exact match only permits data that conforms to an expected value. A "Known good" approach (white-list), which is a little weaker, but more flexible, is common. Known good only permits characters/ASCII ranges defined within a white-list. Such a range is defined by the business requirements of the input field. The other approaches to data validation are "known bad," which is a black list of "bad characters". This approach is not future proof and would need maintenance. "Encode bad" would be very weak, as it would simply encode characters considered "bad" to a format, which should not affect the functionality of the application.

Business Validation
Business validation is concerned with business logic. An understanding of the business logic is required prior to reviewing the code, which performs such logic. Business validation could be used to limit the value range or a transaction inputted by a user or reject input, which does not make too much business sense. Reviewing code for business validation can also include rounding errors or floating point issues which may give rise to issues such as integer overflows, which can dramatically damage the bottom line.

Canonicalization
Canonicalization is the process by which various equivalent forms of a name can be resolved to a single standard name, or the "canonical" name.

The most popular encodings are UTF-8, UTF-16, and so on (which are described in detail in RFC 2279). A single character, such as a period/full-stop (.), may be represented in many different ways: ASCII 2E, Unicode C0 AE, and many others.

With the myriad ways of encoding user input, a web application's filters can be easily circumvented if they're not carefully built.

Bad Example
 public static void main(String[] args) {
 File x = new File("/cmd/" + args[1]);
 String absPath = x.getAbsolutePath();
 }

Good Example
 public static void main(String[] args) throws IOException {
 File x = new File("/cmd/" + args[1]);
 String canonicalPath = x.getCanonicalPath();
 }

.NET Request Validation
One solution is to use .Net “Request Validation”. Using request validation is a good start on validating user data and is useful. The downside is too generic and not specific enough to meet all of our requirements to provide full trust of user data.

You can never use request validation for securing your application against cross-site scripting attacks.

The following example shows how to use a static method in the Uri class to determine whether the Uri provided by a user is valid.

 var isValidUri = Uri.IsWellFormedUriString(passedUri, UriKind.Absolute);

However, to sufficiently verify the Uri, you should also check to make sure it specifies http or https. The following example uses instance methods to verify that the Uri is valid.

 var uriToVerify = new Uri(passedUri);
 var isValidUri = uriToVerify.IsWellFormedOriginalString();
 var isValidScheme = uriToVerify.Scheme == "http" || uriToVerify.Scheme == "https";

Before rendering user input as HTML or including user input in a SQL query, encode the values to ensure malicious code is not included.

You can HTML encode the value in markup with the <%: %> syntax, as shown below.

 <%: userInput %>

Or, in Razor syntax, you can HTML encode with @, as shown below.

 @userInput

The next example shows how to HTML encode a value in code-behind.

 var encodedInput = Server.HtmlEncode(userInput);

Managed Code and Non-Managed Code
· Both Java and .Net have the concept of managed and non-managed code. To offer some of these protections during the invocation of native code, do not declare a native method public. Instead, declare it private and expose the functionality through a public wrapper method. A wrapper can safely perform any necessary input validation prior to the invocation of the native method:
·
· Java Sample code to call a Native Method with Data Validation in place
· public final class NativeMethodWrapper {
· private native void nativeOperation(byte[] data, int offset, int len);
·
·
· public void doOperation(byte[] data, int offset, int len) {
· // copy mutable input
· data = data.clone();
·
· // validate input
· // Note offset+len would be subject to integer overflow.
· // For instance if offset = 1 and len = Integer.MAX_VALUE,
· // then offset+len == Integer.MIN_VALUE which is lower
· // than data.length.
· // Further,
· // loops of the form
· // for (int i=offset; i<offset+len; ++i) { ... }
· // would not throw an exception or cause native code to
· // crash.
·
· if (offset < 0 || len < 0 || offset > data.length - len) {
· throw new IllegalArgumentException();
· }
·
· nativeOperation(data, offset, len);
· }
· }

Data validations checklist for the Code Reviewer.

· Ensure that a Data Validation mechanism is present.
· Ensure all input that can (and will) be modified by a malicious user such as HTTP headers, input fields, hidden fields, drop down lists, and other web components are properly validated.
· Ensure that the proper length checks on all input exist.
· Ensure that all fields, cookies, http headers/bodies, and form fields are validated.
· Ensure that the data is well formed and contains only known good chars if possible.
· Ensure that the data validation occurs on the server side.
· Examine where data validation occurs and if a centralized model or decentralized model is used.
· Ensure there are no backdoors in the data validation model.

· "Golden Rule: All external input, no matter what it is, will be examined and validated."

Resources:
http://msdn.microsoft.com/en-us/library/vstudio/system.uri

8 BROKEN AUTHENTICATION AND SESSION MANAGEMENT
8.1 Overview
Authentication is the ability to determine who has sent a message. Web applications and Web services both use authentication as the primary means of access control from log-ins via user id and passwords. This control is essential to the prevention of confidential files, data, or web pages from being access by hackers or users who do not have the necessary access control level.

8.2 Description
Authentication is important, as it is the gateway to the functionality you are wishing to protect. Once a user is authenticated their requests will be authorized to perform some level of interaction with your application that non-authenticated users will be barred from. You cannot control how users manage their authentication information or tokens, but you can ensure there is now way to perform application functions without proper authentication occurring.

There are many forms of authentication with passwords being the most common. Other forms include client certificates, biometrics, one time passwords over SMS or special devices, or authentication frameworks such as Open Authorization (OAUTH) or Single Sign On (SSO).

Typically authentication is done once, when the user logs into a website, and successful authentication results in a web session being setup for the user (see Session Management). Further (and stronger) authentication can be subsequently requested if the user attempts to perform a high risk function, for example a bank user could be asked to confirm an 6 digit number that was sent to their registered phone number before allowing money to be transferred.

Authentication is just as important within a companies firewall as outside it. Attackers should not be able to run free on a companies internal applications simply because they found a way in through a firewall. Also separation of privilege (or duties) means someone working in accounts should not be able to modify code in a repository, or application managers should not be able to edit the payroll spreadsheets.

8.3 What to Review
When reviewing code modules, which perform authentication functions, some common issues to look out for include:
• Ensure the login page is only available over TLS. Some sites leave the login page has HTTP, but make the form submission URL HTTPS so that the users username and password are encrypted when sent to the server. However if the login page is not secured, a risk exists for a man-in-the-middle to modify the form submission URL to an HTTP URL, and when the user enters their username & password they are sent in the clear.

• Make sure your usernames/user-ids are case insensitive. Many sites use email addresses for usernames and email addresses are already case insensitive. Regardless, it would be very strange for user ‘smith’ and user ‘Smith’ to be different users. Could result in serious confusion.

• Ensure failure messages for invalid usernames or passwords do not leak information. If the error message indicates the username was valid, but the password was wrong, then attackers will know that username exists. If the password was wrong, do not indicate how it was wrong.

• Make sure that every character the user types in is actually included in the password.

• Do not log invalid passwords. Many times an e-mail address is used as the username, and those users will have a few passwords memorized but may forget which one they used on your web site. The first time they may use a password that in invalid for your site, but valid for many other sites that this user (identified by the username). If you log that username and password combination, and that log leaks out, this low level compromise on your site could negatively affect many other sites.

• Longer passwords provide a greater combination of characters and consequently make it more difficult for an attacker to guess. Minimum length of the passwords should be enforced by the application. Passwords shorter than 10 characters are considered to be weak ([1]). Passphrases should be encouraged. For more on password lengths see the OWASP Authentication Cheat Sheet.

• To prevent brute force attacks, implement temporary account lockouts or rate limit login responses. If a user fails to provide the correct username and password 5 times, then lock the account for X minutes, or implement logic where login responses take an extra 10 seconds. Be careful though, this could leak the fact that the username is valid to attackers continually trying random usernames, so as an extra measure, consider implementing the same logic for invalid usernames.

• For internal systems, consider forcing the users to change passwords after a set period of time, and store a reference (e.g. hash) of the last 5 or more passwords to ensure the user is not simply re-using their old password.

• Password complexity should be enforced by making users choose password strings that include various
types of characters (e.g. upper- and lower-case letters, numbers, punctuation, etc.). Ideally, the application would indicate to the user as they type in their new password how much of the complexity policy their new password meets. For more on password complexity see the OWASP Authentication Cheat Sheet.

• It is common for an application to have a mechanism that provides a means for a user to gain access to their account in the event they forget their password. This is an example of web site functionality this is invoked by unauthenticated users (as they have not provided their password). Ensure interfaces like this are protected from misuse, if asking for password reminder results in an e-mail or SMS being sent to the registered user, do not allow the password reset feature to be used to spam the user by attackers constantly entering the username into this form. Please see Forgot Password Cheat Sheet for details on this feature.

• It is critical for an application to store a password using the right cryptographic technique. Please see
Password Storage Cheat Sheet for details on this feature.

When reviewing MVC .NET is is important to make sure the application transmits and received over a secure link. It is recommended to have all web pages not just login pages use SSL.
We need to protect session cookies, which are useful as users credentials.

public static void RegisterGlobalFilters(GlobalFilterCollection filters) {
'''filters.Add(new RequireHttpsAttribute());'''
}

In the global.asax file we can review the RegisterGlobalFilters method.
The attribute RequireHttpsAttribute() can be used to make sure the application runs over SSL/TLS
It is recommended that this be enabled for SSL/TLS sites.

• For high risk functions, e.g. banking transactions, user profile updates, etc., utilize multi-factor authentication (MFA). This also mitigates against CSRF and session hijacking attacks. MFA is using more than one authentication factor to logon or process a transaction:
• Something you know (account details or passwords)
• Something you have (tokens or mobile phones)
• Something you are (biometrics)

• If the client machine is in a controlled environment utilize SSL Client Authentication, also known as two-way SSL authentication, which consists of both browser and server sending their respective SSL certificates during the TLS handshake process. This provides stronger authentication as the server administrator can create and issue client certificates, allowing the server to only trust login requests from machines that have this client SSL certificate installed. Secure transmission of the client certificate is important.

References
• https://www.owasp.org/index.php/Authentication_Cheat_Sheet
• http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
• http://www.codeproject.com/Articles/326574/An-Introduction-to-Mutual-SSL-Authentication
• https://cwe.mitre.org/data/definitions/287.html Improper Authentication
• OWASP ASVS requirements areas for Authentication (V2)

8.4 Forgot Password
Overview
If your web site needs to have user authentication then most likely it will require user name and password to authenticate user accesses. However as computer system have increased in complexity, so has authenticating users has also increased. As a result the code reviewer needs to be aware of the benefits and drawbacks of user authentication referred to as “Direct Authentication” pattern in this section. This section is going to emphasis design patterns for when users forget user id and or password and what the code reviewer needs to consider when reviewing how user id and passwords can be retrieved when forgotten by the user and how to do this in a secure manner.

General considerations
Notified user by (phone sms, email) an email where the user has to click a link in the email that takes them to your site and ask the user to enter a new password.

Ask user to enter login credentials they already have (Facebook, Twitter, Google, Microsoft Live, OpenID etc) to validate user before allowing user to change password.

Send notification to user to confirm register and or forgot password.

Send notifications that account information has been changed for registered email. Set appropriate time out value. I.e. If user does not respond to email within 48 hours then user will be frozen out of system until user re-affirms password change.

• The identity and shared secret/password must be transferred using encryption to provide data confidentiality. HTTPS should also be used but in itself should not be the only mechanism used for data confidentiality.

• A shared secret can never be stored in clear text format, even if only for a short time in a message queue.

• A shared secret must always be stored in hashed or encrypted format in a database.

• The organization storing the encrypted shared secret does not need the ability to view or decrypt users passwords. User password must never be sent back to a user.

• If the client must cache the username and password for presentation for subsequent calls to a Web service then a secure cache mechanism needs to be in place to protect user name and password.

• When reporting an invalid entry back to a user, the username and or password should no be identified as being invalid. User feed back/error message must consider both user name and password as one item “user credential”. I.e. “The username or password you entered is incorrect.”

8.5 CAPTCHA
Overview
CAPTCHA (an acronym for “Completely Automated Public Turing test to tell Computers and Humans Apart”.) is an access control technique.

CAPTCHA is used to prevent automated software from gaining access to webmail services like Gmail, Hotmail and Yahoo to create e-mail spam, automated postings to blogs, forums and wikis for the purpose of promotion (commercial, and or political) or harassment and vandalism and automated account creation.

CAPTCHA’s have proved useful and their use has been upheld in court. Circumventing CAPTCHA has been upheld in US Courts as a violation Digital Millennium Copyright Act anti-circumvention section 1201(a)(3) and European Directive 2001/29/EC.

General considerations
Code review of CAPTCHA’s the reviewer needs to pay attention to the following rules to make sure the CAPTCHA is built with strong security principals.

• Do not allow the user to enter multiple guesses after an incorrect attempt.

• The software designer and code review need to understand the statics of guessing. I.e. One CAPTCHA design shows four (3 cats and 1 boat) pictures, User is requested to pick the picture where it is not in the same category of the other pictures. Automated software will have a success rate of 25% by always picking the first picture. Second depending on the fixed pool of CAPTCHA images over time an attacker can create a database of correct answers then gain 100% access.

• Consider using a key being passed to the server that uses a HMAC (Hash-based message authentication code) the answer.

Text base CAPTCHA’s should adhere to the following security design principals...
1. Randomize the CAPTCHA length: Don’t use a fixed length; it gives too much information to the attacker.

2. Randomize the character size: Make sure the attacker can’t make educated guesses by using several font sizes / several fonts.

3. Wave the CAPTCHA: Waving the CAPTCHA increases the difficulty for the attacker.

4. Don’t use a complex charset: Using a large charset does not improve significantly the CAPTCHA scheme’s security and really hurts human accuracy.

5. Use anti-recognition techniques as a means of strengthening CAPTCHA security: Rotation, scaling and rotating some characters and using various font sizes will reduce the recognition efficiency and increase security by making character width less predictable.

6. Keep the line within the CAPTCHAs: Lines must cross only some of the CAPTCHA letters, so that it is impossible to tell whether it is a line or a character segment.

7. Use large lines: Using lines that are not as wide as the character segments gives an attacker a robust discriminator and makes the line anti-segmentation technique vulnerable to many attack techniques.

8. CAPTCHA does create issues for web sites that must be ADA (Americans with Disabilities Act of 1990) compliant. Code reviewer may need to be aware of web accessibilities and security to review the CAPTCHA implementation where web site is required to be ADA complaint by law.

References
• UNITED STATES of AMERICA vs KENNETH LOWSON, KRISTOFER KIRSCH, LOEL STEVENSON Federal Indictment. February 23, 2010. Retrieved 2012-01-02.
• http://www.google.com/recaptcha/captcha
• http://www.ada.gov/anprm2010/web%20anprm_2010.htm
• Inaccessibility of CAPTCHA - Alternatives to Visual Turing Tests on the Web http://www.w3.org/TR/turingtest/

8.6 Out-of-Band Communication
Overview
The term ‘out-of-band’ is commonly used when an web application communicates with an end user over a channel separate to the HTTP request/responses conducted through the users’ web browser. Common examples include text/SMS, phone calls, e-mail and regular mail.

Description
The main reason an application would wish to communicate with the end user via these separate channels is for security. A username and password combination could be sufficient authentication to allow a user to browse and use non-sensitive parts of a website, however more sensitive (or risky) functions could require a stronger form of authentication. A username and password could have been stolen through an infected computer, through social engineering, database leak or other attacks, meaning the web application cannot put too much in trust a web session providing the valid username and password combination is actually the intended user.

Examples of sensitive operations could include:
• Changing password
• Changing account details, such as e-mail address, home address, etc
• Transferring funds in a banking application
• Submitting, modifying or cancelling orders

In these cases many applications will communicate with you via a channel other than a browsing session. Many large on-line stores will send you confirmation e-mails when you change account details, or purchase items. This protects in the case that an attacker has the username and password, if they buy something, the legitimate user will get an e-mail and have a chance to cancel the order or alert the website that they did not modify the account.

When out-of-band techniques are performed for authentication it is termed two-factor authentication. There are three ways to authenticate:
1. Something you know (e.g. password, passphrase, memorized PIN)
2. Something you have (e.g. mobile phone, cash card, RSA token)
3. Something you are (e.g. iris scan, fingerprint)

If a banking website allows users to initiate transactions online, it could use two-factor authentication by taking 1) the password used to log in and 2) sending an PIN number over SMS to the users registered phone, and then requiring the user enter the PIN before completing the transaction. This requires something the user knows (password) and has (phone to receive the PIN).

A ‘chip-and-pin’ banking card will use two-factor authentication, by requiring users to have the card with them (something they have) and also enter a PIN when performing a purchase (something they know). A ‘chip-and-pin’ card is not use within the PIN number, likewise knowing the PIN number is useless if you do not have the card.

What to Review
When reviewing code modules which perform out-of-band functions, some common issues to look out for include:
1. Recognize the risk of the system being abused. Attackers would like to flood someone with SMS messages from your site, or e-mails to random people. Ensure:

2. When possible, only authenticated users can access links that cause an out-of-band feature to be invoked (forgot password being an exception).

3. Rate limit the interface, thus users with infected machines, or hacked accounts, can’t use it to flood out-of-band messages to a user.

4. Do not allow the feature to accept the destination from the user, only use registered phone numbers, e-mails, addresses.

5. For high risk sites (e.g. banking) the users phone number can be registered in person rather than via the web site.
6. Do not send any personal or authentication information in the out-of-band communication.

7. Ensure any PINs or passwords send over out-of-band channels have a short life-span and are random.

8. A consideration can be to prevent SMS messages being sent to the device currently conducting the
browsing session (i.e. user browsing on their iPhone, were the SMS is sent to). However this can be hard to enforce.
a. If possible give users the choice of band they wish to use. For banking sites Zitmo malware on mobile
devices (see references) can intercept the SMS messages, however iOS devices have not been affected by this malware yet, so users could choose to have SMS PINs sent to their Apple devices, and when on Android they could use recorded voice messages to receive the PIN.

9. In a typical deployments specialized hardware/software separate from the web application will handle the out-of-band communication, including the creation of temporary PINs and possibly passwords. In this scenario there is no need to expose the PIN/password to your web application (increasing risk of exposure), instead the web application should query the specialized hardware/software with the PIN/password supplied by the end user, and receive a positive or negative response.

Many sectors including the banking sector have regulations requiring the use of two-factor authentication for certain types of transactions. In other cases two-factor authentication can reduce costs due to fraud and re-assure customers of the security of a website.

References
• https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
• http://securelist.com/blog/virus-watch/57860/new-zitmo-for-android-and-blackberry/

8.7 Session Management
Overview
A web session is a sequence of network HTTP request and response transactions associated to the same user. Session management or state is needed by web applications that require the retaining of information or status about each user for the duration of multiple requests. Therefore, sessions provide the ability to establish variables – such as access rights and localization settings – which will apply to each and every interaction a user has with the web application for the duration of the session.

Description
Code reviewer needs to understand what session techniques the developers used, and how to spot vulnerabilities that may create potential security risks. Web applications can create sessions to keep track of anonymous users after the very first user request. An example would be maintaining the user language preference. Additionally, web applications will make use of sessions once the user has authenticated. This ensures the ability to identify the user on any subsequent requests as well as being able to apply security access controls, authorized access to the user private data, and to increase the usability of the application. Therefore, current web applications can provide session capabilities both pre and post authentication.

The session ID or token binds the user authentication credentials (in the form of a user session) to the user HTTP traffic and the appropriate access controls enforced by the web application. The complexity of these three components (authentication, session management, and access control) in modern web applications, plus the fact that its implementation and binding resides on the web developer’s hands (as web development framework do not provide strict relationships between these modules), makes the implementation of a secure session management module very challenging.

The disclosure, capture, prediction, brute force, or fixation of the session ID will lead to session hijacking (or sidejacking) attacks, where an attacker is able to fully impersonate a victim user in the web application. Attackers can perform two types of session hijacking attacks, targeted or generic. In a targeted attack, the attacker’s goal is to impersonate a specific (or privileged) web application victim user. For generic attacks, the attacker’s goal is to impersonate (or get access as) any valid or legitimate user in the web application.

With the goal of implementing secure session IDs, the generation of identifiers (IDs or tokens) must meet the following properties:
• The name used by the session ID should not be extremely descriptive nor offer unnecessary details about the purpose and meaning of the ID.

• It is recommended to change the default session ID name of the web development framework to a generic name, such as “id”.

• The session ID length must be at least 128 bits (16 bytes) (The session ID value must provide at least 64 bits of entropy).

• The session ID content (or value) must be meaningless to prevent information disclosure attacks, where an attacker is able to decode the contents of the ID and extract details of the user, the session, or the inner workings of the web application.

It is recommended to create cryptographically strong session IDs through the usage of cryptographic hash functions such as SHA1 (160 bits).

What to Review
Require cookies when your application includes authentication. Code reviewer needs to understand what information is stored in the application cookies. Risk management is needed to address if sensitive information is stored in the cookie requiring SSL for the cookie

.NET ASPX web.config
<authentication mode=”Forms”>
 <forms loginUrl=”member_login.aspx”
 cookieless=”UseCookies”
 requireSSL=”true”
 path=”/MyApplication” />
</authentication>

Java web.xml

<session-config>
 <cookie-config>
 <secure>true</secure>
 </cookie-config>
</session-config>

php.ini

void session_set_cookie_params (int $lifetime [, string $path [, string $domain [, bool $secure = true [, bool $httponly = true]]]])

Session Expiration
In reviewing session handling code the reviewer needs to understand what expiration timeouts are needed by the web application or if default session timeout are being used. Insufficient session expiration by the web application increases the exposure of other session-based attacks, as for the attacker to be able to reuse a valid session ID and hijack the associated session, it must still be active.
Remember for secure coding one of our goals is to reduce the attack surface of our application.

.NET ASPX
ASPX the developer can change the default time out for a session. This code in the web.config file sets the timeout session to 15 minutes. The default timeout for an aspx session is 30 minutes.

<system.web>
 <sessionState
 mode=”InProc”
 cookieless=”true”
 timeout=”15” />
 </system.web>

Java

<session-config>
 <session-timeout>1</session-timeout>
</session-config>

PHP
Does not have a session timeout mechanism. PHP developers will need to create their own custom session timeout.

Session Logout/Ending.
Web applications should provide mechanisms that allow security aware users to actively close their session once they have finished using the web application.

.NET ASPX Session.Abandon() method destroys all the objects stored in a Session object and releases their resources. If you do not call the Abandon method explicitly, the server destroys these objects when the session times out. You should use it when the user logs out. Session.Clear() Removes all keys and values from the session. Does not change session ID. Use this command if you if you don’t want the user to relogin and reset all the session specific data.

Session Attacks
Generally three sorts of session attacks are possible:
• Session Hijacking: stealing someone’s session-id, and using it to impersonate that user.

• Session Fixation: setting someone’s session-id to a predefined value, and impersonating them using that known value

• Session Elevation: when the importance of a session is changed, but its ID is not.

Session Hijacking
• Mostly done via XSS attacks, mostly can be prevented by HTTP-Only session cookies (unless Javascript code requires access to them).

• It’s generally a good idea for Javascript not to need access to session cookies, as preventing all flavors of XSS is usually the toughest part of hardening a system.

• Session-ids should be placed inside cookies, and not in URLs. URL information are stored in browser’s history, and HTTP Referrers, and can be accessed by attackers.

• As cookies can be accessed by default from javascript and preventing all flavors of XSS is usually the toughest part of hardening a system, there is an attribute called “HTTPOnly”, that forbids this access. The session cookie should has this attribute set. Anyway, as there is no need to access a session cookie from the client, you should get suspicious about client side code that depends on this access.

• Geographical location checking can help detect simple hijacking scenarios. Advanced hijackers use the same IP (or range) of the victim.

• An active session should be warned when it is accessed from another location.

• An active users should be warned when s/he has an active session somewhere else (if the policy allows multiple sessions for a single user).

Session Fixation
1. If the application sees a new session-id that is not present in the pool, it should be rejected and a new session-id should be advertised. This is the sole method to prevent fixation.

1. All the session-ids should be generated by the application, and then stored in a pool to be checked later for. Application is the sole authority for session generation.

Session Elevation
• Whenever a session is elevated (login, logout, certain authorization), it should be rolled.

• Many applications create sessions for visitors as well (and not just authenticated users). They should definitely
roll the session on elevation, because the user expects the application to treat them securely after they login.

• When a down-elevation occurs, the session information regarding the higher level should be flushed.

• Sessions should be rolled when they are elevated. Rolling means that the session-id should be changed, and
the session information should be transferred to the new id.

Server-Side Defenses for Session Management
.NET ASPX
Generating new session Id’s helps prevent, session rolling, fixation, hijacking.

public class GuidSessionIDManager : SessionIDManager {
 public override string CreateSessionID(HttpContext context){
return Guid.NewGuid().ToString();
 }
 public override bool Validate(string id) {
try{
 Guid testGuid = new Guid(id);
 if (id == testGuid.ToString())
 return true;
 }catch(Exception e) { throw e }
 return false;
 }
 }

Java

request.getSession(false).invalidate();
//and then create a new session with
getSession(true) (getSession())

PHP.INI

session.use_trans_sid = 0
session.use_only_cookies

References
• https://wwww.owasp.org/index.php/SecureFlag

9 CROSS-SITE SCRIPTING (XSS)
9.1 Overview
What is Cross-Site Scripting (XSS)?
Cross-site scripting (XSS) is a type of coding vulnerability. It is usually found in web applications. XSS enables attackers to inject malicious into web pages viewed by other users. XSS may allow attackers to bypass access controls such as the same-origin policy may. This is one of the most common vulnerabilities found accordingly with OWASP Top 10. Symantec in its annual threat report found that XSS was the number two vulnerability found on web servers. The severity/risk of this vulnerability may range from a nuisance to a major security risk, depending on the sensitivity of the data handled by the vulnerable site and the nature of any security mitigation implemented by the site’s organization.

Description
There are three types of XSS, Reflected XSS (Non-Persistent), Stored XSS(Persistent), and DOM based XSS. Each of these types has different means to deliver a malicious payload to the server. The important takeaway is the consequences are the same.

What to Review
Cross-site scripting vulnerabilities are difficult to identify and remove from a web application

Cross-site scripting flaws can be difficult to identify and remove from a web application. The best practice to search for flaws is to perform an intense code review and search for all places where user input through a HTTP request could possibly make its way into the HTML output.

Code reviewer needs to closely review.
1. That untrusted data is not transmitted in the same HTTP responses as HTML or JavaScript.

2. When data is transmitted from the server to the client, untrusted data must be properly encoded in JSON format and the HTTP response MUST have a Content-Type of application/json. Do not assume data from the server is safe. Best practice is to always check data.

3. When introduced into the DOM, untrusted data MUST be introduced using one of the following APIs:
a. Node.textContent
b. document.createTextNode
c. Element.setAttribute (second parameter only)

Code reviewer should also be aware of the HTML tags (such as , <iframe…>, <bgsound src…> etc.) that can be used to transmit malicious JavaScript.

Web application vulnerability automated tools/scanners can help to find Cross-Site scripting flaws. They cannot find all this is way manual code reviews are important. Manual code reviews wont catch all either but a defense in depth approach is always the best approach based on your level of risk.

One such tool is OWASP Zed Attack Proxy(ZAP) is an easy to use integrated penetration-testing tool for finding vulnerabilities in web applications. ZAP provides automated scanners as well as a set of tools that allow you to find security vulnerabilities manually. It acts as a web proxy that you point your browser to so it can see the traffic going to a site and allows you to spider, scan, fuzz, and attack the application. There are other scanners available both open source and commercial.

Use Microsft’s Anti-XSS library
Another level of to help prevent XSS is to use an Anti-XSS library.

Unfortunately, HtmlEncode or validation feature is not enough to deal with XSS, especially if the user input needs to be added to JavaScript code, tag attributes, XML or URL. In this case a good option is the Anti-XSS libray

.NET ASPX
1. On ASPX .NET pages code review should check to make sure web config file does not turn off page validation. <pages validateRequest=”false” />

2. .NET framework 4.0 does not allow page validation to be turned off. Hence if the programmer wants to turn of page validation the developer will need to regress back to 2.0 validation mode. <httpRuntime requestValidationMode=”2.0” />

3. Code reviewer needs to make sure page validation is never turned off on anywhere and if it is understandwhy and the risks it opens the organization to. <%@ Page Language=”C#” ValidationRequest=”false”

.NET MVC
When MVC web apps are exposed to malicious XSS code, they will throw an error like the following one:

[image:]
To avoid this vulnerability, make sure the following code is included:
<%server.HtmlEncode(stringValue)%>

The HTMLEncode method applies HTML encoding to a specified string. This is useful as a quick method of encoding form data and other client request data before using it in your Web application. Encoding data converts potentially unsafe characters to their HTML-encoded equivalent.(MSDN,2013)

JavaScript and JavaScript Frameworks
Both Javascript and Javascript frameworks are now widely use in web applications today. This hinders the code reviewer in knowing what frameworks do a good job on preventing XSS flaws and which ones don’t. Code reviewer should check to see what to see if any CVE exists for the framework being used and also check that the javascript framework is the latest stable version.

OWASP References
• OWASP XSS Prevention Cheat Sheet
• OWASP XSS Filter Evasion Cheat Sheet
• OWASP DOM based XSS Prevention Cheat Sheet
• Testing Guide: 1st 3 chapters on Data Validation Testing
• OWASP_Zed_Attack_Proxy_Project

External References
• https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf

• https://cwe.mitre.org/data/definitions/79.html

• http://webblaze.cs.berkeley.edu/papers/scriptgard.pdf

• http://html5sec.org

• https://cve.mitre.org

9.2 HTML Attribute Encoding
HTML attributes may contain untrusted data. It is important to determine if any ot the HTML attributes on a given page contains data from outside the trust boundary.
Some HTML attributes are considered safer than others such as
align, alink, alt, bgcolor, border, cellpadding, cellspacing, class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight, marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, rowspan, scrolling, shape, span, summary, tabindex, title, usemap, valign, value, vlink, vspace, width
When reviewing code for XSS we need to look for HTML attributes such as the following reviewing code for XSS we need to look for HTML attributes such as the following
<input type="text" name="fname" value="UNTRUSTED DATA">
Attacks may take the following format:

"><script>/* bad stuff */</script>

What is Attribute encoding?
HTML attribute encoding replaces a subset of characters that are important to prevent a string of characters from breaking the attribute of an HTML element.
We replace ", &, and < with ", &, and >.
This is because the nature of attributes, the data they contain, and how they are parsed and interpreted by a browser or HTML parser is different than how an HTML document and its elements are read; OWASP XSS Prevention Cheat Sheet. Except for alphanumeric characters, escape all characters with ASCII values less than 256 with the &#xHH; format (or a named entity if available) to prevent switching out of the attribute. The reason this rule is so broad is that developers frequently leave attributes unquoted. Properly quoted attributes can only be escaped with the corresponding quote. Unquoted attributes can be broken out of with many characters, including [space] % * + , - / ; < = > ^ and |.
Attribute encoding may be performed in a number of ways. Two resources are
1. HttpUtility.HtmlAttributeEncode
http://msdn.microsoft.com/en-us/library/wdek0zbf.aspx
2. OWASP Java Encoder Project
 https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
HTML Entity
HTML elements which contain user controlled data or data from untrusted sourced should be reviewed for contextual output encoding. In the case of HTML entities we need to help ensure HTML Entity encoding is performed:
Example HTML Entity containing untrusted data:
 HTML Body Context UNTRUSTED DATA OR <body>...UNTRUSTED DATA </body> OR <div>UNTRUSTED DATA </div>
HTML Entity Encoding is required
 & --> & < --> < > --> > " --> " ' --> '
It is recommended to review where/if untrusted data is placed within entity objects. Searching the source code fro the following encoders may help establish if HTML entity encoding is being done in the application and in a consistent manner.

OWASP Java Encoder Project.
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
 <input type="text" name="data" value="<%=Encode.forHtmlAttribute(dataValue) %>" />
OWASP ESAPI
http://code.google.com/p/owasp-esapi-java/source/browse/trunk/src/main/java/org/owasp/esapi/codecs/HTMLEntityCodec.java
 String safe = ESAPI.encoder().encodeForHTML(request.getParameter("input"));

JavaScript Parameters
Untrusted data, if being placed inside a JavaScript function/code requires validation. Invalidated data may break out of the data context and wind up being executed in the code context on a users browser.
Examples of exploitation points (sinks) that are worth reviewing for:
 <script>var currentValue='UNTRUSTED DATA';</script> <script>someFunction('UNTRUSTED DATA');</script> attack: ');/* BAD STUFF */

Potential solutions:
OWASP HTML Sanitizer Project
OWASP JSON Sanitizer Project
ESAPI JavaScript escaping can be call in this manner:
 String safe = ESAPI.encoder().encodeForJavaScript(request.getParameter("input"));
Please note there are some JavaScript functions that can never safely use untrusted data as input - even if javascript escaped!
For example:
 <script> window.setInterval('...EVEN IF YOU ESCAPE UNTRUSTED DATA YOU ARE XSSED HERE...'); </script>
eval()
 var txtField = "A1"; var txtUserInput = "'test@google.ie';alert(1);"; eval("document.forms[0]." + txtField + ".value =" + A1);
jquery
 var txtAlertMsg = "Hello World: "; var txtUserInput = "test<script>alert(1)<\/script>"; $("#message").html(txtAlertMsg +"" + txtUserInput + "");

Safe usage (use text, not html) $("#userInput").text ("test<script>alert(1)<\/script>");<-- treat user input as text

Nested Contexts Best to avoid such nested contexts: an element attribute calling a JavaScript function etc. these contexts can really mess with your mind.

<div onclick="showError('<%=request.getParameter("errorxyz")%>')" >An error occurred </div> Here we have a HTML attribute(onClick) and within a nested Javascript function call (showError).

When the browser processes this it will first HTML decode the contents of the onclick attribute. It will pass the results to the JavaScript Interpreter. So we have 2 contextx here...HTML and Javascript (2 browser parsers). We need to apply “layered” encoding in the RIGHT order:
1) JavaScript encode
2) HTML Attribute Encode so it "unwinds" properly and is not vulnerable.
<div onclick="showError ('<%= Encoder.encodeForHtml(Encoder.encodeForJavaScript(request.getParameter("error")%>')))" >An error occurred</div>

10 INSECURE DIRECT OBJECT REFERENCE
10.1 Overview
Insecure Direct Object Reference is a commonplace vulnerability with web applications that provide varying levels of access or exposes an internal object to the user. Examples of what can be exposed are database records, URLs, files or allowing users to bypass web security controls by manipulating URLs.

The user may be authorized to access the web application, but not a specific object, such as a database record, specific file or even an URL. Potential threats can come from an authorized user of the web application who alters a parameter value that directly points to an object that the user isn’t authorized to access. If the application doesn’t verify the user for that specific object, it can result in an insecure direct object reference flaw.

10.2 Description
The source of the problem of this risk is based on the manipulation or updating of the data generated previously at server side.

What to Review
SQL Injection
An example of an attack making use of this vulnerability could be a web application where the user has already been validated. Now the user wants to view open his open invoices via another web page. The application passes the account number using the URL string. The an application uses unverified data in a SQL call that is accessing account information:

String query = “SELECT * FROM accts WHERE account = ?”; PreparedStatement pstmt = connection.prepareStatement(query , ...);
pstmt.setString(1, request.getParameter(“acct”));
ResultSet results = pstmt.executeQuery();

The attacker simply modifies the ‘acct’ parameter in their browser to send whatever account number they want. If the application does not perform user verification, the attacker can access any user’s account, instead of only the intended customer’s account.

HTTP POST requests
A Cyber Security Analyst (Ibrahim Raafat) found an insecure direct object reference vulnerability with Yahoo! Suggestions by using Live HTTP Headers check the content in the POST request he could see:

prop=addressbook&fid=367443&crumb=Q4.PSLBfBe.&cid=1236547890&cmd= delete_comment

Where parameter ‘fid’ is the topic id and ‘cid’ is the respective comment ID. While testing, he found changing the fid and cid parameter values allow him to delete other comments from the forum, that are actually posted by another user.

Next, he used the same method to test post deletion mechanism and found a similar vulnerability in that. A normal HTTP Header POST request of deleting a post is:

POST cmd=delete_item&crumb=SbWqLz.LDP0

He found that, appending the fid (topic id) variable to the URL allows him to delete the respective post of other users:

POST cmd=delete_item&crumb=SbWqLz.LDP0&fid=xxxxxxxx

After futher analysis he found an attacker could modify the parameters in HTTP POST requests to delete 1.5 million records entered by Yahoo users

Indirect Reference Maps
Moreover, the attackers may find out the internal naming conventions and infer the method names for operation functionality. For instance, if an application has URLs for retrieving detail information of an object like:

xyz.com/Customers/View/2148102445 or xyz.com/Customers/ViewDetails.aspx?ID=2148102445

Attackers will try to use the following URLS to perform modification on the object:

xyz.com/Customers/Update/2148102445 or xyz.com/Customers/Modify.aspx?ID=2148102445
Or xyz.com/Customers/admin

Also if web application is returning an object listing part of the directory path or object name an attacker can modify these.

Data Binding Technique
Another popular feature seen in most of the design frameworks (JSP/Structs, Spring) is data binding, where HTTP GET request parameters or HTTP POST variables get directly bound to the variables of the corresponding business/command object. Binding here means that the instance variables of such classes get automatically initialize with the request parameter values based on their names. Consider a sample design given below; observe that the business logic class binds the business object class binds the business object with the request parameters.

The flaw in such design is that the business objects may have variables that are not dependent on the request parameters. Such variables could be key variables like price, max limit, role, etc. having static values or dependent on some server side processing logic. A threat in such scenarios is that an attacker may supply additional parameters in request and try to bind values for unexposed variable of business object class. As illustrated in the figure below, the attacker sends an additional “price” parameter in the request and binds with the unexposed variable “price” in business object, thereby manipulating business logic.
Secure Design Recommendation:
• An important point to be noted here is that the business/form/command objects must have only those instance variables that are dependent on the user inputs.

• If additional variables are present those must not be vital ones like related to the business rule for the feature.

• In any case the application must accept only desired inputs from the user and the rest must be rejected or left unbound. And initialization of unexposed of variables, if any must take place after the binding logic.

Review Criteria
Review the application design and check if it incorporates a data binding logic. In case it does, check if business objects/beans that get bound to the request parameters have unexposed variables that are meant to have static values. If such variables are initialized before the binding logic this attack will work successfully.

What the Code Reviewer needs to do:
Code reviewer needs to “map out all locations in the code being reviewed where user input is used to reference objects directly”. These locations include where user input is used to access a database row, a file, application pages, etc. The reviewer needs to understand if modification of the input used to reference objects can result in the retrieval of objects the user is not authorized to view.

If untrusted input is used to access objects on the server side, then proper authorization checks must be employed to ensure data cannot be leaked. Proper input validation will also be required to ensure the untrusted input is properly understood and used by the server side code. Note that this authorization and input validation must be performed on the server side; client side code can be bypassed by the attacker.

Binding issues in MVC .NET
A.K.A Over-Posting A.K.A Mass assignments

In MVC framework, mass assignments are a mechanism that allows us to update our models with data coming in a request in HTTP form fields. As the data that needs to be updated comes in a collection of form fields, a user could send a request and modify other fields in the model that may not be in the form and the developer didn’t intend to be updated.

Depending on the models you create, there might be sensitive data that you would not like to be modified. The vulnerability is exploited when a malicious user modifys a model’s fields, which are not exposed to the user via the view, and the malicious user to change hidden model values adds additional model parameters.

 public class user
 {
 public int ID { get; set; } <- exposed via view
 public string Name { get; set; } <- exposed via view
 public bool isAdmin{ get; set; } <-hidden from view
 }

Corresponding view (HTML)

 ID: <%= Html.TextBox(“ID”) %>

 Name: <%= Html.TextBox(“Name”) %>

 <-- no isAdmin here!

The corresponding HTML for this model contain 2 fields: I’ and Name.
If an attacker adds the isAdmin parameter to the form and submits they can change the model object above.
So a malicious attacker may change isAdmin=true

Recommendations:
*-1 Use a model which does not have values the user should not edit.
*-2 Use the bind method and whitelist attributes, which can be updated.
*-3 Use the controller. UpdateModel method to exclude certain attributes updates.

References
• OWASP Top 10-2007 on Insecure Dir Object References
• ESAPI Access Reference Map API
• ESAPI Access Control API (See isAuthorizedForData(), isAuthorizedForFile(), isAuthorizedForFunction())
• https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
• https://cwe.mitre.org/data/definitions/639.html
• https://cwe.mitre.org/data/definitions/22.html

11 SECURITY MISCONFIGURATION
Many modern applications are developed on frameworks. These frameworks provide the developer less work to do, as the framework does much of the “housekeeping”. The code developed will extend the functionality of the framework. It is here that the knowledge of a given framework, and language in which the application is implemented, is of paramount importance. Much of the transactional functionality may not be visible in the developer’s code and handled in “parent” classes. The reviewer should be aware and knowledgeable of the underlying framework.

Web applications do not execute in isolation, they typically are deployed within an application server framework, running within an operating system on a physical host, within a network.

Secure operating system configuration (also called hardening) is not typically within the scope of code review. For more information, see the Center for Internet Security operating system benchmarks.

Networks today consist of much more than routers and switches providing transport services. Filtering switches, VLANs (virtual LANs), firewalls, WAFs (Web Application Firewall), and various middle boxes (e.g. reverse proxies, intrusion detection and prevention systems) all provide critical security services when configured to do so. This is a big topic, but outside the scope of this web application code review guide. For a good summary, see the SANS (System Administration, Networking, and Security) Institute Critical Control 10: Secure Configurations for Network Devices such as Firewalls, Routers, and Switches.

Application server frameworks have many security related capabilities. These capabilities are enabled and configured in static configuration files, commonly in XML format, but may also be expressed as annotations within the code.

11.1 Apache Struts
In struts the struts-config.xml and the web.xml files are the core points to view the transactional functionality of an application. The struts-config.xml file contains the action mappings for each HTTP request while the web.xml file contains the deployment descriptor.

The struts framework has a validator engine, which relies on regular expressions to validate the input data. The beauty of the validator is that no code has to be written for each form bean. (Form bean is the Java object which received the data from the HTTP request). The validator is not enabled by default in struts. To enable the validator, a plug-in must be defined in the <plug-in> section of struts-config.xml. The property defined tells the struts framework where the custom validation rules are defined (validation.xml) and a definition of the actual rules themselves (validation-rules.xml).

Without a proper understanding of the struts framework, and by simply auditing the Java code, one would not see any validation being executed, and one does not see the relationship between the defined rules and the Java functions.

The action mappings define the action taken by the application upon receiving a request. Here, in figure A5.0, we can see that when the URL contains “/login” the LoginAction shall be called. From the action mappings we can see the transactions the application performs when external input is received.

Figure A5.0
Example of struts-config.xml file

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<!DOCTYPE struts-config PUBLIC
 “-//Apache Software Foundation//DTD Struts Configuration 1.0//EN”
 “http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd”>
<struts-config>
<form-beans>
 <form-bean name=”login” type=”test.struts.LoginForm” />
</form-beans>
<global-forwards>
</global-forwards>
<action-mappings>
 <action
 path=”/login”
 type=”test.struts.LoginAction” >
 <forward name=”valid” path=”/jsp/MainMenu.jsp” />
 <forward name=”invalid” path=”/jsp/LoginView.jsp” />
 </action>
</action-mappings>
<plug-in className=”org.apache.struts.validator.ValidatorPlugIn”>
 <set-property property=”pathnames”
 value=”/test/WEB-INF/validator-rules.xml, /WEB-INF/validation.xml”/>
</plug-in>
</struts-config>

11.2 Java Enterprise Edition Declarative Configuration
Some security capabilities are accessible from within a Java program. Programmatic security is done within the web application using framework specific or standard Java Enterprise Edition (JEE) framework APIs. JEE has the JEE security model which, uses a role-based security model in which, access to application resources is granted based on the security role. The security role is a logical grouping of principals (authenticated entities, usually a user), and access is declared by specifying a security constraint on the role.

The constraints and roles are expressed as deployment descriptors expressed as XML elements. Different types of components use different formats, or schemas, for their deployment descriptors:

• Web components may use a web application deployment descriptor in the file web.xml

• Enterprise JavaBeans components may use an EJB deployment descriptor named META-INF/ejb-jar.xml The deployment descriptor can define resources (e.g. servlets accessible via a specific URL), which roles are authorized to access the resource, and how access is constrained (e.g. via GET but not POST).

The example web component descriptor in figure X (included in the “web.xml” file) defines a Catalog servlet, a “manager” role, a SalesInfo resource within the servlet accessible via GET and POST requests, and specifies that only users with “manager” role, using SSL and successfully using HTTP basic authentication should be granted access.

Figure A5.1
Example of creating login roles in Apache Struts

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd” version=?2.5?>

 <display-name>A Secure Application</display-name>
 <servlet>
 <servlet-name>catalog</servlet-name>
 <servlet-class>com.mycorp.CatalogServlet</servlet-class>
 <init-param>
 <param-name>catalog</param-name>
 <param-value>Spring</param-value>
 </init-param>

 <!-- Define Security Roles -->
 <security-role-ref>
 <role-name>MGR</role-name>
 <role-link>manager</role-link>
 </security-role-ref>
 </servlet>

 <security-role>
 <role-name>manager</role-name>
 </security-role>
 <servlet-mapping>
 <servlet-name>catalog</servlet-name>
 <url-pattern>/catalog/*</url-pattern>
 </servlet-mapping>

 <!-- Define A Security Constraint -->
 <security-constraint>

 <!-- Specify the Resources to be Protected -->
 <web-resource-collection>
 <web-resource-name>SalesInfo</web-resource-name>
 <url-pattern>/salesinfo/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>

 <!-- Specify which Users Can Access Protected Resources -->
 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>

 <!-- Specify Secure Transport using SSL (confidential guarantee) -->
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

 <!-- Specify HTTP Basic Authentication Method -->
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>file</realm-name>
 </login-config>
</web-app>

Security roles can also be declared for enterprise Java beans in the “ejb-jar.xml” file as seen in figure A5.2.

Figure A5.2
Creating security roles using Java beans

<ejb-jar>
 <assembly-descriptor>
 <security-role>
 <description>The single application role</description>
 <role-name>TheApplicationRole</role-name>
 </security-role>
 </assembly-descriptor>
</ejb-jar>

For beans, however, rather than specifying access to resources within servlets, access to bean methods is specified. The example in figure A5.3 illustrates several types of method access constraints for several beans.

Figure A5.3
Controlling access to Java beans

<ejb-jar>
 <assembly-descriptor>
 <method-permission>
 <description>The employee and temp-employee roles may access any
 method of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>The employee role may access the findByPrimaryKey,
 getEmployeeInfo, and the updateEmployeeInfo(String) method of
 the AardvarkPayroll bean </description>
 <role-name>employee</role-name>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <description>The admin role may access any method of the
 EmployeeServiceAdmin bean </description>
 <role-name>admin</role-name>
 <method>
 <ejb-name>EmployeeServiceAdmin</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>Any authenticated user may access any method of the
 EmployeeServiceHelp bean</description>
 <unchecked/>
 <method>
 <ejb-name>EmployeeServiceHelp</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <exclude-list>
 <description>No fireTheCTO methods of the EmployeeFiring bean may be
 used in this deployment</description>
 <method>
 <ejb-name>EmployeeFiring</ejb-name>
 <method-name>fireTheCTO</method-name>
 </method>
 </exclude-list>
 </assembly-descriptor>
</ejb-jar>

See JBoss Security [1]

If XML deployment descriptors are used to secure the application, code review should include the “web.xml” and “ejb-jar.xml” files to ensure that access controls are properly applied to the correct roles, and authentication methods are as expected.

11.3 Java Annotations
JEE annotations for security are defined in the Java Docs [2]. The available annotations are:

• @DeclareRoles
• @DenyAll - no roles may invoke the method.
• @PermitAll - all roles may invoke the method.
• @RolesAllowed - roles permitted to invoke the method.
• @RunAs - dynamically run the method as a particular role.

For example the code in figure A5.4 allows employees and managers to add movies to the persistent store, anyone to list movies, but only managers may delete movies.

Figure A5.4
Controlling access using Java annotations

public class Movies {

 private EntityManager entityManager;

 @RolesAllowed({“Employee”, “Manager”})
 public void addMovie(Movie movie) throws Exception {
 entityManager.persist(movie);
 }

 @RolesAllowed({“Manager”})
 public void deleteMovie(Movie movie) throws Exception {
 entityManager.remove(movie);
 }

 @PermitAll
 public List<Movie> getMovies() throws Exception {
 Query query = entityManager.createQuery(“SELECT m from Movie as m”);
 return query.getResultList();
 }
}

Code review should look for such annotations. If present, ensure they reflect the correct roles and permissions, and are consistent with any declared role permissions in the “ejb-jar.xml” file.

11.4 Framework Specific Configuration
Apache Tomcat
The server.xml[3] file should be reviewed to ensure security related parameters are configured as expected. The tomcat server.xml file defines many security related parameters.

[image:]
Filters are especially powerful, and a code review should validate they are used unless there is a compelling reason not to. See Provided Filters[4] for detailed information. More guidelines on securely deploying Apache Tomcat can be found in the CIS Apache Tomcat [5].

Jetty
Jetty adds several security enhancements:

• Limiting form content
• Obfuscating passwords

The maximum form content size and number of form keys can be configured at server and web application level in the “jetty-web.xml” file.

Figure A5.5
Security configuration in Jetty

<Configure class=”org.eclipse.jetty.webapp.WebAppContext”>
 …
 <Set name=”maxFormContentSize”>200000</Set>
 <Set name=”maxFormKeys”>200</Set>
</Configure>

<configure class=”org.eclipse.jetty.server.Server”>
 ...
 <Call name=”setAttribute”>
 <Arg>org.eclipse.jetty.server.Request.maxFormContentSize</Arg>
 <Arg>100000</Arg>
 </Call>
 <Call name=”setAttribute”>
 <Arg>org.eclipse.jetty.server.Request.maxFormKeys</Arg>
 <Arg>2000</Arg>
 </Call>
</configure>

Jetty also supports the use of obfuscated passwords in jetty XML files where a plain text password is usually needed. Figure A5.6 shows example code setting the password for a JDBC Datasource with obfuscation (the obfuscated password is generated by Jetty org.eclipse.jetty.util.security.Password utility).

Figure A5.6
Example Jetty code setting JDBC passwords

<New id=”DSTest” class=”org.eclipse.jetty.plus.jndi.Resource”>
<Arg></Arg>
<Arg>jdbc/DSTest</Arg>
<Arg>
	<New class=”com.jolbox.bonecp.BoneCPDataSource”>
		<Set name=”driverClass”>com.mysql.jdbc.Driver</Set>
		<Set name=”jdbcUrl”>jdbc:mysql://localhost:3306/foo</Set>
		<Set name=”username”>dbuser</Set>
		<Set name=”password”>
		<Call class=”org.eclipse.jetty.util.security.Password” name=”deobfuscate”>
			<Arg>OBF:1ri71v1r1v2n1ri71shq1ri71shs1ri71v1r1v2n1ri7</Arg>
		</Call>
		</Set>
		<Set name=”minConnectionsPerPartition”>5</Set>
		<Set name=”maxConnectionsPerPartition”>50</Set>
		<Set name=”acquireIncrement”>5</Set>
		<Set name=”idleConnectionTestPeriod”>30</Set>
	</New>
</Arg>

</New>

JBoss AS
JBoss Application Server, like Jetty, allows password obfuscation (called password masking in JBoss) in its XML configuration files. After using JBoss password utility to create password mask, replace any occurrence of a masked password in XML configuration files with the following annotation.

Figure A5.7
Setting passwords in JBoss

<annotation>@org.jboss.security.integration.password.Password
 (securityDomain=MASK_NAME,methodName=setPROPERTY_NAME)
</annotation>

See Masking Passwords in XML Configuration in the JBoss Security Guide[1]

Oracle WebLogic
WebLogic server supports additional deployment descriptors in the “weblogic.xml” file as shown in table16.

[image:]
More information on WebLogic additional deployment descriptors may be found at weblogic.xml Deployment Descriptors. [7]

For general guidelines on securing web applications running within WebLogic, see Programming WebLogic Security [8] and the NSA’s BEA WebLogic Platform Security Guide. [8]

11.5 Programmatic Configuration: JEE
The JEE API for programmatic security consists of methods of the EJBContext interface and the HttpServletRequest interface. These methods allow components to make business-logic decisions based on the security role of the caller or remote user (there are also methods to authenticate users, but that is outside the scope of secure deployment configuration).

The JEE APIs that interact with JEE security configuration include:
• getRemoteUser, which determines the user name with which the client authenticated

• isUserInRole, which determines whether a remote user is in a specific security role.

• getUserPrincipal, which determines the principal name of the current user and returns a java.security. Principal object

Use of these programmatic APIs should be reviewed to ensure consistency with the configuration. Specifically, the security-role-ref element should be declared in the deployment descriptor with a role-name subelement containing the role name to be passed to the isUserInRole method.

The code in figure A5.8 demonstrates the use of programmatic security for the purposes of programmatic login and establishing identities and roles. This servlet does the following:

• displays information about the current user.

• prompts the user to log in.

• prints out the information again to demonstrate the effect of the login method.

• Iogs the user out.

• prints out the information again to demonstrate the effect of the logout method.

Figure A5.8
Example programmatic security for Java

package enterprise.programmatic_login;

import java.io.*;
import java.net.*;
import javax.annotation.security.DeclareRoles;
import javax.servlet.*;
import javax.servlet.http.*;

@DeclareRoles(“javaee6user”)
public class LoginServlet extends HttpServlet {

 /**
 * Processes requests for both HTTP GET and POST methods.
 * @param request servlet request
 * @param response servlet response
 */
 protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType(“text/html;charset=UTF-8”);
 PrintWriter out = response.getWriter();
 try {
 String userName = request.getParameter(“txtUserName”);
 String password = request.getParameter(“txtPassword”);

 out.println(“Before Login” + “

”);
 out.println(“IsUserInRole?..”
 + request.isUserInRole(“javaee6user”)+”
”);
 out.println(“getRemoteUser?..” + request.getRemoteUser()+”
”);
 out.println(“getUserPrincipal?..”
 + request.getUserPrincipal()+”
”);
 out.println(“getAuthType?..” + request.getAuthType()+”

”);

 try {
 request.login(userName, password);
 } catch(ServletException ex) {
 out.println(“Login Failed with a ServletException..”
 + ex.getMessage());
 return;
 }
 out.println(“After Login...”+”

”);
 out.println(“IsUserInRole?..”
 + request.isUserInRole(“javaee6user”)+”
”);
 out.println(“getRemoteUser?..” + request.getRemoteUser()+”
”);
 out.println(“getUserPrincipal?..”
 + request.getUserPrincipal()+”
”);
 out.println(“getAuthType?..” + request.getAuthType()+”

”);

 request.logout();
 out.println(“After Logout...”+”

”);
 out.println(“IsUserInRole?..”
 + request.isUserInRole(“javaee6user”)+”
”);
 out.println(“getRemoteUser?..” + request.getRemoteUser()+”
”);
 out.println(“getUserPrincipal?..”
 + request.getUserPrincipal()+”
”);
 out.println(“getAuthType?..” + request.getAuthType()+”
”);
 } finally {
 out.close();
 }
 }
 ...
}

More detailed information can be found in the Java EE Tutorial: Using Programmatic Security with Web Applications [10]

11.6 Microsoft IIS
ASP.NET / IIS applications use an optional XML-based configuration file, named web.config, to maintain application configuration settings. This covers issues such as authentication, authorization, error pages, HTTP settings, debug settings, web service settings, etc. Without knowledge of these files, a transactional analysis would be very difficult and not accurate.

In IIS 7 there is a new configuration system, which affects the hierarchy level and how one file can inherit from another. The following figure resumes how this work and the location of each file (Aguilar, 2006)

[image:]
It is possible to provide a file web.config at the root of the virtual directory for a web application. If the file is absent, the default configuration settings in machine.config will be used. If the file is present, any settings in web.config will override the default settings.

Figure A5.9
Example web.config file

<authentication mode=”Forms”>
 <forms name=”name”
 loginUrl=”url”
 protection=”Encryption”
 timeout=”30” path=”/”
 requireSSL=”true|”
 slidingExpiration=”false”>
 <credentials passwordFormat=”Clear”>
 <user name=”username” password=”password”/>
 </credentials>
 </forms>
 <passport redirectUrl=”internal”/>
</authentication>

Many of the important security settings are not set in the code, but in the framework configuration files. Knowledge of the framework is of paramount importance when reviewing framework-based applications. Some examples of framework specific parameters in the web.config file are shown in table 17.

[image:]
11.7 Framework Specific Configuration: Microsoft IIS
Security features can be configured in IIS using the Web.config (application level) or ApplicationHost.config (server level) file, in the <system.webServer><security> section. The types of features that may be configured include:
• Permitted authentication methods
• Authorization rules
• Request filters and limits
• Use of SSL
• Source IP address filtering
• Error handling

The Web.config and ApplicationHost.config files should be included in code review. The <system.webServer><security> sections should be reviewed to ensure all security configuration is as expected.

For guidelines on securing the overall configuration of Microsoft IIS [11], see the IIS supports basic, client certificate, digest, IIS client certificate, and Windows authentication methods. They are configured in the <system.webServer><security><authentication> section.

The example in figure A5.10 disables anonymous authentication for a site named MySite, then enables both basic authentication and windows authentication for the site.

Figure A5.10
IIS authentication configuration

<location path=”MySite”>
 <system.webServer>
 <security>
 <authentication>
 <anonymousAuthentication enabled=”false” />
 <basicAuthentication enabled=”true” defaultLogonDomain=”MySite” />
 <windowsAuthentication enabled=”true” />
 </authentication>
 </security>
 </system.webServer>
</location>

IIS authorization configuration allows specification of users access to the site or server and is configured in the <system.webServer><security><authorization> section.

The configuration in figure A5.11 removes the default IIS authorization settings, which allows all users access to Web site or application content, and then configures an authorization rule that allows only users with administrator privileges to access the content.

Figure A5.11
Authorization configuration in IIS

<configuration>
 <system.webServer>
 <security>
 <authorization>
 <remove users=”*” roles=”” verbs=”” />
 <add accessType=”Allow” users=”” roles=”Administrators” />
 </authorization>
 </security>
 </system.webServer>
</configuration>

IIS supports filtering, including enforcing limits, on incoming HTTP requests. Table 18 shows many of the IIS security parameters that can be set.

[image:]
These parameters are configured in the <system.webServer><security><requestFiltering> section. The example in figure A5.12:

• Denies access to two URL sequences. The first sequence prevents directory transversal and the second sequence prevents access to alternate data streams.

• Sets the maximum length for a URL to 2KB and the maximum length for a query string to 1KB.

• Denies access to unlisted file name extensions and unlisted HTTP verbs.

Figure A5.12
Examples IIS security configuration

<configuration>
 <system.webServer>
 <security>
 <requestFiltering>
 <denyUrlSequences>
 <add sequence=”..” />
 <add sequence=”:” />
 </denyUrlSequences>
 <fileExtensions allowUnlisted=”false” />
 <requestLimits maxUrl=”2048” maxQueryString=”1024” />
 <verbs allowUnlisted=”false” />
 </requestFiltering>
 </security>
 </system.webServer>
</configuration>

IIS allows specifying whether SSL is supported, is required, whether client authentication is supported or required, and cipher strength. It is configured in the <system.webServer><security><access> section. The example in figure A5.13 specifies SSL as required for all connections to the site MySite.

Figure A5.13
IIS SSL configuration

<location path=”MySite”>
 <system.webServer>
 <security>
 <access sslFlags=”ssl”>
 </security>
 </system.webServer>
</location>

IIS allows restrictions on source IP addresses or DNS names. It is configured in the <system.webServer><security><ipSecurity> section as shown in figure X where the example configuration denies access to the IP address 192.168.100.1 and to the entire 169.254.0.0 network:

Figure A5.14
IIS network security configuration

<location path=”Default Web Site”>
 <system.webServer>
 <security>
 <ipSecurity>
 <add ipAddress=”192.168.100.1” />
 <add ipAddress=”169.254.0.0” subnetMask=”255.255.0.0” />
 </ipSecurity>
 </security>
 </system.webServer>
</location

Detailed information on IIS security configuration can be found at IIS Security Configuration. Specific security feature configuration information can be found at Authentication, Authorization, SSL, Source IP, Request Filtering, and Custom Request Filtering[12].

11.7 Programmatic Configuration: Microsoft IIS
Microsoft IIS security configuration can also be programmatically set from various languages:

• appcmd.exe set config
• C#
• Visual Basic
• JavaScript

For example, disabling anonymous authentication for a site named MySite, then enabling both basic authentication and windows authentication for the site (as done via configuration in the section above) can be accomplished from the command line using the commands in figure A5.15.

Figure A5.15
Controlling Windows authentication from the command line

appcmd.exe set config “MySite” -section:system.webServer/security/authentication
 /anonymousAuthentication /enabled:”False” /commit:apphost
appcmd.exe set config “MySite” -section:system.webServer/security/authentication
 /basicAuthentication /enabled:”True” /commit:apphost
appcmd.exe set config “MySite” -section:system.webServer/security/authentication
 /windowsAuthentication /enabled:”True” /commit:apphost

Alternatively the same authentication setup can be coded programmatically as in figure A5.16.

Figure A5.16
Controlling Windows authentication through code

using System;
using System.Text;
using Microsoft.Web.Administration;

internal static class Sample {

 private static void Main() {

 using(ServerManager serverManager = new ServerManager()) {
 Configuration config = serverManager.GetApplicationHostConfiguration();

 ConfigurationSection anonymousAuthenticationSection =
 config.GetSection(“system.webServer/security/authentication
 /anonymousAuthentication”, “MySite”);
 anonymousAuthenticationSection[“enabled”] = false;

 ConfigurationSection basicAuthenticationSection =
 config.GetSection(“system.webServer/security/authentication
 /basicAuthentication”, “MySite”);
 basicAuthenticationSection[“enabled”] = true;

 ConfigurationSection windowsAuthenticationSection =
 config.GetSection(“system.webServer/security/authentication
 /windowsAuthentication”, “MySite”);
 windowsAuthenticationSection[“enabled”] = true;

 serverManager.CommitChanges();
 }
 }
}

When reviewing source code, special attention should be paid to configuration updates in security sections.

11.8 Further IIS Configurations
Filtering Requests and URL Rewriting

Request Filtering was introduced in IIS7 and it has replaced the functionality UrlScan add-on for IIS 6.0. This built-in security feature allows to filter undesired URL request but it is also possible to configure different kinds of filtering. To begin with, it is important to understand how the IIS pipeline works when a request is done. The following diagram shows the order in these modules

[image:]

Request filtering can be setup through the IIS interface or on the web.config file. Example:

<configuration>
 <system.webServer>
 <security>
 <requestFiltering>
 <denyUrlSequences>
 <add sequence=”..” />
 <add sequence=”:” />
 </denyUrlSequences>
 <fileExtensions allowUnlisted=”false” />
 <requestLimits maxUrl=”2048” maxQueryString=”1024” />
 <verbs allowUnlisted=”false” />
 </requestFiltering>
 </security>
 </system.webServer>
</configuration>

(Yakushev, 2008)

This can also be done through the application code, for example:

using System;
 using System.Text;
 using Microsoft.Web.Administration;
 internal static class Sample
 {
 private static void Main()
 {
 using (ServerManager serverManager = new ServerManager())
 {
 Configuration config = serverManager.GetWebConfiguration(“Default Web Site”);
 ConfigurationSection requestFilteringSection = config.GetSection(“system.webServer/security
 /requestFiltering”);
 ConfigurationElementCollection denyUrlSequencesCollection =
 requestFilteringSection.GetCollection(“denyUrlSequences”);
 ConfigurationElement addElement = denyUrlSequencesCollection.CreateElement(“add”);
 addElement[“sequence”] = @”..”;
 denyUrlSequencesCollection.Add(addElement);
 ConfigurationElement addElement1 = denyUrlSequencesCollection.CreateElement(“add”);
 addElement1[“sequence”] = @”:”;
 denyUrlSequencesCollection.Add(addElement1);
 ConfigurationElement addElement2 = denyUrlSequencesCollection.CreateElement(“add”);
 addElement2[“sequence”] = @”\”;
 denyUrlSequencesCollection.Add(addElement2);
 serverManager.CommitChanges();
 }
 }
 }

(Yakushev, 2008)

Filtering Double - Encoded Requests
This attack technique consists of encoding user request parameters twice in hexadecimal format in order to bypass security controls or cause unexpected behavior from the application. It’s possible because the webserver accepts and processes client requests in many encoded forms.

By using double encoding it’s possible to bypass security filters that only decode user input once. The second decoding process is executed by the backend platform or modules that properly handle encoded data, but don’t have the corresponding security checks in place.

Attackers can inject double encoding in pathnames or query strings to bypass the authentication schema and security filters in use by the web application.

There are some common character that are used in Web applications attacks. For example, Path Traversal attacks use “../” (dot-dot-slash) , while XSS attacks use “<” and “>” characters. These characters give a hexadecimal representation that differs from normal data.

For example, “../” (dot-dot-slash) characters represent %2E%2E%2f in hexadecimal representation. When the % symbol is encoded again, its representation in hexadecimal code is %25. The result from the double encoding process ”../”(dot-dot-slash) would be %252E%252E%252F:

• The hexadecimal encoding of “../” represents “%2E%2E%2f”

• Then encoding the “%” represents “%25”

• Double encoding of “../” represents “%252E%252E%252F”

If you do not want IIS to allow doubled-encoded requests to be served, use the following (IIS Team,2007):

<configuration>
 <system.webServer>
 <security>
 <requestFiltering
 allowDoubleEscaping=”false”>
 </requestFiltering>
 </security>
 </system.webServer>
 </configuration>

Filter High Bit Characters
This allows or rejects all requests to IIS that contain non-ASCII characters . When this occurs error code 404.12. is displayed to the user . The UrlScan (IIS6 add-on) equivalent is AllowHighBitCharacters.

<configuration>
 <system.webServer>
 <security>
 <requestFiltering
 allowHighBitCharacters=”true”>
 </requestFiltering>
 </security>
 </system.webServer>
 </configuration>

Filter Based on File Extensions
Using this filter you can allow IIS to a request based on file extensions, the error code logged is 404.7. The AllowExtensions and DenyExtensions options are the UrlScan equivalents.

 <configuration>
 <system.webServer>
 <security>
 <requestFiltering>
 <fileExtensions allowUnlisted=”true” >
 <add fileExtension=”.asp” allowed=”false”/>
 </fileExtensions>
 </requestFiltering>
 </security>
 </system.webServer>
 </configuration>

Filter Based on Request Limits
When IIS rejects a request based on request limits, the error code logged is:
• 404.13 if the content is too long.
• 404.14 if the URL is too large.
• 404.15 if the query string is too long.

This can be used to limit a long query string or too much content sent to an application which you cannot change the source code to fix the issue.

 <configuration>
 <system.webServer>
 <security>
 <requestFiltering>
 <requestLimits
 maxAllowedContentLength=”30000000”
 maxUrl=”260”
 maxQueryString=”25”
 />
 </requestFiltering>
 </security>
 </system.webServer>
 </configuration>

Filter by Verbs
When IIS reject a request based on this feature, the error code logged is 404.6. This corresponds to the UseAllowVerbs, AllowVerbs, and DenyVerbs options in UrlScan.
In case you want the application to use only certain type of verb, it is necessary to firt set the allowUnlisted to ‘false’ and then set the verbs that you would like to allow(see example)

<configuration>
 <system.webServer>
 <security>
 <requestFiltering>
 <verbs allowUnlisted=”false”>
 <add verb=”GET” allowed=”true” />
 </verbs>
 </requestFiltering>
 </security>
 </system.webServer>
 </configuration>

Filter Based on URL Sequences
This feature defines a list of sequences that IIS can reject when it is part of a request. When IIS reject a request for this feature, the error code logged is 404.5.This corresponds to the DenyUrlSequences feature in UrlScan. This is a very powerful feature. This avoids a given character sequence from ever being attended by IIS:

 <configuration>
 <system.webServer>
 <security>
 <requestFiltering>
 <denyUrlSequences>
 <add sequence=”..”/>
 </denyUrlSequences>
 </requestFiltering>
 </security>
 </system.webServer>
 </configuration>

Filter Out Hidden Segments
In case you want IIS to serve content in binary directory but not the binary, you can apply this configuration.

<configuration>
 <system.webServer>
 <security>
 <requestFiltering>
 <hiddenSegments>
 <add segment=”BIN”/>
 </hiddenSegments>
 </requestFiltering>
 </security>
 </system.webServer>
 </configuration>

Password protection and sensitive information
The web.config files might include sensitive information in the connection strings such as database passwords, mail server user names among others.

Sections that are required to be encrypted are:
• <appSettings>. This section contains custom application settings.
• <connectionStrings>. This section contains connection strings.
• <identity>. This section can contain impersonation credentials.
• <sessionState>. This section contains the connection string for the out-of-process session state provider.

Passwords and user names contained in a <connectionstring> section should be encrypted. ASP.NET allows you to encrypt this information by using the functionality aspnet_regiis .This utility is found in the installed .NET framework under the folder
%windows%\Microsoft.NET\Framework\v2.0.50727

You can specify the section you need to encrypt by using the command:
aspnet_regiis -pef sectiontobeencryoted

Encrypting sections in Web.Config file
Even though encrypting sections is possible, not all sections can be encrypted, specifically sections that are read before user code is run. The following sections cannot be encrypted:

* <processModel>
* <runtime>
* <mscorlib>
* <startup>
* <system.runtime.remoting>
* <configProtectedData>
* <satelliteassemblies>
* <cryptographySettings>
* <cryptoNameMapping>
* <cryptoClasses>

Machine-Level RSA key container or User-Level Key Containers
Encrypting a single file using machine-level RSA key has its disadvantages when this file is moved to other servers. In this case, user-level RSA key container is strongly advised. The RSAProtectedConfigurationProvider supports machine-level and user-level key containers for key storage.

RSA machine key containers are stored in the following folder:
\Documents and Settings\All Users\Application Data\Microsoft\Crypto\RSA\MachineKeys

User Key Container
When the application that needs to be protected is in a shared hosting environment and protection of sensitive data cannot be accessible to other applications, the user key container is strongly recommended.
In this case each application should have a separate identity.
RSA user-level key containers are stored in the following folder:

\Documents and Settings\{UserName}\Application Data\Microsoft\Crypto\RSA

IIS configurations
Depending on the version of IIS that must be configured, it is important to revise some of its settings which can comprise security in the server.

Trust level
The trust level is a set of Code Access Security permissions granted to an application within a hosting environment. These are defined using policy files. Depending on the trust level that must be configured, it is possible to grant FULL, HIGH, MEDIUM, LOW or MINIMAL level. The ASP.NET host does not apply any additional policy to applications that are running at the full-trust level.

Example:
<system.web>
 <securityPolicy>
 <trustLevel name=”Full” policyFile=”internal”/>
 </securityPolicy>
 </system.web>

Lock Trust Levels
In the .NET framework web.config file is possible to lock applications from changing their trust level
This file is found at:

C:\Windows\Microsoft.NET\Framework\{version}\CONFIG

The following example shows how to lock 2 different application configuration trust levels (MSDN, 2013)

<configuration>
 <location path=”application1” allowOverride=”false”>
 <system.web>
 <trust level=”High” />
 </system.web>
 </location>
 <location path=”application2” allowOverride=”false”>
 <system.web>
 <trust level=”Medium” />
 </system.web>
 </location>
 </configuration>

References
• Yakushev Ruslan , 2008 “IIS 7.0 Request Filtering and URL Rewriting “ available at http://www.iis.net/learn/extensions/url-rewrite-module/iis-request-filtering-and-url-rewriting (Last accessed on 14 July, 2013)

• OWASP, 2009 “Double Encoding” available at https://www.owasp.org/index.php/Double_Encoding (Last
accessed on 14 July, 2013)

• IIS Team, 2007 “Use Request Filtering “ available at http://www.iis.net/learn/manage/configuring-security/
use-request-filtering (Last accessed on 14 July, 2013)

• Aguilar Carlos ,2006 “The new Configuration System in IIS 7” available at http://blogs.msdn.com/b/carlosag/
archive/2006/04/25/iis7configurationsystem.aspx (Last accessed on 14 July, 2013)

• MSDN, 2013 . How to: Lock ASP.NET Configuration Settings available at http://msdn.microsoft.com/en-us/
library/ms178693.aspx (Last accessed on 14 July, 2013)

11.9 Strongly Named Assemblies
During the build proccess either QA or Developers are going to publish the code into executable formats. Usually this consists of an exe or and one or several DLL’s. During the build/publish process a decision needs to be made to sign or not sign the code. Signing your code is called creating “strong names” by Microsoft. If you create a project using Visual Studio and use Microsofts “Run code analysis” most likely your will encounter a Microsoft design error if the code is not strong named; “Warning 1 CA2210 : Microsoft.Design : Sign ‘xxx.exe’ with a strong name key.”

Code review needs to be aware if strong naming is being used, benefits and what threat vectors strong naming helps prevent or understand the reasons for not using strong naming.

A strong name is a method to sign an assembly’s identity using its text name, version number, culture information, a public key and a digital signature. (Solis, 2012)

* Strong naming guarantees a unique name for that assembly.

* Strong names protect the version lineage of an assembly. A strong name can ensure that no one can produce a subsequent version of your assembly. Users can be sure that a version of the assembly they are loading comes from the same publisher that created the version the application was built with.

The above two points are very important if you are going to use Global Assembly Cache (GAC).

* Strong names provide a strong integrity check and prevent spoofing. Passing the .NET Framework security checks guarantees that the contents of the assembly have not been changed since it was built. Note, however, that strong names in and of themselves do not imply a level of trust like that provided, for example, by a digital signature and supporting certificate. If you use the GAC assemblies remember the assemblies are not verified each time they load since the GAC by design is a locked-down, admin-only store.

What strong names can’t prevent is a malicious user from stripping the strong name signature entirely, modifying the assembly, or re-signing it with the malicious user’s key.

The code reviewer needs to understand how the strong name private key will be kept secure and managed. This is crucible if you decide strong name signatures are a good fit for your organization.

If principal of least privilege is used so code is not or less susceptible to be access by the hacker and the GAC is not being used strong names provides less benefits or no benefits at all.

How to use Strong Naming
Signing tools
In order to create a strong name assembly there are a set of tools and steps that you need to follow

Using Visual Studio
In order to use Visual Studio to create a Strongly Named Assembly, it is necessary to have a copy of the public/private key pair file. It is also possible to create this pair key in Visual Studio

In Visual Studio 2005, the C#, Visual Basic, and Visual J# integrated development environments (IDEs) allow you to generate key pairs and sign assemblies without the need to create a key pair using Sn.exe (Strong Name Tool). These IDEs have a Signing tab in the Project Designer. . The use of the AssemblyKeyFileAttribute to identify key file pairs has been made obsolete in Visual Studio 2005.

The following figure illustrates the process done by the compiler

[image:]
Using Strong Name tool
The Sign Tool is a command-line tool that digitally signs files, verifies signatures in files, or time stamps files.
The Sign Tool is not supported on Microsoft Windows NT, Windows Me, Windows 98, or Windows 95.
In case you aren’t using the “Visual Studio Command Prompt” (Start >> Microsoft Visual Studio 2010 >> Visual Studio Tools >> Visual Studio Command Prompt (2010)) you can locate sn.exe at %ProgramFiles%\Microsoft SDKs\Windows\v7.0A\bin\sn.exe

The following command creates a new, random key pair and stores it in keyPair.snk.
sn -k keyPair.snk

The following command stores the key in keyPair.snk in the container MyContainer in the strong name CSP.
sn -i keyPair.snk MyContainer

The following command extracts the public key from keyPair.snk and stores it in publicKey.snk.
sn -p keyPair.snk publicKey.snk

The following command displays the public key and the token for the public key contained in publicKey.snk.
sn -tp publicKey.snk

The following command verifies the assembly MyAsm.dll.
sn -v MyAsm.dll

The following command deletes MyContainer from the default CSP.
sn -d MyContainer

Using the Assembly Linker(AI.exe)
This tool is automatically installed with Visual Studio and with the Windows SDK. To run the tool, we recommend that you use the Visual Studio Command Prompt or the Windows SDK Command Prompt (CMD Shell). These utilities enable you to run the tool easily, without navigating to the installation folder. For more information, see Visual Studio and Windows SDK Command Prompts.

If you have Visual Studio installed on your computer:
On the taskbar, click Start, click All Programs, click Visual Studio, click Visual Studio Tools, and then click Visual Studio Command Prompt.
-or-
If you have the Windows SDK installed on your computer:
On the taskbar, click Start, click All Programs, click the folder for the Windows SDK, and then click Command Prompt (or CMD Shell).

At the command prompt, type the following:
al sources options

Remarks
All Visual Studio compilers produce assemblies. However if you have one or more modules (metadata without a manifest) you can use Al.exe to create an assembly with the manifest in a separate file.
To install assemblies in the cache, remove assemblies from the cache, or list the contents of the cache, use the Global Assembly Cache Tool (Gacutil.exe).

The following command creates an executable file t2a.exe with an assembly from the t2.netmodule module. The entry point is the Main method in MyClass.
 al t2.netmodule /target:exe /out:t2a.exe /main:MyClass.Main

Use Assembly attributes
You can insert the strong name information in the code directly. For this, depending on where the key file is located you can use AssemblyKeyFileAttribute or AssemblyKeyNameAttribute

Use Compiler options :use /keyfile or /delaysign

Safeguarding the key pair from developers is necessary to maintain and guarantee the integrity of the assemblies. The public key should be accessible, but access to the private key is restricted to only a few individuals. When developing assemblies with strong names, each assembly that references the strong-named target assembly contains the token of the public key used to give the target assembly a strong name. This requires that the public key be available during the development process.

You can use delayed or partial signing at build time to reserve space in the portable executable (PE) file for the strong name signature, but defer the actual signing until some later stage (typically just before shipping the assembly).
You can use /keyfile or /delaysign in C# and VB.NET (MSDN)

References
• http://msdn.microsoft.com/en-us/library/wd40t7ad(v=vs.80).aspx

• http://msdn.microsoft.com/en-us/library/c405shex(v=vs.110).aspx

• http://msdn.microsoft.com/en-us/library/k5b5tt23(v=vs.80).aspx

• http://msdn.microsoft.com/en-us/library/t07a3dye(v=vs.80).aspx

• http://msdn.microsoft.com/en-us/library/t07a3dye(v=vs.110).aspx

11.10 Round Tripping
Round Tripping is a reverse engineering technique that allows and attacker to decompile an assembly from a certain application. Ildasm.exe can be used for this purpose, and ILAsm is used to recompiled the assembly.

The MSIL Disassembler(Ildasm.exe) is a companion tool to the MSIL Assembler (Ilasm.exe). Ildasm.exe takes a portable executable (PE) file that contains Microsoft intermediate language (MSIL) code and creates a text file suitable as input to Ilasm.exe. This tool is automatically installed with Visual Studio and with the Windows SDK.

The importance of Obfuscation
As mentioned before, Round Tripping is a technique used to reverse engineer assemblies. Therefore, if you want to avoid your assemblies being reversed engineered or even worse, that the code is victim of malicious manipulation using the Ildasm and Ilasm tools, then it is advisable to apply it. There are different kinds of products that can be used for this purpose such as DeepSea, Crypto or Dotfuscator.

Using Obfuscation
The most effective technique used to avoid reverse engineering and tampering of assemblies is the use of Obfuscation. Visual Studio contains a version of Dotfuscator. This program is accessible by choosing on the VS menu, Tools → Dotfuscator(Community Edition menu command). Note: This tools is not available in Express versions

To obfuscate your assemblies:
* Build the project in VS Studio
* Tools--> Dotfuscator Community Edition
* A screen prompts asking for which project type, choose ‘Creat New Project’ and click OK
* On the Input tab of the Dotfuscator interface, click ‘Browse and Add assembly to list’

Browse for the compiled application

ASPX .NETWeb Configs
Introduction
Securing resources in ASP.NET applications is a combination of configuration settings in the Web.config file but also, it’s important to remember that the IIS configurations play also a big part on this. It’s an integrated approach which provides a total framework of security.
The following highlights the most important aspects of ASP.NET configuration settings within the web.config file. For a total overview see chapter ASP.NET security (https://www.owasp.org/index.php/CRV2_FrameworkSpecIssuesASPNet)

Secure Configuration Values
Sensitive Information saved in config files should be encrypted. Encryption keys stored in the machineKey element for example or connectionstrings with username and passwords to login to database.

Lock ASP.NET Configuration settings
You can lock configuration settings in ASP.NET configuration files (Web.config files) by adding an allowOverride attribute to a location element

Configure directories using Location Settings
Through the <location> element you can establish settings for specific folders and files. The Path attribute is used to specify the file or subdirectory. This is done in the Web.config file example:

<location path=”.” >
 <section1 .../>
 <section2 ... />
 </location>
 <location path=”Default Web Site” >
 <section1 … />
 <section2 … />
 </location
 <location path=”Default Web Site/MyApplication/Admin/xyz.html” >
 <section1 ... />
 <section2 ... />
 </location>

Configure exceptions for Error Code handling
Showing and handling the correct error code when a user sends a bad request or invalid parameters is an important configuration subject. Logging these errors are also an excellent help when analyzing potential attacks to the application.

It is possible to configure these errors in the code or in the Web.Config file

The HttpException method describes an exception that occurred during the processing of HTTP requests.For example:

if (string.IsNullOrEmpty(Request[“id”]))
 throw new HttpException(400, “Bad request”);

or in the Web.config file:

<configuration>
 <system.web>
 <customErrors mode=”On” defaultRedirect=”ErrorPage.html”
 redirectMode=”ResponseRewrite”>
 <error statusCode=”400” redirect=”BadRequest.html” />
 <error statusCode=”404” redirect=”FileNotFound.html” />
 </customErrors>
 </system.web>
 </configuration>

Input validation
Anything coming from external sources can be consider as input in a web application. Not only the user inserting data through a web form, but also data retrieved from a web service or database, also headers sent from the browsers fall under this concept. A way of defining when input is safe can be done through outlining a trust boundary.

Defining what is known as trust boundary can help us to visualize all possible untrusted inputs. One of those are user input.ASP.NET has different types of validations depending on the level of control to be applied. By default, web pages code is validated against malicious users. The following is a list types of validations used (MSDN, 2013):

[image:]
References
MSDN, 2013 “Securing ASP.NET Configurations” available at http://msdn.microsoft.com/en-us/library/ms178699%28v=vs.100%29.aspx (Last Viewed, 25th July 2013)

4.16 .NET Authentication Controls
In the .NET, there are Authentication tags in the configuration file.
The <authentication> element configures the authentication mode that your applications use.

 <authentication>

The appropriate authentication mode depends on how your application or Web service has been designed. The default Machine.config setting applies a secure Windows authentication default as shown below.

authentication Attributes:mode=”[Windows|Forms|Passport|None]”

<authentication mode=”Windows” />

Forms Authentication Guidelines
To use Forms authentication, set mode=“Forms” on the <authentication> element. Next,
configure Forms authentication using the child <forms> element. The following fragment shows a secure <forms> authentication element configuration:

<authentication mode=”Forms”>
 <forms loginUrl=”Restricted\login.aspx” Login page in an SSL protected folder
 protection=”All” Privacy and integrity
 requireSSL=”true” Prevents cookie being sent over http
 timeout=”10” Limited session lifetime
 name=”AppNameCookie” Unique per-application name
 path=”/FormsAuth” and path
 slidingExpiration=”true” > Sliding session lifetime
 </forms>
 </authentication>

Use the following recommendations to improve Forms authentication security:
*Partition your Web site.
*Set protection=“All”.
*Use small cookie time-out values.
*Consider using a fixed expiration period.
*Use SSL with Forms authentication.
*If you do not use SSL, set slidingExpiration = “false”.
*Do not use the <credentials> element on production servers.
*Configure the <machineKey> element.
*Use unique cookie names and paths.

Classic ASP
For classic ASP pages, authentication is usually performed manually by including the user information in session variablesafter validation against a DB, so you can look for something like:

Session (“UserId”) = UserName
Session (“Roles”) = UserRoles

Code Review .NET Manage Code
.NET Managed code is less vulnerable to common vulnerabilities found in unmanaged code such as Buffer Overflows and memory corruption however there could be issues in the code that can affect performance and security. The following is a summary of the recommended practices to look for during the code review. Also, it is worth mentioning some tools that can make the work easier on this part and they can help you understand and pin point flaws in your code

Code Access Security
This supports the execution of semi-trusted code, preventing several forms of security threats. The following is a summary of possible vulnerabilities due to improper use of Code Access security:

	Vulnerability
	Implications

	Improper use of link demands or asserts
	The code is susceptible to luring attacks

	Code allows untrusted callers
	Malicious code can use the code to perform sensitive operations and access resources

Declarative security
Use declarative security instead of imperative whenever possible. Example of declarative syntax(MSDN[2], 2013):

[MyPermission(SecurityAction.Demand, Unrestricted = true)]
 public class MyClass
 {
 public MyClass()
 {
 //The constructor is protected by the security call.
 }
 public void MyMethod()
 {
 //This method is protected by the security call.
 }
 public void YourMethod()
 {
 //This method is protected by the security call.
 }
}

Unmanaged code
Even though C# is a strong type language, it is possible to use unmanaged code calls by using the ‘unsafe’ code. Check that any class that uses an unmanaged resource, such as a database connection across method calls, implements the IDisposable interface. If the semantics of the object are such that a Close method is more logical than a Dispose method, provide a Close method in addition to Dispose.

Exception handling
Manage code should use exception handling for security purposes among other reasons. Make sure that you follow these recommendations:
· Avoid exception handling in loops, use try/catch block if it is necessary.
· Identify code that swallows exceptions
· Use exceptions handling for unexpected conditions and not just to control the flow in the application

Tools
FxCop
FxCop is an analysis tool that analyses binary assemblies, not source code. The tool has a predefined set of rules and it is possible to configure and extend them.
Some of the available rules regarding security are (CodePlex, 2010):

[image:] [image:]

12 SENSITIVE DATA EXPOSURE
Many web applications do not properly protect sensitive data, such as credit cards, tax IDs, and authentication credentials. Attackers may steal or modify such weakly protected data to conduct credit card fraud, identity theft, or other crimes. Sensitive data deserves extra protection such as encryption at rest or in transit, as well as special precautions when exchanged with the browser.

12.1 Cryptographic Controls
Software developers, architects and designers are at the forefront of deciding which category a particular application resides in. Cryptography provides for security of data at rest (via encryption), enforcement of data integrity (via hashing/digesting), and non-repudiation of data (via signing). To ensure this cryptographic code adequately protections the data, all source code must use a standard (secure) algorithms with strong key sizes.

Common flaws when implementing cryptographic code includes the use of non-standard cryptographic algorithms, custom implementation of cryptography (standard & non-standard) algorithms, use of standard algorithms which are cryptographically insecure (e.g. DES), and the implementation of insecure keys can weaken the overall security posture of any application. Implementation of the aforementioned flaws enable attackers to use cryptanalytic tools and techniques to decrypt sensitive data.

12.2 Description
Many companies handle sensitive information for their customers, for instance medical details or credit card numbers, and industry regulations dictate this sensitive information must be encrypted to protect the customers’ information. In the medical industry the HIPAA regulations advise businesses what protections must be applied to medical data, in the financial industry many regulations cover PII (personally identifiable information) controls.

Regardless of the financial impact of regulatory penalties, there are many business reasons to protect (though encryption or hashing) the information processed by an application, including privacy and fraud detection/protection.
All sensitive data that the application handles should be identified and encryption should be enforced. Similarly a decision should be made as to whether sensitive data must be encrypted in transit (i.e. being sent from one computer to another) and/or at rest (i.e. stored in a DB, file, keychain, etc.):

1) Protection in transit; this typically means using the SSL/TLS layer to encrypt data travelling on the HTTP protocol, although it can also include FTPS, or even SSL on TCP. Frameworks such as IIS and Apache Struts come with SSL/TLS functionality included, and thus the developer will not be coding the actual TLS encryption, but instead will be configuring a framework to provide TLS security.

However the decisions made here, even at an architectural level, need to be well informed, and a discussion on TLS design decisions is covered in section 1.3.

2) Protection at rest; this can include encryption of credit cards in the database, hashing of passwords, producing message authentication codes (MACs) to ensure a message has not been modified between computers. Where TLS code will come with a framework, code to encrypt or hash data to be stored will typically need to use APIs provided by cryptographic libraries.

The developer will not be writing code to implement the AES algorithm (OpenSSL or CryptoAPI will do that), the developer will be writing modules to use an AES implantation in the correct way. Again the correct decisions need to be made regarding up-to-date algorithms, key storage, and other design decisions, which are covered in section 1.4.

Cryptography Definitions
Before diving into discussions on encrypting traffic and data, some terminology used in the realm of cryptography is defined in table 19.

[image:]
12.3 What to Review: Protection in Transit
The terms, Secure Socket Layer (SSL) and Transport Layer Security (TLS) are often used interchangeably. In fact, SSL v3.1 is equivalent to TLS v1.0. However, different versions of SSL and TLS are supported by modern web browsers and by most modern web frameworks and platforms. Note that since developments in attacks against the SSL protocol have shown it to be weaker against attacks, this guide will use the term TLS to refer to transport layer security over the HTTP or TCP protocols.

The primary benefit of transport layer security is the protection of web application data from unauthorized disclosure and modification when it is transmitted between clients (web browsers) and the web application server, and between the web application server and back end and other non-browser based enterprise components.
In theory, the decision to use TLS to protect computer to computer communication should be based on the nature of the traffic or functionality available over the interface. If sensitive information is passing over the interface, TLS will prevent eavesdroppers from being able to view or modify the data. Likewise if the interface allows money to be transferred, or sensitive functions to be initiated, then TLS will protect the associated login or session information authorizing the user to perform those functions. However with the price of certificates dropping, and TLS configuration within frameworks becoming easier, TLS protection of an interface is not a large endeavor and many web sites are using TLS protections for their entire site (i.e. there are only HTTPS pages, no HTTP pages are available).

The server validation component of TLS provides authentication of the server to the client. If configured to require client side certificates, TLS can also play a role in client authentication to the server. However, in practice client side certificates are not often used in lieu of username and password based authentication models for clients.

Using Validated Implementations
The US government provides a list of software that has been validated to provide a strong and secure implementation of various cryptographic functions, including those used in TLS. This list is referred to as the FIPS 140-2 validated cryptomodules [insert reference].

A cryptomodule, whether it is a software library or a hardware device, implements cryptographic algorithms (symmetric and asymmetric algorithms, hash algorithms, random number generator algorithms, and message authentication code algorithms). The security of a cryptomodule and its services (and the web applications that call the cryptomodule) depend on the correct implementation and integration of each of these three parts. In addition, the cryptomodule must be used and accessed securely. In order to leverage the benefits of TLS it is important to use a TLS service (e.g. library, web framework, web application server) which has been FIPS 140-2 validated. In addition, the cryptomodule must be installed, configured and operated in either an approved or an allowed mode to provide a high degree of certainty that the FIPS 140-2 validated cryptomodule is providing the expected security services in the expected manner.

When reviewing designs or code that is handling TLS encryption, items to look out for include:
• Use TLS for the login pages and any authenticated pages. Failure to utilize TLS for the login landing page allows an attacker to modify the login form action, causing the user’s credentials to be posted to an arbitrary location. Failure to utilize TLS for authenticated pages after the login enables an attacker to view the unencrypted session ID and compromise the user’s authenticated session.

• Use TLS internally when transmitting sensitive data or exposing authenticated functionality. All networks, both external and internal, which transmit sensitive data must utilize TLS or an equivalent transport layer security mechanism. It is not sufficient to claim that access to the internal network is “restricted to employees”. Numerous recent data compromises have shown that the internal network can be breached by attackers. In these attacks, sniffers have been installed to access unencrypted sensitive data sent on the internal network.

• Prefer all interfaces (or pages) being accessible only over HTTPS. All pages which are available over TLS must not be available over a non-TLS connection. A user may inadvertently bookmark or manually type a URL to a HTTP page (e.g. http://example.com/myaccount) within the authenticated portion of the application.

• Use the “secure” and “http-only” cookie flags for authentication cookies. Failure to use the “secure” flag enables an attacker to access the session cookie by tricking the user’s browser into submitting a request to an unencrypted page on the site. The “http-only” flag denies JavaScript functions access to the cookies contents.

• Do not put sensitive data in the URL. TLS will protect the contents of the traffic on the wire, including the URL when transported, however remember that URL’s are visible in browser history settings, and typically written to server logs.

• Prevent the caching of sensitive data. The TLS protocol provides confidentiality only for data in transit but it does not help with potential data leakage issues at the client or intermediary proxies.

• Use HTTP Strict Transport Security (HSTS) for high risk interfaces. HSTS will prevent any web clients from attempting to connect to your web site over a non-TLS protocol. From a server-side point of view this may seem irrelevant if no non-TLS pages are provided, however a web site setting up HSTS does protect clients from other attacks (e.g. DNS cache poisioning).

• Use 2048 key lengths (and above) and SHA-256 (and above). The private key used to generate the cipher key must be sufficiently strong for the anticipated lifetime of the private key and corresponding certificate. The current best practice is to select a key size of at least 2048 bits. Note that attacks against SHA-1 have shown weakness and the current best practice is to use at least SHA-256 or equivalent.

• Only use specified, fully qualified domain names in your certificates. Do not use wildcard certificates, or RFC 1918 addresses (e.g. 10.* or 192.168.*). If you need to support multiple domain names use Subject Alternate Names (SANs) which provide a specific listing of multiple names where the certificate is valid. For example the certificate could list the subject’s CN as example.com, and list two SANs: abc.example.com and xyz.example.com. These certificates are sometimes referred to as “multiple domain certificates”.

• Always provide all certificates in the chain. When a user receives a server or host’s certificate, the certificate must be validated back to a trusted root certification authority. This is known as path validation. There can be one or more intermediate certificates in between the end-entity (server or host) certificate and root certificate. In addition to validating both endpoints, the client software will also have to validate all intermediate certificates, which can cause failures if the client does not have the certificates. This occurs in many mobile platforms.

1.1.3 What to Review: Protection at Rest
As a general recommendation, companies should not create their own custom cryptographic libraries and algorithms. There is a huge distinction between groups, organizations, and individuals developing cryptographic algorithms and those that implement cryptography either in software or in hardware. Using an established cryptographic library that has been developed by experts and tested by the industry is the safest way to implement cryptographic functions in a company’s code. Some common examples of libraries used in various languages and environments are covered in the below table.

	Popular cryptographic implementations according to environment

	Language
	Libraries
	Discussion

	C#.NET
	Class libraries within 'System.Security.Cryptography'
	For applications coded in C#.NET there are class libraries and implementations within the 'System.Security.Cryptography' that should be used. This namespace within .NET aims to provide a number of warppers that do not require proficient knowledge of cryptography in order to use it.

	C/C++ (Win32)
	CryptoAPI and DPAPI
	For C/C++ code running on Win32 platforms, the CreyptoAPI and DPAPI are recommended.

	C/C++ (Linux)
	OpenSSL, NSS, boringssl
	For C/C++ on Linux/Unix operating systems, us OpenSSL, NSS, or one of the many forks of these libraries.

	ASP
	CryptoAPI and DPAPI
	Classis ASP pages do not have direct access to cryptographic functions, so the only way is to create COM wrappers in Visual C++ or Visual Basic, implementing calls to CryptoAPI or DPAPI. Then call them from ASP pages using the Server.CreateObject method.

	Java
	Java Cryptography Extension, BouncyCastle, Spring Security
	JCE is a standard API that any cryptographic library can implement to provide cryptographic functions to the developer. Oracle provide a list of companies that act as Cryptographic Service Providers and/or offer clean room implementations of the JCE. BouncyCastle is on of the more popular implementations. Spring Secuirty is also popular in application where Spring is already being utilized.

A secure way to implement robust encryption mechanisms within source code is by using FIPS [7] compliant algorithms with the use of the Microsoft Data Protection API (DPAPI) [4] or the Java Cryptography Extension (JCE) [5].

A company should identify minimum standards for the following when establishing your cryptographic code strategy:
• Which standard algorithms are to be used by applications

• Minimum key sizes to be supported

• What types of data must be encrypted

When reviewing code handling cryptography look out for:
• Is strong enough encryption algorithms being used, and is the implementation of those algorithms FIPS-140 complaint.

• Is the right type of cryptographic algorithm being used, is data being hashed that should be encrypted with a symmetric key? If there is no way to safely transfer the symmetric key to the other party, is public key cryptographic algorithms being employed?

• In any cryptographic system the protection of the key is the most important aspect. Exposure of the symmetric or private key means the encrypted data is no longer private. Tightly control who has access to enter or view the keys, and how the keys are used within applications.

• Any code implementing cryptographic processes and algorithms should be reviewed and audited against a set of company or regulatory specifications. High level decisions need to be made (and continually revisited) as to what an organization considers ‘strong encryption’ to be, and all implementation instances should adhere to this standard.

• Cryptographic modules must be tested under high load with multithreaded implementations, and each piece of encrypted data should be checked to ensure it was encrypted and decrypted correctly.

• In .NET check for examples of cryptography in the MSDN Library Security Practices: .NET Framework 2.0 Security Practices at a Glance

o Check that the Data Protection API (DPAPI) is being used.
o Verify no proprietary algorithms are being used.
o Check that RNGCryptoServiceProvider is used for PRNG.
o Verify key length is at least 128 bits.
• In ASP perform all of these checks on the COM wrapper as ASP does not have direct access to cryptographic functions

o Check that the Data Protection API (DPAPI) or CryptoAPI is being used into COM object
o Verify no proprietary algorithms are being used
o Check that RNGCryptoServiceProvider is used for PRNG
o Verify key length is at least 128 bits

• For Java check that the Java Cryptography Extension (JCE) is being used

o Verify no proprietary algorithms are being used
o Check that SecureRandom (or similar) is used for PRNG
o Verify key length is at least 128 bits

Bad Practice: Use of Insecure Cryptographic Algorithms
The DES and SHA-0 algorithms are cryptographically insecure. The example in figure A6.0 outlines a cryptographic module using DES (available per using the Java Cryptographic Extensions) which should not be used. Additionally, SHA-1 and MD5 should be avoided in new applications moving forward.

FIGURE A6.0
Example code using insecure cryptographic algorithms

package org.badexample.crypto;

<snip>
try {
		/** Step 1. Generate a DES key using KeyGenerator */
		KeyGenerator keyGen = KeyGenerator.getInstance(“DES”);
		SecretKey secretKey = keyGen.generateKey();
		
		/** Step2. Create a Cipher by specifying the following parameters
		 * 			a. Algorithm name - here it is DES
		 * 			b. Mode - here it is CBC
		 * 			c. Padding - PKCS5Padding */
		Cipher desCipher = Cipher.getInstance(“DES/CBC/PKCS5Padding”);
<snip>

Good Practice: Use Strong Entropy
The source code in figure A6.1 outlines secure key generation per use of strong entropy:

FIGURE A6.1
Example code using strong entropy

package org.owasp.java.crypto;
import java.security.SecureRandom;
import java.security.NoSuchAlgorithmException;
import sun.misc.BASE64Encoder;
/**
 * This program provides the functionality for Generating a Secure Random Number.
 * There are 2 ways to generate a Random number through SecureRandom.
 * 1. By calling nextBytes method to generate Random Bytes
 * 2. Using setSeed(byte[]) to reseed a Random object
*/
public class SecureRandomGen {
	public static void main(String[] args) {
		try {
	 // Initialize a secure random number generator
	 SecureRandom secureRandom = SecureRandom.getInstance(“SHA512”);
	
	 // Method 1 - Calling nextBytes method to generate Random Bytes
	 byte[] bytes = new byte[512];
	 secureRandom.nextBytes(bytes);
	
	 // Printing the SecureRandom number by calling secureRandom.nextDouble()
	 System.out.println(“ Secure Random # generated by calling nextBytes() is “ + secureRandom.nextDouble());
	
	 // Method 2 - Using setSeed(byte[]) to reseed a Random object
	 int seedByteCount = 10;
	 byte[] seed = secureRandom.generateSeed(seedByteCount);
	 	
	 secureRandom.setSeed(seed);	
	 System.out.println(“ Secure Random # generated using setSeed(byte[]) is “ + secureRandom.nextDouble());
	
	 } catch (NoSuchAlgorithmException noSuchAlgo)
		{
			System.out.println(“ No Such Algorithm exists “ + noSuchAlgo);
		}
	}
}

Good Practice: Use Strong Algorithms
Below illustrates the implementation of AES (available per Using the Java Cryptographic Extensions):

FIGURE A6.2
Example code using strong entropy

package org.owasp.java.crypto;

import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.Cipher;

import java.security.NoSuchAlgorithmException;
import java.security.InvalidKeyException;
import java.security.InvalidAlgorithmParameterException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.BadPaddingException;
import javax.crypto.IllegalBlockSizeException;

import sun.misc.BASE64Encoder;

/**
 * This program provides the following cryptographic functionalities
 * 1. Encryption using AES
 * 2. Decryption using AES
 *
 * High Level Algorithm :
 * 1. Generate a DES key (specify the Key size during this phase)
 * 2. Create the Cipher
 * 3. To Encrypt : Initialize the Cipher for Encryption
 * 4. To Decrypt : Initialize the Cipher for Decryption
 */

public class AES {
	public static void main(String[] args) {
		
		String strDataToEncrypt = new String();
		String strCipherText = new String();
		String strDecryptedText = new String();
try{
		/**
		 * Step 1. Generate an AES key using KeyGenerator
		 * 		Initialize the keysize to 128
		 */
		KeyGenerator keyGen = KeyGenerator.getInstance(“AES”);
		keyGen.init(128);
		SecretKey secretKey = keyGen.generateKey();
		
		/**
		 * Step2. Create a Cipher by specifying the following parameters
		 * 			a. Algorithm name - here it is AES
		 */
		Cipher aesCipher = Cipher.getInstance(“AES”);
		
		/**
		 * Step 3. Initialize the Cipher for Encryption
		 */
		aesCipher.init(Cipher.ENCRYPT_MODE,secretKey);
		
		/**
		 * Step 4. Encrypt the Data
		 * 		1. Declare / Initialize the Data. Here the data is of type String
		 * 		2. Convert the Input Text to Bytes
		 * 		3. Encrypt the bytes using doFinal method
		 */
		strDataToEncrypt = “Hello World of Encryption using AES “;
		byte[] byteDataToEncrypt = strDataToEncrypt.getBytes();
		byte[] byteCipherText = aesCipher.doFinal(byteDataToEncrypt);
		strCipherText = new BASE64Encoder().encode(byteCipherText);
		System.out.println(“Cipher Text generated using AES is “ +strCipherText);
		
		/**
		 * Step 5. Decrypt the Data
		 * 		1. Initialize the Cipher for Decryption
		 * 		2. Decrypt the cipher bytes using doFinal method
*/
		aesCipher.init(Cipher.DECRYPT_MODE,secretKey,aesCipher.getParameters());
		byte[] byteDecryptedText = aesCipher.doFinal(byteCipherText);
		strDecryptedText = new String(byteDecryptedText);
		System.out.println(“ Decrypted Text message is “ +strDecryptedText);
		}
		
		catch (NoSuchAlgorithmException noSuchAlgo)
		{
			System.out.println(“ No Such Algorithm exists “ + noSuchAlgo);
		}
			catch (NoSuchPaddingException noSuchPad)
			{
				System.out.println(“ No Such Padding exists “ + noSuchPad);
			}
				catch (InvalidKeyException invalidKey)
				{
					System.out.println(“ Invalid Key “ + invalidKey);
				}
				catch (BadPaddingException badPadding)
				{
					System.out.println(“ Bad Padding “ + badPadding);
				}
				catch (IllegalBlockSizeException illegalBlockSize)
				{
					System.out.println(“ Illegal Block Size “ + illegalBlockSize);
				}
				catch (InvalidAlgorithmParameterException invalidParam)
				{
					System.out.println(“ Invalid Parameter “ + invalidParam);
				}
	}
}

1.1.4 References
[1] Bruce Schneier, Applied Cryptography, John Wiley & Sons, 2nd edition, 1996.

[2] Michael Howard, Steve Lipner, The Security Development Lifecycle, 2006, pp. 251 - 258

[3] .NET Framework Developer’s Guide, Cryptographic Services, http://msdn2.microsoft.com/en-us/library/93bskf9z.aspx

[4] Microsoft Developer Network, Windows Data Protection, http://msdn2.microsoft.com/en-us/library/ms995355.aspx

[5] Sun Developer Network, Java Cryptography Extension, http://java.sun.com/products/jce/

[6] Sun Developer Network, Cryptographic Service Providers and Clean Room Implementations, http://java.sun.com/products/jce/jce122_providers.html

[7] Federal Information Processing Standards, http://csrc.nist.gov/publications/fips/

12.5 Encryption, Hashing & Salting
A cryptographic hash algorithm; also called a hash “function” is a computer algorithm designed to provide a random mapping from an arbitrary block of data (string of binary data) and return a fixed-size bit string known as a “message digest” and achieve certain security.

Cryptographic hashing functions are used to create digital signatures, message authentication codes (MACs), other forms of authentication and many other security applications in the information infrastructure. They are also used to store user passwords in databases instead of storing the password in clear text and help prevent data leakage in session management for web applications. The actual algorithm used to create a cryptology function varies per implementation (SHA-256, SHA-512, etc.)

Never accept in a code review an algorithm created by the programmer for hashing. Always use cryptographic functions that are provided by the language, framework, or common (trusted) cryptographic libraries. These functions are well vetted and well tested by experience cryptographers.
In the United States in 2000, the department of Commerce Bureau of Export revised encryption export regulations. The results of the new export regulations it that the regulations have been greatly relaxed. However if the code is to be exported outside of the source country current export laws for the export and import counties should be reviewed for compliance.

Case in point is if the entire message is hashed instead of a digital signature of the message the National Security Agency (NSA) considers this a quasi-encryption and State controls would apply.

It is always a valid choice to seek legal advice within the organization if the code review is being done to ensure legal compliance.

With security nothing is secure forever. This is especially true with cryptographic hashing functions. Some hashing algorithms such as Windows LanMan hashes are considered completely broken. Others like MD5, which in the past were considered safe for password hash usage, have known issues like collision attacks (note that collision attacks do not affect password hashes). The code reviewer needs to understand the weaknesses of obsolete hashing functions as well as the current best practices for the choice of cryptographic algorithms.

Working with Salts
The most common programmatic issue with hashing is:
• Not using a salt value
• Using a salt the salt value is too short
• Same salt value is used in multiple hashes.

The purpose of a salt is to make it harder for an attacker to perform pre-computed hashing attack (e.g., using rainbow tables). Take for example that the SHA512 has of ‘password’ is as shown in row 1 of table X, and any attacker with a rainbow table will spot the hash value corresponding to ‘password’. Taking into consideration it takes days or weeks to compute a rainbow table to values up to around 8 or 10 characters, the effort to produce this table is worth it when an application is not using any salts.

Now take a scenario where an application adds a salt of ‘WindowCleaner’ to all passwords entered. Now the hash of ‘password’ becomes the hash of ‘passwordWindowCleaner’, which is shown in row 2 of table X. This is unlikely to be in the attackers rainbow table, however the attacker can now spend the next 10 days (for example) computing a new rainbow table with ‘WindowCleaner’ on the end of every 8 to 10 character string and they again can now decode our hashed database of passwords.

At a last step, an application can create a random salt for each entry, and store that salt in the DB with the hashed password. Now for user1, the random salt is ‘a0w8hsdfas8ls587uas87’, meaning the password to be hashed is ‘passworda0w8hsdfas8ls587uas87’, shown in row 3 of table X, and for user2, the random salt is ‘8ash87123klnf9d8dq3w’, meaning the password to be hashed is ‘password8ash87123klnf9d8dq3w’, shown in row 4 of table X, and repeat for all users. Now an attacker would need a rainbow table for each users’ password they mean to decrypt – whereas before it took 10 days to decrypt all of the DB passwords using the same salt, now it takes 10 days to create a rainbow table for user1’s password, and another 10 days for user2’s password, etc. If there were 100,000 users, that’s now 100,000 x 10 days = 1,000,000 days or 2738 years, to create rainbow tables for all the users.

As can be seen, the salt does not need to be secret, as it is the fact that unique salts are used for each user that slows down an attacker.

[image:]

[image:]

One way to generate a salt value is using a pseudo-random number generator, as shown in Figure A6.3 below.

TABLE A6.3
Adding Salt in .NET

 private int minSaltSize = 8;
 private int maxSaltSize = 24;
 private int saltSize;

 private byte[] GetSalt(string input) {
 byte[] data;
 byte[] saltBytes;
 RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
 saltBytes = new byte[saltSize];
 rng.GetNonZeroBytes(saltBytes);
 data = Encoding.UTF8.GetBytes(input);
 byte[] dataWithSaltBytes =
 new byte[data.Length + saltBytes.Length];
 for (int i = 0; i < data.Length; i++)
 dataWithSaltBytes[i] = data[i];
 for (int i = 0; i < saltBytes.Length; i++)
 dataWithSaltBytes[data.Length + i] = saltBytes[i];
 return dataWithSaltBytes;
}

Note that a salt value does not need to possess the quality of a cryptographically secure randomness.
Best practices is to use a cryptographically function to create the salt, create a salt value for each hash value, and a minimum value of 128 bits (16 characters). The bits are not costly so don’t save a few bits thinking you gain something back in performance instead use a value of 256-bit salt value. It is highly recommended.

Best Practices
Industry leading Cryptographer’s are advising that MD5 and SHA-1 should not be used for any applications. The United State FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION (FIPS) specifies seven cryptographic hash algorithms — SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256 are approved for federal use. The code reviewer should consider this standard because the FIPS is also widely adopted by the information technology industry.

The code reviewer should raise a red flag if MD5 and SHA-1 are used and a risk assessment be done to understand why these functions would be used instead of other better-suited hash functions. FIPS does allow that MD5 can be used only when used as part of an approved key transport scheme where no security is provided by the algorithm.

Figure Figure A6.4 below shows an example function which could implement a generic hash feature for an application.

FIGURE A6.4
.NET Agile Code example for hashing

App Code File:
<add key=”HashMethod” value=”SHA512”/>

C# Code:
 1: preferredHash = HashAlgorithm.Create((string)ConfigurationManager.AppSettings[“HashMethod”]);
 2:
 3: hash = computeHash(preferredHash, testString);
 4:
 5: private string computeHash(HashAlgorithm myHash, string input) {
 6: byte[] data;
 7: data = myHash.ComputeHash(Encoding.UTF8.GetBytes(input));
 8: sb = new StringBuilder();
 9: for (int i = 0; i < data.Length; i++) {
 10: sb.Append(data[i].ToString(“x2”));
 11: }
 12: return sb.ToString();
 13: }

Line 1 lets us get our hashing algorithm we are going to use from the config file. If we use the machine config file our implementation would be server wide instead of application specific.

Line 3 allows us to use the config value and set it according as our choice of hashing function. ComputHash could be SHA-256 or SHA-512.

1.1.6 References
http://valerieaurora.org/hash.html (Lifetimes of cryptographic hash functions)

http://docs.oracle.com/javase/6/docs/api/java/security/SecureRandom.html

http://msdn.microsoft.com/en-us/library/system.security.cryptography.rngcryptoserviceprovider.aspx

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

Ferguson and Schneier (2003) Practical Cryptography (see Chapter 6; section 6.2 Real Hash Functions)

12.5 Reducing the attack surface
The Attack Surface of an application is a description of the entry/exit points, the roles/entitlements of the users, and the sensitivity of the data held within the application. For example, entry points such as login screens, HTML forms, file upload screens, all introduce a level of risk to the application. Note that the code structure also forms part of the Attack Surface, in that the code checking authentication, or crypto, etc., is exercised by critical functions on the application.

Description
The attack surface of a software environment is a description of the entry points where an attacker can try to manipulate an application, it typically takes the form of a systems diagram where all entry points (interfaces) are pointed out. Michael Howard (at Microsoft) and other researchers have developed a method for measuring the Attack Surface of an application, and to track changes to the Attack Surface over time, called the Relative Attack Surface Quotient (RSQ).

It is assumed that the application Attack Surface is already known, probably through some previous threat modeling exercise, or Architectural Risk Analysis. Therefor the entry and exit points are known, the sensitivity of the data within the application is understood, and the various users of the system, and their entitlements, have been mapped in relation to the functions and data.

From a code review point of view, the aim would be to ensure the change being reviewed is not unnecessarily increasing the Attack Surface. For example, is the code change suddenly using HTTP where only HTTPS was used before? Is the coder deciding to write their own hash function instead of using the pre-existing (and well exercised/tested) central repository of crypto functions? In some development environments the Attack Surface changes can be checked during the design phase if such detail is captured, however at code review the actual implementation is reflected in the code and such Attack Surface exposures can be identified.

You can also build up a picture of the Attack Surface by scanning the application. For web apps you can use a tool like the OWASP Zed Attack Proxy Project (ZAP), Arachni, Skipfish, w3af or one of the many commercial dynamic testing and vulnerability scanning tools or services to crawl your app and map the parts of the application that are accessible over the web. Once you have a map of the Attack Surface, identify the high risk areas, then understand what compensating controls you have in place.

Note that backups of code and data (online, and on offline media) are an important but often ignored part of a system’s Attack Surface. Protecting your data and IP by writing secure software and hardening the infrastructure will all be wasted if you hand everything over to bad guys by not protecting your backups.

What to Review
When reviewing code modules from an Attack Surface point of view, some common issues to look out for include:

• Does the code change modify the attack surface? By applying the change to the current Attack Surface of the application does it open new ports or accept new inputs? If it does could the change be done in a way that does not increase the attack surface? If a better implementation exists then that should be recommended, however if there is no way to implement the code without increasing the Attack Surface, make sure the business knows of the increased risk.

• Is the feature unnecessarily using HTTP instead of HTTPS?

• Is the function going to be available to non-authenticated users? If no authentication is necessary for the function to be invoked, then the risk of attackers using the interface is increased. Does the function invoke a backend task that could be used to deny services to other legitimate users?

o E.g. if the function writes to a file, or sends an SMS, or causes a CPU intensive calculation, could an attacker write a script to call the function many times per second and prevent legitimate users access to that task?

• Are searches controlled? Search is a risky operation as it typically queries the database for some criteria and returns the results, if attacker can inject SQL into query then they could access more data than intended.

• Is important data stored separately from trivial data (in DB, file storage, etc). Is the change going to allow unauthenticated users to search for publicly available store locations in a database table in the same partition as the username/password table? Should this store location data be put into a different database, or different partition, to reduce the risk to the database information?

• If file uploads are allowed, are they be authenticated? Is there rate limiting? Is there a maximum file size for each upload or aggregate for each user? Does the application restrict the file uploads to certain types of file (by checking MIME data or file suffix). Is the application is going to run virus checking?

• If you have administration users with high privilege, are their actions logged/tracked in such a way that they a) can’t erase/modify the log and b) can’t deny their actions?

o Are there any alarms or monitoring to spot if they are accessing sensitive data that they shouldn’t be? This could apply to all types of users, not only administrators.

• Will changes be compatible with existing countermeasures, or security code, or will new code/countermeasures need to be developed?

• Is the change attempting to introduce some non-centralized security code module, instead of re-using or extending an existing security module?

• Is the change adding unnecessary user levels or entitlements that will complicate the attack surface.

• If the change is storing PII or confidential data, is all of the new information absolutely necessary? There is little value in increasing the risk to an application by storing the social security numbers of millions of people, if the data is never used.

• Does application configuration cause the attack surface to vary greatly depending on configuration settings, and is that configuration simple to use and alert the administrator when the attack surface is being expanded?

• Could the change be done in a different way that would reduce the attack surface, i.e instead of making help items searchable and storing help item text in a database table beside the main username/password store, providing static help text on HTML pages reduces the risk through the ‘help’ interface.

• Is information stored on the client that should be stored on the server?

References
https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

http://www.cs.cmu.edu/~wing/publications/Howard-Wing03.pdf

13 MISSING FUNCTION LEVEL ACCESS CONTROL
Most web applications verify function level access rights before making that functionality visible in the UI. However, applications need to perform the same access control checks on the server when each function is accessed. If requests are not verified, attackers will be able to forge requests in order to access functionality without proper authorization.

13.1 Authorization
Authorization is as important as authentication. Access to application functionality and access to all data should be authorized. For data access authorization, application logic should check if the data belongs to the authenticated user, or if the user should be able to access that data.

Placement of security checks is a vital area of review in an application design. Incorrect placement can render the applied security controls useless, thus it is important to review the application design and determine the correctness of such checks. Many web application designs are based on the concept of Model-View-Controller (MVC) that have a central controller which listens to all incoming request and delegates control to appropriate form/business processing logic. Ultimately the user is rendered with a view. In such a layered design, when there are many entities involved in processing a request, developers can go wrong in placing the security controls in the incorrect place, for example some application developers feel “view” is the right place to have the authorization checks.

Authorization issues cover a wide array of layers in a web application; from the functional authorization of a user to gain access to a particular function of the application at the application layer, to the Database access authorization and least privilege issues at the persistence layer.

In most of the applications the request parameters or the URL’s serve as sole factors to determine the processing logic. In such a scenario the elements in the request, which are used for such identifications, may be subject to manipulation attacks to obtain access to restricted resources or pages in the application.

There are two main design methods to implements authorization: Role Base Access Control (RBAC) and Access Control Lists (ACLs). RBAC is used when assigning users to roles, and then roles to permissions. This is a more logical modeling of actual system authorization. It also allows administrators to fine-grain and re-check role-permission assignments, while making sure that every role has the permissions it is supposed to have (and nothing more or less).

Thus assigning users to roles should reduce the chance of human-error. Many web frameworks allow roles to be assigned to logged in users, and custom code can check the session information to authorize functionality based on the current users role.

13.2 Description
It seems logical to restrict the users at the page/view level they won’t be able to perform any operation in the application. But what if instead of requesting for a page/view an unauthorized user tries to request for an internal action such as to add/modify any data in the application? It will be processed but the resultant view will be denied to the user; because the flaw lies in just having a view based access control in the applications. Much of the business logic processing (for a request) is done before the “view” is executed. So the request to process any action would get processed successfully without authorization.

In an MVC based system given this issue is shown in image X below, where the authentication check is present in the view action.

[image:]
In this example neither the controller servlet (central processing entity) nor the action classes have any access control checks. If the user requests an internal action such as add user details, without authentication, it will get processed, but the only difference is that the user will be shown an error page as resultant view will be disallowed to the user.

A similar flaw is observed in ASP.NET applications where the developers tend to mix the code for handling POSTBACK’s and authentication checks. Usually it is observed that the authentication check in the ASP.NET pages are not applied for POSTBACKs, as indicated below. Here, if an attacker tries to access the page without authentication an error page will be rendered. Instead, if the attacker tries to send an internal POSTBACK request directly without authentication it would succeed.

Unused or undeclared actions or functionality can present in the configuration files. Such configurations that are not exposed (or tested) as valid features in the application expand the attack surface and raise the risk to the application. An unused configuration present in a configuration file is shown in Figure A7.0, where the ‘TestAction’ at the end of the file has been left over from the testing cycle and will be exposed to external users. It is likely this action would not be checked on every release and could expose a vulnerability.

FIGURE A7.0
Example of unused action in an application configuration

<mapping>
 <url>/InsecureDesign/action/AddUserDetails</url>
 <action>Action.UserAction</action>
 <success>JSP_WithDesign/Success.jsp</success>
</mapping>

<mapping>
 <url>/InsecureDesign/action/ChangePassword</url>
 <action>Action.ChangePasswordAction</action>
 <success>JSP_WithDesign/Success.jsp</success>
</mapping>

<mapping>
 <url>/InsecureDesign/action/test</url>
 <action>Action.TestAction</action>
 <success>JSP_WithDesign/Success.jsp</success>
</mapping>

Another popular feature seen in most of the design frameworks today is data binding, where the request parameters get directly bound to the variables of the corresponding business/command object. Binding here means that the instance variables of such classes get automatically initialized with the request parameter values based on their names. The issue with this design is that the business objects may have variables that are not dependent on the request parameters. Such variables could be key variables like price, max limit, role etc. having static values or dependent on some server side processing logic. A threat in such scenarios is that an attacker may supply additional parameters in request and try to bind values for unexposed variable of business object class. In this case the attacker can send an additional “price” parameter in the request which binds with the unexposed variable “price” in business object, thereby manipulating business logic.

What to Review
It is imperative to place all validation checks before processing any business logic and in case of ASP.NET applications independent of the POSTBACKs. The security controls like authentication check must be place before processing any request.

The use of filters is recommended when authorization is being implemented in MVC 3 and above as .NET MVC 3 introduced a method in global.asax called RegisterGlobalFilters which can be used to default deny access to URL’s in the application.

FIGURE A7.1
Registering filters in .NET

public static void RegisterGlobalFilters(GlobalFilterCollection filters)
{
 filters.Add(new HandleErrorAttribute());
 filters.Add(new System.Web.Mvc.AuthorizeAttribute());
}

It is recommended when reviewing MVC3/4 .NET to take a look at how authorization is being implemented. The line above, “filters.Add(new System.Web.Mvc.AuthorizeAttribute());” default denies access to any request without a valid session. If this is implemented we may need to provide unauthorized access to certain pages such as a registration page, public welcome page or a login page.

The directive “AllowAnonymous” is used to provide access to public pages with no valid session required. The code may look like this:

FIGURE A7.2
Allowing anonymous access to a function in IS

[AllowAnonymous]
 public ActionResult LogMeIn(string returnUrl)

When reviewing code for authorization, the following considerations can be checked for:
• Every entry point should be authorized. Every function should be authorized.

• Authorization checks should be efficient, and implemented in a central code base such that it can be applied consistently.

• In cases where authorization fails, a HTTP 403 not authorized page should be returned.

• When using RBAC, there must be some way for the application to report on the currently provisioned users of the system and their associated roles. This allows the business to periodically audit the user access to the system and ensure it is accurate. For example, if a user is provisioned as an admin on the system, then that user changes job to another department, it could be the case that the admin role is no longer appropriate.

• There should be an easy method to change or remove a user’s role (in RBAC systems). Adding, modifying or removing a user from a role should result in audit logs.

• For roles that are higher risk, addition, modification and deletion of those roles should involve multiple levels of authorization (e.g. maker/checker), this may be tracked within the application itself, or through some centralized role application. Both the functionality and code of the system controlling roles should be part of the review scope.

• At a design level attempt to keep the range of roles simple. Applications with multiple permission levels/roles often increases the possibility of conflicting permission sets resulting in unanticipated privileges.

• In application architectures with thick clients (i.e. mobile apps or binaries running on a PC) do not attempt to perform any authorization in the client code, as this could be bypassed by an attacker. In browser based applications do not perform any authorization decisions in JavaScript.

• Never base authorization decisions on untrusted data. For example do not use a header, or hidden field, from the client request to determine the level of authorization a user will have, again this can be manipulated by an attacker.

• Follow the principle of ‘complete mediation’, where authorization is checked at every stage of a function. For example, if an application has four pages to browse through to purchase an item (browse.html, basket.html, inputPayment.html, makePayment.html) then check user authorization at every page, and stage within pages, instead of only performing a check in the first page.

• By default deny access to any page, and then use authorization logic to explicitly allow access based on roles/ACL rules.

• Remove all redundant/test/unexposed business logic configurations from the file

• The business/form/command objects must have only those instance variables that are dependent on the user inputs.

14 CROSS-SITE REQUEST FORGERY (CSRF)
A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including the victim’s session cookie and any other automatically included authentication information, to a vulnerable web application. This allows the attacker to force the victim’s browser to generate requests the vulnerable application thinks are legitimate requests from the victim.

14.1 Description
CSRF is an attack, which forces an end user to execute unwanted actions on a web application in which they are currently authenticated. With a little help of social engineering (like sending a link via email/chat), an attacker may force the users of a web application to execute actions of the attacker’s choosing. A successful CSRF exploit can compromise end user data, and protected functionality, in the case of a normal privileged user. If the targeted end user is the administrator account, this can compromise the entire web application.

The impact of a successful cross-site request forgery attack is limited to the capabilities exposed by the vulnerable application. For example, this attack could result in a transfer of funds, changing a password, or purchasing an item in the user’s context. In effect, CSRF attacks are used by an attacker to make a target system perform a function (funds Transfer, form submission etc.) via the target’s browser without knowledge of the target user, at least until the unauthorized function has been committed.

CSRF is not the same as XSS (Cross Site Scripting), which forces malicious content to be served by a trusted website to an unsuspecting victim. Cross-Site Request Forgery (CSRF, a.k.a C-SURF or Confused-Deputy) attacks are considered useful if the attacker knows the target is authenticated to a web based system. They only work if the target is logged into the system, and therefore have a small attack footprint. Other logical weaknesses also need to be present such as no transaction authorization required by the user. In effect CSRF attacks are used by an attacker to make a target system perform a function (Funds Transfer, Form submission etc..) via the target’s browser without the knowledge of the target user, at least until the unauthorized function has been committed. A primary target is the exploitation of “ease of use” features on web applications (One-click purchase).

Impacts of successful CSRF exploits vary greatly based on the role of the victim. When targeting a normal user, a successful CSRF attack can compromise end-user data and their associated functions. If the targeted end user is an administrator account, a CSRF attack can compromise the entire Web application. The sites that are more likely to be attacked are community Websites (social networking, email) or sites that have high dollar value accounts associated with them (banks, stock brokerages, bill pay services). This attack can happen even if the user is logged into a Web site using strong encryption (HTTPS). Utilizing social engineering, an attacker will embed malicious HTML or JavaScript code into an email or Website to request a specific ‘task url’. The task then executes with or without the user’s knowledge, either directly or by utilizing a Cross-site Scripting flaw (ex: Samy MySpace Worm).

How They Work
CSRF attacks work by sending a rogue HTTP request from an authenticated user’s browser to the application, which then commits a transaction without authorization given by the target user. As long as the user is authenticated and a meaningful HTTP request is sent by the user’s browser to a target application, the application does not know if the origin of the request is a valid transaction or a link clicked by the user (that was, say, in an email) while the user is authenticated to the application. The request will be authenticated as the request from the users browser will automatically include the ‘Cookie’ header, which is the basis for authentication. So an attacker makes the victim perform actions that they didn’t intend to, such as purchase an item. Figure X shows an example an HTTP POST to a ticket vendor to purchase a number of tickets.

FIGURE A8.0
HTTP request/response to purchase tickets

POST http://TicketMeister.com/Buy_ticket.htm HTTP/1.1
Host: ticketmeister
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;) Firefox/1.4.1
Cookie: JSPSESSIONID=34JHURHD894LOP04957HR49I3JE383940123K
ticketId=ATHX1138&to=PO BOX 1198 DUBLIN 2&amount=10&date=11042008
The response of the vendor is to acknowledge the purchase of the tickets:

HTTP/1.0 200 OK
Date: Fri, 02 May 2008 10:01:20 GMT
Server: IBM_HTTP_Server
Content-Type: text/xml;charset=ISO-8859-1
Content-Language: en-US
X-Cache: MISS from app-proxy-2.proxy.ie
Connection: close

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<pge_data> Ticket Purchased, Thank you for your custom.
</pge_data>

What to Review
This issue is simple to detect, but there may be compensating controls around the functionality of the application which may alert the user to a CSRF attempt. As long as the application accepts a well formed HTTP request and the request adheres to some business logic of the application CSRF shall work.

By checking the page rendering we need to see if any unique identifiers are appended to the links rendered by the application in the user’s browser. If there is no unique identifier relating to each HTTP request to tie a HTTP request to the user, we are vulnerable. Session ID is not enough, as the session ID shall be sent automatically if a user clicks on a rogue link, as the user is already authenticated.

Prevention Measures That Do NOT Work
Examples of attempted CSRF prevent techniques which attackers can bypass are listed in table 22, these measures should not be used in sensitive applications and should fail code review.

High Risk Functionality
When an HTTP request is received by the application for a function that is high risk, e.g. changing password, transferring funds, purchasing, the application may not simply execute the request, but should respond to the request with another request for the user’s password, or an out-of-band (i.e. two-factor) authentication item.

Preventing CSRF
Checking if the request has a valid session cookie is not enough, the application needs to have a unique identifier assocaited with every HTTP request sent to the application. CSRF requests (from an attackers e-mail) will not have this valid unique identifier. The reason CSRF requests won’t have this unique request identifier is the unique ID is rendered as a hidden field, or within the URL, and is appended to the HTTP request once a link/button press is selected. The attacker will have no knowledge of this unique ID, as it is random and rendered dynamically per link, per page.

Application logic to prevent CSRF then include:
1. A list of unique IDs is compiled prior to delivering the page to the user. The list contains all valid unique IDs generated for all links on a given page. The unique ID could be derived from a secure random generator such as SecureRandom for J2EE and could be stored in the session or another centralized cache.

2. A unique ID is appended to each link/form on the requested page prior to being displayed to the user.

3. The application checks if the unique ID passed with the HTTP request is valid for a given request. If the unique ID passed with the HTTP request is valid for a given request.

4. If the unique ID is not present, terminate the user session and display an error to the user.

General Recommendation: Synchronizer Token Pattern
In order to facilitate a “transparent but visible” CSRF solution, developers are encouraged to adopt the Synchronizer Token Pattern http://www.corej2eepatterns.com/Design/PresoDesign.htm) [add reference]. The synchronizer token pattern requires the generating of random “challenge” tokens that are associated with the user’s current session. These challenge tokens are then inserted within the HTML forms and links associated with sensitive server-side operations. When the user wishes to invoke these sensitive operations, the HTTP request should include this challenge token. It is then the responsibility of the server application to verify the existence and correctness of this token. By including a challenge token with each request, the developer has a strong control to verify that the user actually intended to submit the desired requests. Inclusion of a required security token in HTTP requests associated with sensitive business functions helps mitigate CSRF attacks as successful exploitation assumes the attacker knows the randomly generated token for the target victim’s session. This is analogous to the attacker being able to guess the target victim’s session identifier. The following synopsis describes a general approach to incorporate challenge tokens within the request.

When a Web application formulates a request (by generating a link or form that causes a request when submitted or clicked by the user), the application should include a hidden input parameter with a common name such as “CSRFToken”. The value of this token must be randomly generated such that it cannot be guessed by an attacker. Consider leveraging the java.security.SecureRandom class for Java applications to generate a sufficiently long random token. Alternative generation algorithms include the use of 256-bit BASE64 encoded hashes. Developers that choose this generation algorithm must make sure that there is randomness and uniqueness utilized in the data that is hashed to generate the random token.

FIGURE A8.1
Example showing CSRF token in hidden field

<form action=”/transfer.do” method=”post”>
<input type=”hidden” name=”CSRFToken”
value=”OWY4NmQwODE4ODRjN2Q2NTlhMmZlYWE...
wYzU1YWQwMTVhM2JmNGYxYjJiMGI4MjJjZDE1ZDZ...
MGYwMGEwOA==”>
…
</form>

Depending on the risk level of the product, it may only generate this token once for the current session. After initial generation of this token, the value is stored in the session and is utilized for each subsequent request until the session expires. When a request is issued by the end-user, the server-side component must verify the existence and validity of the token in the request as compared to the token found in the session. If the token was not found within the request or the value provided does not match the value within the session, then the request should be aborted, token should be reset and the event logged as a potential CSRF attack in progress.

To further enhance the security of this proposed design, consider randomizing the CSRF token parameter name and or value for each request. Implementing this approach results in the generation of per-request tokens as opposed to per-session tokens. Note, however, that this may result in usability concerns. For example, the “Back” button browser capability is often hindered as the previous page may contain a token that is no longer valid. Interaction with this previous page will result in a CSRF false positive security event at the server. Regardless of the approach taken, developers are encouraged to protect the CSRF token the same way they protect authenticated session identifiers, such as the use of SSLv3/TLS.

Disclosure of Token in URL
Many implementations of this control include the challenge token in GET (URL) requests as well as POST requests. This is often implemented as a result of sensitive server-side operations being invoked as a result of embedded links in the page or other general design patterns. These patterns are often implemented without knowledge of CSRF and an understanding of CSRF prevention design strategies. While this control does help mitigate the risk of CSRF attacks, the unique per-session token is being exposed for GET requests. CSRF tokens in GET requests are potentially leaked at several locations: browser history, HTTP log files, network appliances that make a point to log the first line of an HTTP request, and Referer headers if the protected site links to an external site.

In the latter case (leaked CSRF token due to the Referer header being parsed by a linked site), it is trivially easy for the linked site to launch a CSRF attack on the protected site, and they will be able to target this attack very effectively, since the Referer header tells them the site as well as the CSRF token. The attack could be run entirely from javascript, so that a simple addition of a script tag to the HTML of a site can launch an attack (whether on an originally malicious site or on a hacked site). This attack scenario is easy to prevent, the referer will be omitted if the origin of the request is HTTPS. Therefore this attack does not affect web applications that are HTTPS only.

The ideal solution is to only include the CSRF token in POST requests and modify server-side actions that have state changing affect to only respond to POST requests. This is in fact what the RFC 2616 requires for GET requests. If sensitive server-side actions are guaranteed to only ever respond to POST requests, then there is no need to include the token in GET requests.

Viewstate (ASP.NET)
ASP.NET has an option to maintain your ViewState. The ViewState indicates the status of a page when submitted to the server. The status is defined through a hidden field placed on each page with a <form runat=”server”> control. Viewstate can be used as a CSRF defense, as it is difficult for an attacker to forge a valid Viewstate. It is not impossible to forge a valid Viewstate since it is feasible that parameter values could be obtained or guessed by the attacker. However, if the current session ID is added to the ViewState, it then makes each Viewstate unique, and thus immune to CSRF.

To use the ViewStateUserKey property within the Viewstate to protect against spoofed post backs add the following in the OnInit virtual method of the page-derived class (This property must be set in the Page.Init event)

FIGURE A8.2
Example setting ViewStateUserKey in ASP.NET

protected override OnInit(EventArgs e) {
 base.OnInit(e);
 if (User.Identity.IsAuthenticated)
 ViewStateUserKey = Session.SessionID; }

To key the Viewstate to an individual using a unique value of your choice use “(Page.ViewStateUserKey)”. This must be applied in Page_Init because the key has to be provided to ASP.NET before Viewstate is loaded. This option has been available since ASP.NET 1.1. However, there are limitations on this mechanism. Such as, ViewState MACs are only checked on POSTback, so any other application requests not using postbacks will happily allow CSRF.

Double Submit Cookies
Double submitting cookies is defined as sending a random value in both a cookie and as a request parameter, with the server verifying if the cookie value and request value are equal.

When a user authenticates to a site, the site should generate a (cryptographically strong) pseudorandom value and set it as a cookie on the user’s machine separate from the session id. The site does not have to save this value in any way. The site should then require every sensitive submission to include this random value as a hidden form value (or other request parameter) and also as a cookie value. An attacker cannot read any data sent from the server or modify cookie values, per the same-origin policy. This means that while an attacker can send any value he wants with a malicious CSRF request, the attacker will be unable to modify or read the value stored in the cookie. Since the cookie value and the request parameter or form value must be the same, the attacker will be unable to successfully submit a form unless he is able to guess the random CSRF value.

Direct Web Remoting (DWR) Java library version 2.0 has CSRF protection built in as it implements the double cookie submission transparently. [add reference]
The above CSRF prevents rely on the use of a unique token and the Same-Origin Policy to prevent CSRF by maintaining a secret token to authenticate requests. The following methods can prevent CSRF by relying upon similar rules that CSRF exploits can never break.
	
Checking The Referer Header
Although it is trivial to spoof the referer header on your own browser, it is impossible to do so in a CSRF attack. Checking the referer is a commonly used method of preventing CSRF on embedded network devices because it does not require a per-user state. This makes a referer a useful method of CSRF prevention when memory is scarce. This method of CSRF mitigation is also commonly used with unauthenticated requests, such as requests made prior to establishing a session state which is required to keep track of a synchronization token.

However, checking the referer is considered to be a weaker from of CSRF protection. For example, open redirect vulnerabilities can be used to exploit GET-based requests that are protected with a referer check and some organizations or browser tools remove referrer headers as a form of data protection. There are also common implementation mistakes with referer checks. For example if the CSRF attack originates from an HTTPS domain then the referer will be omitted. In this case the lack of a referer should be considered to be an attack when the request is performing a state change. Also note that the attacker has limited influence over the referer. For example, if the victim’s domain is “site.com” then an attacker have the CSRF exploit originate from “site.com.attacker.com” which may fool a broken referer check implementation. XSS can be used to bypass a referer check.

In short, referer checking is a reasonable form of CSRF intrusion detection and prevention even though it is not a complete protection. Referer checking can detect some attacks but not stop all attacks. For example, if the HTTP referrer is from a different domain and you are expecting requests from your domain only, you can safely block that request.

Checking The Origin Header
The Origin HTTP Header standard [add reference] was introduced as a method of defending against CSRF and other Cross-Domain attacks. Unlike the referer, the origin will be present in HTTP request that originates from an HTTPS URL. If the origin header is present, then it should be checked for consistency.

Challenge-Response
Challenge-Response is another defense option for CSRF. As mentioned before it is typically used when the functionality being invoked is high risk. While challenge-response is a very strong defense to CSRF (assuming proper implementation), it does impact user experience. For applications in need of high security, tokens (transparent) and challenge-response should be used on high risk functions.

The following are some examples of challenge-response options:
• CAPTCHA
• Re-Authentication (password)
• One-time Token

No Cross-Site Scripting (XSS) Vulnerabilities
Cross-Site Scripting is not necessary for CSRF to work. However, any cross-site scripting vulnerability can be used to defeat token, Double-Submit cookie, referer and origin based CSRF defenses. This is because an XSS payload can simply read any page on the site using a XMLHttpRequest and obtain the generated token from the response, and include that token with a forged request. This technique is exactly how the MySpace (Samy) worm defeated MySpace’s anti CSRF defenses in 2005, which enabled the worm to propagate. XSS cannot defeat challenge-response defenses such as Captcha, re-authentication or one-time passwords. It is imperative that no XSS vulnerabilities are present to ensure that CSRF defenses can’t be circumvented.

2.3 References
TBD

15 USING COMPONENTS WITH KNOWN VULNERABILITIES
Components, such as libraries, frameworks, and other software modules, almost always run with full privileges. If a vulnerable component is exploited, such an attack can facilitate serious data loss or server takeover. Applications using components with known vulnerabilities may undermine application defenses and enable a range of possible attacks and impacts.

15.1 Description
Today it would be rare for an application or software component to be developed without the re-use of some open source or paid-for library or framework. This makes a lot of sense as these frameworks and libraries are already developed and working, and have had a good degree of testing applied. However these third party components can also be a source of security vulnerabilities when an attacker finds a flaw in the components code, in fact this flaw has added attraction since the attacker knows the exploit will work on everyone who is using the component.

This issue has matured to such a state that flaws/exploits for popular frameworks, libraries and operating systems are sold on underground markets for large sums of money.

What to Review
There is really no code to review for this topic, unless your organization has taken it upon itself to review the code of the component (assuming its open source and not a closed source third party library), in which case the code review would be similar to any other audit review. However code review can be used within the larger company-wide tracking or audit mechanisms that lets the organization know what third party code it is using.

Regardless of the size of company, the use of third party components, and their versions, should be tracked to ensure the organization can be alerted when any security vulnerabilities are flagged. For smaller companies with 1 or 2 products this tracking could be as easy as a spreadsheet or wiki page, however for larger companies with 100s of applications or products, the task of tracking developer use of third party frameworks and libraries is equally as large as the risk posed by those libraries.

If a company has 20 products and each of those products use 5 or 6 third party components (e.g. Apache web servers, OpenSSL crypto libraries, Java libraries for regex and DB interactions, etc.) that leaves the company with over 100 external sources where security vulnerabilities can come from. If the company suddenly hears of a heartbleed type vulnerability, it has to be able to react and upgrade those affected applications, or take other countermeasures, to protect itself and its customers.

Controlling the Ingredients
One method used by larger companies to limit their exposure to third party vulnerabilities is to control which libraries can be used by their developers. For example they could specify that developers should use a certain version of OpenSSL as the crypto library instead of other options.

This allows management and risk controllers to know their risk profile to vulnerabilities on the market, if a bug appears in bouncycastle, they know they are not exposed (i.e. some developer didn’t use bouncycastle on one of the products, because it’s not on the list of crypto libraries to use). On the other hand, if there is a bug in OpenSSL, all their eggs are in that basket and they need to upgrade immediately.
There will obviously be technical challenges to limiting the choices of third party components, and such a policy could be unpopular with developers who’ll want to use the latest and greatest framework, but the first step to securing a product is knowing what ingredients you’ve made it with.

How can such a policy be tracked or enforced? At some point the library or framework, in the form of .dll/.so or as source code, will be integrated into the codeline.

Such integrations should be subject to code review, and as a task of this code review the reviewer can check:
1. The library is one that can be used in the product suite (or maybe is already used and the developer is simply unaware, in which case the review should be rejected and the original integration used)

2. Any tracking or auditing software (even a basic spread sheet) is updated to reflect that the product is using the third party library. This allows for rapid remediation if a vulnerability appears, meaning the product will be patched.

SledgeHammer to Crack a Nut
One last responsibility of the reviewer will be to ensure the correct third party library is being used for the functionality needed. Many libraries come with vast amounts of functionality which may not be used. For example, is the developer including a library to perform their regex’s, but which also will include other functionality not used/needed by the application? This increases the attack surface of the application and can cause unexpected behavior when that extra code opens a port and communicates to the internet.

If the reviewer thinks too much functionality/code is being introduced they can advise to turn off non-used functionality, or better still find a way to not include that functionality in the product (e.g. by stripping out code, or hardcoding branches so unused functions are never used).

References
• TBD

16 UNVALIDATED REDIRECTS AND FORWARDS
Web applications frequently redirect and forward users to other pages and websites, and use untrusted data to determine the destination pages. Without proper validation, attackers can redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

16.1 Description
Unvalidated redirects and forwards are possible when a web application accepts untrusted input that could cause the web application to redirect the request to a URL contained within untrusted input. By modifying untrusted URL input to a site, an attacker may successfully launch a phishing scam and steal user credentials.

As the server name in the modified link is identical to the original site, phishing attempts may have a more trustworthy appearance. Invalidated redirect and forward attacks can also be used to maliciously craft a URL that would pass the application’s access control check and then forward the attacker to privileged functions that they would normally not be able to access.

Redirects
Redirect functionality on a web site allows a user’s browser to be told to go to a different page on the site. This can be done to improve user interface or track how users are navigating the site.

To provide the redirect functionality a site may have a specific URL to perform the redirect:
• http://www.example.com/utility/redirect.cgi

This page will take a parameter (from URL or POST body) of ‘URL’ and will send back a message to the user’s browser to go to that page, for example:
• http://www.example.com/utility/redirect.cgi?URL=http://www.example.com/viewtxn.html

However this can be abused as an attacker can attempt to make a valid user click on a link that appears to be for www.example.com but which will invoke the redirect functionality on example.com to cause the users browser to go to a malicious site (one that could look like example.com and trick the user into entering sensitive or authentication information:
• http://www.example.com/utiltiy/redirect cgi?URL=http://attacker.com/fakelogin.html

Forwards
Forwards are similar to redirects however the new page is not retrieved by the users browser (as occurred with the redirect) but instead the server framework will obtain the forwarded page and return it to the users browser. This is achieved by ‘forward’ commands within Java frameworks (e.g. Struts) or ‘Server.Transfer’ in .NET

As the forward is performed by the server framework itself, it limits the range of URLs the attacker can exploit to the current web site (i.e. attacker cannot ‘forward’ to attacker.com), however this attack can be used to bypass access controls. For example, where a site sends the forwarded page in the response:

• If purchasing, forward to ‘purchase.do’
• If cancelling, forward to ‘cancelled.do’

This will then be passed as a parameter to the web site:
• http://www.example.com/txn/acceptpayment.html?FWD=purchase

If instead an attacker used the forward to attempt to access to a different page within the web site, e.g. admin.do, then they may access pages that they are not authorized to view, because authorization is being applied on the ‘acceptpayment’ page, instead of the forwarded page.

What to Review
If any part of the URL being forwarded, or redirected, to is based on user input, then the site could be at risk.

Redirects
The following examples demonstrate unsafe redirect and forward code. The following Java code receives the URL from the ‘url’ parameter and redirects to that URL.

FIGURE A10.0
Unsafe redirect code in Java

response.sendRedirect(request.getParameter(“url”));

The following PHP code obtains a URL from the query string and then redirects the user to that URL.

FIGURE A10.1
Unsafe redirect code in PHP

$redirect_url = $_GET[‘url’];
 header(“Location: “ . $redirect_url);

A similar example of C# .NET Vulnerable Code:

FIGURE A10.2
Unsafe redirect code in C#.NET

string url = request.QueryString[“url”];
 Response.Redirect(url);

The above code is vulnerable to an attack if no validation or extra method controls are applied to verify the certainty of the URL. This vulnerability could be used as part of a phishing scam by redirecting users to a malicious site. If user input has to be used as part of the URL to be used, then apply strict validation to the input, ensuring it cannot be used for purposes other than intended.

Note that vulnerable code does not need to explicitly call a ‘redirect’ function, but instead could directly modify the response to cause the client browser to go to the redirected page. Code to look for is shown in table 23.

[image:]

Where an attacker has posted a redirecting URL on a forum, or sends in an e-mail, the web site can check the referer header to ensure the user is coming from a page within the site, although this countermeasure will not apply if the malicious URL is contained within the site itself.

Consider creating a whitelist of URLs or options that a redirect is allowed to go to, or deny the ability for the user input to determine the scheme or hostname of the redirect. A site could also encode (or encrypt) the URL value to be redirected to such that an attacker cannot easily create a malicious URL parameter that, when unencoded (or unencypted), will be considered valid.

Forwards
The countermeasure for forwards is to either whitelist the range of pages that can be forwarded to (similar to redirects) and to enforce authentication on the forwarded page as well as the forwarding page. This means that even if an attacker manages to force a forward to a page they should not have access to, the authentication check on the forwarded page will deny them access.

Note on J2EE
There is a noted flaw related to the “sendRedirect” method in J2EE applications. For example:
• response.sendRedirect(“home.html”);

This method is used to send a redirection response to the user who then gets redirected to the desired web component whose URL is passed an argument to the method. One such misconception is that execution flow in the Servlet/JSP page that is redirecting the user stops after a call to this method. Note that if there is code present after the ‘If’ condition it will be executed.

The fact that execution of a servlet or JSP continues even after sendRedirect() method, also applies to Forward method of the RequestDispatcher Class. However, <jsp:forward> tag is an exception, it is observed that the execution flow stops after the use of <jsp:forward> tag.

After issue a redirect or forward, terminate code flow using a “return” statement.

References
• OWASP Article on Open Redirects https://www.owasp.org/index.php/Open_redirect

• CWE Entry 601 on Open Redirects http://cwe.mitre.org/data/definitions/601.html

• WASC Article on URL Redirector Abuse http://projects.webappsec.org/w/page/13246981/URL%20Redirector%20Abuse

• Google blog article on the dangers of open redirects http://googlewebmastercentral.blogspot.com/2009/01/open-redirect-urls-is-your-site-being.html

• Preventing Open Redirection Attacks (C#) http://www.asp.net/mvc/tutorials/security/preventing-open-redirection-attacks

AX - General
Not all vulnerabilities and associated advice fits into the OWASP Top 10, hence this section covers technologies that are not specific to the Top 10 categories.

17 HTML5
HTML5 was created to replace HTLML4, XHTML and the HTML DOM Level 2. The main purpose of this new standard is to provide dynamic content without the use of extra proprietary client side plugins. This allows designers and developers to create exceptional sites providing a great user experience without having to install any additional plug-ins into the browser.

17.1 Description
Ideally users should have the latest web browser installed but this does not happens as regularly as security experts advice, therefore the website should implement 2 layer controls, one layer independent from browser type, second, as an additional control.

What to Review: Web Messaging
Web Messaging (also known as Cross Domain Messaging) provides a means of messaging between documents from different origins in a way that is generally safer than the multiple hacks used in the past to accomplish this task. The communication API is as follows:

FIGURE A10.3
HTML5 Web Messaging API

otherWindow.postMessage(message, targetOrigin, [transfer]);

However, there are still some recommendations to keep in mind:
• When posting a message, explicitly state the expected origin as the second argument to ‘postMessage’ rather than ‘*’ in order to prevent sending the message to an unknown origin after a redirect or some other means of the target window’s origin changing.

• The receiving page should always:

o Check the ‘origin’ attribute of the sender to verify the data is originating from the expected location.
o Perform input validation on the ‘data’ attribute of the event to ensure that it’s in the desired format.

• Don’t assume you have control over the ‘data’ attribute. A single Cross Site Scripting flaw in the sending page allows an attacker to send messages of any given format.

• Both pages should only interpret the exchanged messages as ‘data’. Never evaluate passed messages as code (e.g. via ‘eval()’) or insert it to a page DOM (e.g. via ‘innerHTML’), as that would create a DOM-based XSS vulnerability.

• To assign the data value to an element, instead of using an insecure method like ‘element.innerHTML = data’, use the safer option: ‘element.textContent = data;’

• Check the origin properly exactly to match the FQDN(s) you expect. Note that the following code: ‘ if(message.orgin.indexOf(“.owasp.org”)!=-1) { /* ... */ }’ is very insecure and will not have the desired behavior as ‘www.owasp.org.attacker.com’ will match.

• If you need to embed external content/untrusted gadgets and allow user-controlled scripts (which is highly discouraged), consider using a JavaScript rewriting framework such as Google’s Caja or check the information on sandboxed frames.

What to Review: Cross Origin Resource Sharing
Cross Origin Resource Sharing or CORS is a mechanism that enables a web browser to perform “cross-domain” requests using the XMLHttpRequest L2 API in a controlled manner. In the past, the XMLHttpRequest L1 API only allowed requests to be sent within the same origin as it was restricted by the same origin policy.

Cross-Origin requests have an Origin header that identifies the domain initiating the request and is automatically included by the browser in the request sent to the server. CORS defines the protocol between a web browser and a server that will determine whether a cross-origin request is allowed. In order to accomplish this goal, there are HTTP headers that provide information on the messaging context including: Origin, Access-Control-Request-Method, Access-Control-Request-Headers, Access-Control-Allow-Origin, Access-Control-Allow-Credentials, Access-Control-Allow-Methods, Access-Control-Allow-Headers.

The CORS specification mandates that for non simple requests, such as requests other than GET or POST or requests that uses credentials, a pre-flight OPTIONS request must be sent in advance to check if the type of request will have a negative impact on the data. The pre-flight request checks the methods, headers allowed by the server, and if credentials are permitted, based on the result of the OPTIONS request, the browser decides whether the request is allowed or not. More information on CORS requests can be found at reference [x] and [y].

Items to note when reviewing code related to CORS includes:
• Ensure that URLs responding with ‘Access-Control-Allow-Origin: *’ do not include any sensitive content or information that might aid attacker in further attacks. Use the ‘Access-Control-Allow-Origin’ header only on chosen URLs that need to be accessed cross-domain. Don’t use the header for the whole domain.

• Allow only selected, trusted domains in the ‘Access-Control-Allow-Origin’ header. Prefer whitelisting domains over blacklisting or allowing any domain (do not use ‘*’ wildcard nor blindly return the ‘Origin’ header content without any checks).

• Keep in mind that CORS does not prevent the requested data from going to an unauthenticated location. It’s still important for the server to perform usual Cross-Site Request Forgery prevention.

• While the RFC recommends a pre-flight request with the ‘OPTIONS’ verb, current implementations might not perform this request, so it’s important that “ordinary” (‘GET’ and ‘POST’) requests perform any access control necessary.

• Discard requests received over plain HTTP with HTTPS origins to prevent mixed content bugs.

• Don’t rely only on the Origin header for Access Control checks. Browser always sends this header in CORS requests, but may be spoofed outside the browser. Application-level protocols should be used to protect sensitive data.

What to Review: WebSockets
Traditionally the HTTP protocol only allows one request/response per TCP connection. Asynchronous JavaScript and XML (AJAX) allows clients to send and receive data asynchronously (in the background without a page refresh) to the server, however, AJAX requires the client to initiate the requests and wait for the server responses (half-duplex). HTML5 WebSockets allow the client/server to create a ‘full-duplex’ (two-way) communication channels, allowing the client and server to truly communicate asynchronously. WebSockets conduct their initial ‘upgrade’ handshake over HTTP and from then on all communication is carried out over TCP channels.
The following is sample code of an application using Web Sockets:

FIGURE A10.4
HTML5 Web Sockets implementation

[Constructor(in DOMString url, optional in DOMString protocol)]
 interface WebSocket
 { readonly attribute DOMString URL;
 // ready state const unsigned short CONNECTING = 0;
 const unsigned short OPEN = 1;
 const unsigned short CLOSED = 2;
 readonly attribute unsigned short readyState;
 readonly attribute unsigned long bufferedAmount;
 // networking
 attribute Function onopen;
 attribute Function onmessage;
 attribute Function onclose;
 boolean send(in DOMString data);
 void close();
 };
 WebSocket implements EventTarget;

 var myWebSocket = new WebSocket(“ws://www.websockets.org”);

 myWebSocket.onopen = function(evt) { alert(“Connection open ...”); };
 myWebSocket.onmessage = function(evt) { alert(“Received Message: “ + evt.data); };
 myWebSocket.onclose = function(evt) { alert(“Connection closed.”); };

When reviewing code implementing websockets, the following items should be taken into consideration:
• Drop backward compatibility in implemented client/servers and use only protocol versions above hybi-00. Popular Hixie-76 version (hiby-00) and older are outdated and insecure.

• The recommended version supported in latest versions of all current browsers is rfc6455 RFC 6455 (supported by Firefox 11+, Chrome 16+, Safari 6, Opera 12.50, and IE10).

• While it’s relatively easy to tunnel TCP services through WebSockets (e.g. VNC, FTP), doing so enables access to these tunneled services for the in-browser attacker in case of a Cross Site Scripting attack. These services might also be called directly from a malicious page or program.

• The protocol doesn’t handle authorization and/or authentication. Application-level protocols should handle that separately in case sensitive data is being transferred.

• Process the messages received by the websocket as data. Don’t try to assign it directly to the DOM nor evaluate as code. If the response is JSON, never use the insecure eval() function; use the safe option JSON.parse() instead.

• Endpoints exposed through the ‘ws://’ protocol are easily reversible to plain text. Only ‘wss://’ (WebSockets over SSL/TLS) should be used for protection against Man-In-The-Middle attacks.

• Spoofing the client is possible outside a browser, so the WebSockets server should be able to handle incorrect/malicious input. Always validate input coming from the remote site, as it might have been altered.

• When implementing servers, check the ‘Origin:’ header in the Websockets handshake. Though it might be spoofed outside a browser, browsers always add the Origin of the page that initiated the Websockets connection.

• As a WebSockets client in a browser is accessible through JavaScript calls, all Websockets communication can be spoofed or hijacked through [[Cross Site Scripting Flaw|Cross Site Scripting]]. Always validate data coming through a WebSockets connection.

What to Review: Server-Sent Events
Server sent events seem similar to WebSockets, however they do not use a special protocol (they re-used HTTP) and they allow the client browser to solely listen for updates (messages) from the server, thereby removing the need for the client to send any polling or other messages up to the server. More information on server sent events can be found at [x].

When reviewing code that is handling server sent events, items to keep in mind are:
• Validate URLs passed to the ‘EventSource’ constructor, even though only same-origin URLs are allowed.

• As mentioned before, process the messages (‘event.data’) as data and never evaluate the content as HTML or script code.

• Always check the origin attribute of the message (‘event.origin’) to ensure the message is coming from a trusted domain. Use a whitelist.

18 Same Origin Policy
Same Origin Policy (SOP), also called Single Origin Policy is a part of web application security model. Same Origin Policy has vulnerabilities that the code reviewer needs to take into consideration. SOP covers three main areas of web development, Trust, Authority, and Policy. Same Origin Policy is made of the combination of three components (Scheme, Hostname and Port).

18.1 Description
Internet Explorer has two major exceptions when it comes to same origin policy:
1. Trust Zones: if both domains are in highly trusted zone e.g, corporate domains, then the same origin limitations are not applied.

2. Port: IE doesn’t include port into Same Origin components, therefore http://yourcompany.com:81/index.html and http://yourcompany.com/index.html are considered from same origin and no restrictions are applied.

These exceptions are non-standard and not supported in any of other browser but would be helpful if developing an app for Windows RT (or) IE based web application.

The following figure displays the various parts of the URL:

[image:]
• foo://username:password@example.com:8042/over/there/index.dtb?type=animal&name =narwhal#nose

5.3 What to Review
• If application allows user-supplied data in the URL then the code reviewer needs to make sure the path, query or Fragment Id Code data is validated.

• Make sure user-supplied scheme name or authority section has good input validation. This is a major code injection and phishing risk. Only permit prefixes needed by the application. Do not use blacklisting. Code reviewer should make sure only whitelisting is used for validation.

• Make sure authority section should only contain alphanumerics, “-“, and “.” And be followed by “/”, “?”,”#”. The risk here an IDN homograph attack.

• Code reviewer needs to make sure the programmer is not assuming default behavior because the programmers browser properly escapes a particular character or browser standard says the character will be escaped properly before allowing any URL-derived values are put inside a database query or the URL is echoed back to the user.

• Resources with a MIME type of image/png are treated as images and resources with MIME type of text/html are treated as HTML documents. Web applications can limit that content’s authority by restricting its MIME type. For example, serving user-generated content as image/png is less risky than serving user-generated content as text/html.

• Privileges on document and resources should grant or withhold privileges from origins as a whole (rather than discriminating between individual documents within an origin). Withholding privileges is ineffective because the document without the privilege can usually obtain the privilege anyway because SOP does not isolate documents within an origin.

19 Reviewing Logging code
Applications log messages of varying intensity and to varying sinks. Many logging APIs allow you to set the granularity of log message from a state of logging nearly all messages at level ‘trace’ or ‘debug’ to only logging the most important messages at level ‘critical’. Where the log message is written to is also a consideration, sometimes it can be written to a local file, other times to a database log table, or it could be written over a network link to a central logging server.

The volume of logging has to be controlled since the act of writing messages to the log uses CPU cycles, thus writing every small detail to a log will use up more resources (CPU, network bandwidth, disk space). Couple that with the fact that the logs have to be parsed or interpreted by a tool or human in order for them to be useful, the consumer of the log could have to parse through thousands of lines to find a message of consequence.

19.1 Description
Logs can vary by type; for example a log may simply contain application state or process data, allowing support or development track what the system is doing when a bug has occurred. Other logs may be specific to security, only logging important information that a central security system will have interest in. Further logs could be used for business purposes, such as billing.

Application logs can be powerful as the application business logic has the most information about the user (e.g. identity, roles, permissions) and the context of the event (target, action, outcomes), and often this data is not available to either infrastructure devices, or even closely-related applications. Application logging is an important feature of a production system, especially to support personnel and auditors, however it is often forgotten and is rarely described in sufficient detail in design/requirement documentation. The level and content of security monitoring, alerting and reporting needs to be set during the requirements and design stage of projects, and should be proportionate to the information security risks. Application logging should also be consistent within the application, consistent across an organization’s application portfolio and use industry standards where relevant, so the logged event data can be consumed, correlated, analyzed and managed by a wide variety of systems.

All types of applications may send event data to remote systems, either directly over a network connection, or asynchronously though a daily/weekly/monthly secure copy of the log to some centralized log collection and management system (e.g. SIEM or SEM) or another application elsewhere.

If the information in the log is important, and could possibly be used for legal matters, consider how the source (log) can be verified, and how integrity and non-repudiation can be enforced. Log data, temporary debug logs, and backups/copies/extractions, must not be destroyed before the duration of the required data retention period, and must not be kept beyond this time. Legal, regulatory and contractual obligations may impact on these periods.

Server applications commonly write event log data to the file system or a database (SQL or NoSQL), however logging could be required on client devices such as applications installed on desktops and on mobile devices may use local storage and local databases. Consider how this client logging data is transferred to the server.

What to Review
When reviewing code modules from a logging point of view, some common issues to look out for include:
• When using the file system, it is preferable to use a separate partition than those used by the operating system, other application files and user generated content

• For file-based logs, apply strict permissions concerning which users can access the directories, and the permissions of files within the directories

• In web applications, the logs should not be exposed in web-accessible locations, and if done so, should have restricted access and be configured with a plain text MIME type (not HTML)

• When using a database, it is preferable to utilize a separate database account that is only used for writing log data and which has very restrictive database, table, function and command permissions

• Consider what types of messages should be logged:
o Input validation failures e.g. protocol violations, unacceptable encodings, invalid parameter names and values

o Output validation failures e.g. database record set mismatch, invalid data encoding

o Authentication successes and failures

o Authorization (access control) failures

o Session management failures e.g. cookie session identification value modification

o Connection timings

• Consider what each log message should contain:
o Date and time, in some common format (also makes sense to ensure all nodes of an application are synced through something like NTP

o User performing the action

o Action being performed/attempted

o Information on the client, e.g. IP address, source port, user-agent

o External classifications e.g. NIST Security Content Automation Protocol (SCAP), Mitre Common Attack Pattern Enumeration and Classification (CAPEC)

o Perform sanitization on all event data to prevent log injection attacks e.g. carriage return (CR), line feed (LF) and delimiter characters (and optionally to remove sensitive data)

• If writing to databases, read, understand and apply the SQL injection cheat sheet

• Ensure logging is implemented and enabled during application security, fuzz, penetration and performance testing

• Ensure logging cannot be used to deplete system resources, for example by filling up disk space or exceeding database transaction log space, leading to denial of service

• The logging mechanisms and collected event data must be protected from mis-use such as tampering in transit, and unauthorized access, modification and deletion once stored

• Store or copy log data to read-only media as soon as possible

• Consider what should not be logged:
o Session identification values (consider replacing with a hashed value if needed to track session specific events)

o Sensitive personal data and some forms of personally identifiable information (PII)

o Authentication passwords (successful or unsuccessful)

o Database connection strings

o Keys

o Data of a higher security classification than the logging system is allowed to store

References
• See NIST SP 800-92 Guide to Computer Security Log Management for more guidance.

• Mitre Common Event Expression (CEE)

• PCISSC PCI DSS v2.0 Requirement 10 and PA-DSS v2.0 Requirement 4

• Other Common Log File System (CLFS), Microsoft

20 Error Handling

Proper error handling is important in two ways:
1. It may affect the state of the application. The initial failure to prevent the error may cause the application to traverse into an insecure state. This covers the key premise of ‘failing securely’, errors induced should not leave the application in an insecure state. Resources should be locked down and released, sessions terminated (if required), and calculations or business logic should be halted (depending on the type of error, of course).

2. It may leak system information to a user. An important aspect of secure application development is to prevent information leakage. Error messages give an attacker great insight into the inner workings of an application. Weak error handling also aids the attacker, as the errors returned may assist them in constructing correct attack vectors.

A generic error page for most errors is recommended, this approach makes it more difficult for attackers to identify signatures of potentially successful attacks such as blind SQL injection using booleanization ‘’<should include reference>’’ or analysis of response time characteristics.

20.1 Description
The purpose of reviewing the Error Handling code is to assure that the application fails safely under all possible error conditions, expected and unexpected. No sensitive information is presented to the user when an error occurs. A company coding guidelines should include sections on Error Handling and how it should be controlled by an application suite, this will allow developers to code against this guidelines as well as review against them.A company coding guidelines should include sections on Error Handling and how it should be controlled by an application suite, this will allow developers to code against this guidelines as well as review against them.

For example, SQL injection is much tougher to successfully execute without some healthy error messages. It lessens the attack footprint, and an attacker would have to resort to using “blind SQL injection” which is more difficult and time consuming.

A well-planned error/exception handling guideline is important in a company for three reasons:
1. Good error handling does not give an attacker any information which is a means to an end, attacking the application

2. A proper centralised error strategy is easier to maintain and reduces the chance of any uncaught errors “bubbling up” to the front end of an application.

3. Information leakage could lead to social engineering exploits, for example if the hosting companies name is returned, or some employees name can be seen.

Regardless of whether the development language provide checked exceptions or not, reviewers should remember:
• Not all errors are exceptions. Don’t rely on exception handling to be your only way of handling errors, handle all case statement ‘default’ sections, ensure all ‘if’ statements have their ‘else’ clauses covered, ensure that all exits from a function (e.g. return statements, exceptions, etc.) are covered. RAII concepts (e.g. auto pointers and the like) are an advantage here. In languages like Java and C#, remember that errors are different from exceptions (different hierarchy) and should be handled.

• Catching an exception is not automatically handling it. You’ve caught your exception, so how do you handle it? For many cases this should be obvious enough, based on your business logic, but for some (e.g. out of memory, array index out of bounds, etc.) the handling many not be so simple.

• Don’t catch more that you can handle. Catch all clauses (e.g. ‘catch(Exception e)’ in Java & C# or ‘catch(...) in C++) should be avoided as you will not know what type of exception you are handling, and if you don’t know the exception type, how do you accurately handle it? It could be that the downstream server is not responding, or a user may have exceeded their quota, or you may be out of memory, these issues should be handled in different ways and thus should be caught in exception clauses that are specific.

When an exception or error is thrown, we also need to log this occurrence. Sometimes this is due to bad development, but it can be the result of an attack or some other service your application relies on failing. This has to be imagined in the production scenario, if your application handles ‘failing securely’ by returning an error response to the client, and since we don’t want to leak information that error will be generic, we need to have some way of identifying why the failure occurred. If your customer reports 1000’s of errors occurred last night, you know that customer is going to want to know why. If you don’t have proper logging and traceability coded into your application then you will not be able to establish if those errors were due to some attempted hack, or an error in your business logic when handling a particular type of error.

All code paths that can cause an exception to be thrown should check for success in order for the exception not to be thrown. This could be hard to impossible for a manual code review to cover, especially for large bodies of code. However if there is a debug version of the code, then modules/functions could throw relevant exceptions/errors and an automated tool can ensure the state and error responses from the module is as expected. This then means the code reviewer has the job of ensuring all relevant exceptions/errors are tested in the debug code.

What to Review
When reviewing code it is recommended that you assess the commonality within the application from an error/exception handling perspective. Frameworks have error handling resources which can be exploited to assist in secure programming, and such resources within the framework should be reviewed to assess if the error handling is “wired-up” correctly. A generic error page should be used for all exceptions if possible as this prevents the attacker from identifying internal responses to error states. This also makes it more difficult for automated tools to identify successful attacks.

For JSP struts this could be controlled in the struts-config.xml file, a key file when reviewing the wired-up struts environment:

FIGURE A10.5
Generic exception handling in struts

<exception key=”bank.error.nowonga”
 path=”/NoWonga.jsp”
 type=”mybank.account.NoCashException”/>

Specification can be done for JSP in web.xml in order to handle unhandled exceptions. When unhandled exceptions occur, but are not caught in code, the user is forwarded to a generic error page:

FIGURE A10.6
Unhandled exception in struts

<error-page>
 <exception-type>UnhandledException</exception-type>
 <location>GenericError.jsp</location>
 </error-page>

Also in the case of HTTP 404 or HTTP 500 errors during the review you may find:

FIGURE A10.7
Specific exception handling in struts

<error-page>
 <error-code>500</error-code>
 <location>GenericError.jsp</location>
 </error-page>

For IIS development the ‘Application_Error()’ handler will allow the application to catch all uncaught exceptions and handle them in a consistent way. Note this is important or else there is a chance your exception informaiton could be sent back to the client in the response.

For Apache development, returning failures from handlers or modules can prevent an further processing by the Apache engine and result in an error response from the server. Response headers, body, etc can be set by by the handler/module or can be configured using the “ErrorDocument” configuration. We should use a localized description string in every exception, a friendly error reason such as “System Error – Please try again later”. When the user sees an error message, it will be derived from this description string of the exception that was thrown, and never from the exception class which may contain a stack trace, line number where the error occurred, class name, or method name.

Do not expose sensitive information like exception messages. Information such as paths on the local file system is considered privileged information; any internal system information should be hidden from the user. As mentioned before, an attacker could use this information to gather private user information from the application or components that make up the app.

Don’t put people’s names or any internal contact information in error messages. Don’t put any “human” information, which would lead to a level of familiarity and a social engineering exploit.

What to Review: Failing Securely
There can be many different reasons why an application may fail, for example:
• The result of business logic conditions not being met.

• The result of the environment wherein the business logic resides fails.

• The result of upstream or downstream systems upon which the application depends fail.

• Technical hardware / physical failure.

Failures are like the Spanish Inquisition; popularly nobody expected the Spanish Inquisition (see Monty Python) but in real life the Spanish knew when an inquisition was going to occur and were prepared for it, similarly in an application, though you don’t expect errors to occur your code should be prepared for them to happen. In the event of a failure, it is important not to leave the “doors” of the application open and the keys to other “rooms” within the application sitting on the table. In the course of a logical workflow, which is designed based upon requirements, errors may occur which can be programmatically handled, such as a connection pool not being available, or a downstream server returning a failure.
Such areas of failure should be examined during the course of the code review. It should be examined if resources should be released such as memory, connection pools, file handles etc.

The review of code should also include pinpointing areas where the user session should be terminated or invalidated. Sometimes errors may occur which do not make any logical sense from a business logic perspective or a technical standpoint, for example a logged in user looking to access an account which is not registered to that user. Such conditions reflect possible malicious activity. Here we should review if the code is in any way defensive and kills the user’s session object and forwards the user to the login page. (Keep in mind that the session object should be examined upon every HTTP request).

What to Review: Potentially Vulnerable Code
Java
In Java we have the concept of an error object; the Exception object. This lives in the Java package java.lang and is derived from the Throwable object. Exceptions are thrown when an abnormal occurrence has occurred. Another object derived from Throwable is the Error object, which is thrown when something more serious occurs. The Error object can be caught in a catch clause, but cannot be handled, the best you can do is log some information about the Error and then re-throw it.

Information leakage can occur when developers use some exception methods, which ‘bubble’ to the user UI due to a poor error handling strategy. The methods are as follows:
• printStackTrace()
• getStackTrace()

Also important to know is that the output of these methods is printed in System console, the same as System.out.println(e) where there is an Exception. Be sure to not redirect the outputStream to PrintWriter object of JSP, by convention called “out”, for example:
• printStackTrace(out);

Note it is possible to change where system.err and system.out write to (like modifying fd 1 & 2 in bash or C/C++), using the java.lang.system package:
• setErr() for the System.err field, and
• setOut() for the System.out field.

This could be used on a process wide basis to ensure no output gets written to standard error or standard out (which can be reflected back to the client) but instead write to a configured log file.

C#.NET
In .NET a System.Exception object exists and has commonly used child objects such as ApplicationException and SystemException are used. It is not recommended that you throw or catch a SystemException this is thrown by runtime.

When an error occurs, either the system or the currently executing application reports it by throwing an exception containing information about the error, similar to Java. Once thrown, an exception is handled by the application or by the default exception handler. This Exception object contains similar methods to the Java implementation such as:
• StackTrace
• Source
• Message
• HelpLink

In .NET we need to look at the error handling strategy from the point of view of global error handling and the handling of unexpected errors. This can be done in many ways and this article is not an exhaustive list. Firstly, an Error Event is thrown when an unhandled exception is thrown.

This is part of the TemplateControl class, see reference:
•http://msdn.microsoft.com/library/default.asp?url=/library/enus/cpref/html/frlrfSystemWebUITemplateControlClassErrorTopic.asp

Error handling can be done in three ways in .NET, executed in the following order:
· On the aspx or associated codebehind page in the Page_Error.

· In the global.asax file’s Application_Error (as mentioned before).

· In the web.config file’s customErrors section.
It is recommended to look in these areas to understand the error strategy of the application.

Classic ASP
Unlike Java and .NET, classic ASP pages do not have structured error handling in try-catch blocks. Instead they have a specific object called “err”. This makes error handling in a classic ASP pages hard to do and prone to design errors on error handlers, causing race conditions and information leakage. Also, as ASP uses VBScript (a subtract of Visual Basic), sentences like “On Error GoTo label” are not available. In classic ASP there are two ways to do error handling, the first is using the err object with a “On Error Resume Next” and “On Error GoTo 0”.

FIGURE A10.8
Error handling in ASP.NET

Public Function IsInteger (ByVal Number)	
 Dim Res, tNumber
 Number = Trim(Number)
 tNumber=Number		
 On Error Resume Next	 ‘If an error occurs continue execution
 Number = CInt(Number) 	 ‘if Number is a alphanumeric string a Type Mismatch error will occur
 Res = (err.number = 0) 	 ‘If there are no errors then return true
 On Error GoTo 0			 ‘If an error occurs stop execution and display error
 re.Pattern = “^[\+\-]? *\d+$”	 ‘only one +/- and digits are allowed
 IsInteger = re.Test(tNumber) And Res
 End Function

The second is using an error handler on an error page (http://support.microsoft.com/kb/299981).

FIGURE A10.9
Error handling in ASP.NET

Dim ErrObj
set ErrObj = Server.GetLastError()
‘Now use ErrObj as the regular err object

C++
In the C++ language, any object or built in type can be thrown. However there is a STL type std::exception which is supposed to be used as the parent of any user defined exception, indeed this type is used in the STL and many libraries as the parent type of all exceptions. Having std::exception encourages developers to create a hierarchy of exceptions which match the exception usage and means all exceptions can be caught by catching a std::exception object (instead of a ‘catch (...)’ block). Unlike Java, even errors that you can’t recover from (e.g. std::bad_alloc which means your out of memory) derive from std::exception, so a ‘catch(std::exception& e)’ is similar to ‘catch (...)’ except that it allows you access to the exception so you can know what occurred and possibly print some error information using e.what().

There are many logging libraries for C++, so if your codebase uses a particular logging class look for usages of that logger for anywhere sensitive information can be written to the logs.

What to Review: Error Handling in IIS
Page_Error is page level handling which is run on the server side in .NET. Below is an example but the error information is a little too informative and hence bad practice.

FIGURE A10.10
Page_Error handling in IIS

<script language=”C#” runat=”server”>
 Sub Page_Error(Source As Object, E As EventArgs)
 Dim message As String = Request.Url.ToString()& Server.GetLastError().ToString()
 Response.Write(message) // display message
 End Sub
 </script>

The text in the example above has a number of issues. Firstly, it displays the HTTP request to the user in the form of Request.Url.ToString(). Assuming there has been no data validation prior to this point, we are vulnerable to cross site scripting attacks. Secondly, the error message and stack trace is displayed to the user using Server.GetLastError().ToString() which divulges internal information regarding the application.
After the Page_Error is called, the Application_Error sub is called.

When an error occurs, the Application_Error function is called. In this method we can log the error and redirect to another page. In fact catching errors in Application_Error instead of Page_Error would be an example of centralizing errors as described earlier.

FIGURE A10.11
Application_Error handling in IIS

<%@ Import Namespace=”System.Diagnostics” %>
 <script language=”C#” runat=”server”>
 void Application_Error(Object sender, EventArgs e) {
 String Message = “\n\nURL: http://localhost/” + Request.Path
 + “\n\nMESSAGE:\n “ + Server.GetLastError().Message
 + “\n\nSTACK TRACE:\n” + Server.GetLastError().StackTrace;
 // Insert into Event Log
 EventLog Log = new EventLog();
 Log.Source = LogName;
 Log.WriteEntry(Message, EventLogEntryType.Error);
 Server.Redirect(Error.htm) // this shall also clear the error
 }
 </script>
Above is an example of code in Global.asax and the Application_Error method. The error is logged and then the user is redirected. Non-validated parameters are being logged here in the form of Request.Path. Care must be taken not to log or display non-validated input from any external source. ‘’<link to XSS>’’

Web.config has custom error tags which can be used to handle errors. This is called last and if Page_error or Application_error is called and has functionality, that functionality shall be executed first. If the previous two handling mechanisms do not redirect or clear (Response.Redirect or a Server.ClearError), this will be called and you shall be forwarded to the page defined in web.config in the customErrors section, which is configured as follows:

FIGURE A10.12
IIS customError syntax

<customErrors mode=”<On|Off|RemoteOnly>” defaultRedirect=”<default redirect page>”>
 <error statusCode=”<HTTP status code>” redirect=”<specific redirect page for listed status code>”/>
 </customErrors>

The “mode” attribute value of “On” means that custom errors are enabled whilst the “Off” value means that custom errors are disabled. The “mode” attribute can also be set to “RemoteOnly” which specifies that custom errors are shown only to remote clients and ASP.NET errors are shown to requests coming from the the local host. If the “mode” attribute is not set then it defaults to “RemoteOnly”.

When an error occurs, if the status code of the response matches one of the error elements, then the relevent ‘redirect’ value is returned as the error page. If the status code does not match then the error page from the ‘defaultRedirect’ attribute will be displayed. If no value is set for ‘defaultRedirect’ then a generic IIS error page is returned.

An example of the customErrors section completed for an application is as follows:

FIGURE A10.13
IIS customError example

<customErrors mode=”On” defaultRedirect=”error.html”>
 <error statusCode=”500” redirect=”err500.aspx”/>
 <error statusCode=”404” redirect=”notHere.aspx”/>
 <error statusCode=”403” redirect=”notAuthz.aspx”/>
 </customErrors>

What to Review: Error Handling in Apache
In Apache you have two choices in how to return error messages to the client:
1. You can write the error status code into the req object and write the response to appear the way you want, then have you handler return ‘DONE’ (which means the Apache framework will not allow any further handlers/filters to process the request and will send the response to the client.

2. Your handler or filter code can return pre-defined values which will tell the Apache framework the result of your codes processsing (essentially the HTTP status code). You can then configure what error pages should be returned for each error code.

In the interest of centralizing all error code handling, option 2 can make more sense. To return a specific pre-defined value from your handler, refer to the Apache documentation for the list of values to use, and then return from the handler function as shown in the following example:

FIGURE A10.14
Apache handler error reporting

static int my_handler(request_rec *r)
 {
 if (problem_processing())
 {
 return HTTP_INTERNAL_SERVER_ERROR;
 }
 ... continue processing request ...
 }

In the httpd.conf file you can then specify which page should be returned for each error code using the ‘ErrorDocument’ directive. The format of this directive is as follows:

• ErrorDocument <3-digit-code> <action>

... where the 3 digit code is the HTTP response code set by the handler, and the action is a local or external URL to be returned, or specific text to display. The following examples are taken from the Apache ErrorDocument documentation (https://httpd.apache.org/docs/2.4/custom-error.html) which contains more information and options on ErrorDocument directives:

FIGURE A10.15
Apache ErrorDocument configuration

ErrorDocument 500 “Sorry, our script crashed. Oh dear”
 ErrorDocument 500 /cgi-bin/crash-recover
 ErrorDocument 500 http://error.example.com/server_error.html
 ErrorDocument 404 /errors/not_found.html
 ErrorDocument 401 /subscription/how_to_subscribe.html

What to Review: Leading Practice for Error Handling
Code that might throw exceptions should be in a try block and code that handles exceptions in a catch block. The catch block is a series of statements beginning with the keyword catch, followed by an exception type and an action to be taken.

‘’’Example: Java Try-Catch:’’’

FIGURE A10.16
Java try-catch block

public class DoStuff {
 public static void Main() {
 try {
 StreamReader sr = File.OpenText(“stuff.txt”);
 Console.WriteLine(“Reading line {0}”, sr.ReadLine());
 }
 catch(MyClassExtendedFromException e) {
 Console.WriteLine(“An error occurred. Please leave to room”);
 	 logerror(“Error: “, e);
 }
 }
 }

‘’’.NET Try–Catch’’’

FIGURE A10.17
C#.NET try-catch block

public void run() {
 while (!stop) {
 try {
 // Perform work here
 } catch (Throwable t) {
 // Log the exception and continue
 		 WriteToUser(“An Error has occurred, put the kettle on”);
 logger.log(Level.SEVERE, “Unexception exception”, t);
 }
 }
 }

‘’’C++ Try–Catch’’’

FIGURE A10.18
C++ try-catch block

void perform_fn() {
 try {
 // Perform work here

 } catch (const MyClassExtendedFromStdException& e) {
 // Log the exception and continue
 WriteToUser(“An Error has occurred, put the kettle on”);
 logger.log(Level.SEVERE, “Unexception exception”, e);
 }
 }

In general, it is best practice to catch a specific type of exception rather than use the basic catch(Exception) or catch(Throwable) statement in the case of Java.

5.6.1 What to Review: The Order of Catching Exceptions
Keep in mind that many languages will attempt to match the thrown exception to the catch clause even if it means matching the thrown exception to a parent class. Also remember that catch clauses are checked in the order they are coded on the page. This could leave you in the situation where a certain type of exception might never be handled correctly, take the following example where ‘non_even_argument’ is a subclass of ‘std::invalid_argument’:

FIGURE A10.19
C++ exception example

class non_even_argument : public std::invalid_argument {
 public:
 explicit non_even_argument (const string& what_arg);
 };

 void do_fn()
 {
 try
 {
 // Perform work that could throw
 }
 catch (const std::invalid_argument& e)
 {
 // Perform generic invalid argument processing and return failure
 }
 catch (const non_even_argument& e)
 {
 // Perform specific processing to make argument even and continue processing
 }
 }

The problem with this code is that when a ‘non_even_argument is thrown, the catch branch handling ‘std::invalid_argument’ will always be executed as it is a parent of ‘non_even_argument’ and thus the runtime system will consider it a match (this could also lead to slicing). Thus you need to be aware of the hierarchy of your exception objects and ensure that you list the catch for the more specific exceptions first in your code.

If the language in question has a finally method, use it. The finally method is guaranteed to always be called. The finally method can be used to release resources referenced by the method that threw the exception. This is very important. An example would be if a method gained a database connection from a pool of connections, and an exception occurred without finally, the connection object shall not be returned to the pool for some time (until the timeout). This can lead to pool exhaustion. finally() is called even if no exception is thrown.

FIGURE A10.20
Java example of releasing resources

void perform_fn() {
 try {
 // Perform work here

 } catch (const MyClassExtendedFromStdException& e) {
 // Log the exception and continue
 WriteToUser(“An Error has occurred, put the kettle on”);
 logger.log(Level.SEVERE, “Unexception exception”, e);
 }
 }

A Java example showing finally() being used to release system resources.

What to Review: Releasing resources and good housekeeping
RAII is Resource Acquisition Is Initialization, which is a way of saying that when you first create an instance of a type, it should be fully setup (or as much as possible) so that it’s in a good state. Another advantage of RAII is how objects are disposed of, effectively when an object instance is no longer needed then it resources are automatically returned when the object goes out of scope (C++) or when it’s ‘using’ block is finished (C# ‘using’ directive which calls the Dispose method, or Java 7’s try-with-resources feature)

RAII has the advantage that programmers (and users to libraries) don’t need to explicitly delete objects, the objects will be removed themselves, and in the process of removing themselves (destructor or Dispose)

For Classic ASP pages it is recommended to enclose all cleaning in a function and call it into an error handling statement after an “On Error Resume Next”.

Building an infrastructure for consistent error reporting proves more difficult than error handling. Struts provides the ActionMessages and ActionErrors classes for maintaining a stack of error messages to be reported, which can be used with JSP tags like <html: error> to display these error messages to the user.

To report a different severity of a message in a different manner (like error, warning, or information) the following tasks are required:
1. Register, instantiate the errors under the appropriate severity

2. Identify these messages and show them in a consistent manner.

Struts ActionErrors class makes error handling quite easy:

FIGURE A10.21
ActionErrors example in Struts

ActionErrors errors = new ActionErrors()
 errors.add(“fatal”, new ActionError(“....”));
 errors.add(“error”, new ActionError(“....”));
 errors.add(“warning”, new ActionError(“....”));
 errors.add(“information”, new ActionError(“....”));
 saveErrors(request,errors); // Important to do this

Now that we have added the errors, we display them by using tags in the HTML page.

FIGURE A10.22
ActionErrors configuration within JSP page

<logic:messagePresent property=”error”>
 <html:messages property=”error” id=”errMsg” >
 <bean:write name=”errMsg”/>
 </html:messages>
 </logic:messagePresent >

5.6.3 References
• For classic ASP pages you need to do some IIS configuration, follow http://support.microsoft.com/kb/299981 for more information.

21 Reviewing Security alerts
How will your code and applications react when something has gone wrong? Many companies that follow secure design and coding principals do so to prevent attackers from getting into their network, however many companies do not consider designing and coding for the scenario where an attacker may have found a vulnerability, or has already exploited it to run code within a companies firewalls (i.e. within the Intranet).

Many companies employ SIEM logging technologies to monitor network and OS logs for patterns that detect suspicions activity, this section aims to further encourage application layers and interfaces to do the same.

21.1 Description
This section concentrates on:
1. Design and code that allows the user to react when a system is being attacked.
2. Concepts allowing applications to flag when they have been breached.

When a company implements secure design and coding, it will have the aim of preventing attackers from misusing the software and accessing information they should not have access to. Input validation checks for SQL injections, XSS, CSRF, etc. should prevent attackers from being able to exploit these types of vulnerabilities against the software. However how should software react when an attacker is attempting to breach the defenses, or the protections have been breached?

For an application to alert to security issues, it needs context on what is ‘normal’ and what constitutes a security issue. This will differ based on the application and the context within which it is running. In general applications should not attempt to log every item that occurs as the excessive logging will slow down the system, fill up disk or DB space, and make it very hard to filter through all the information to find the security issue.

At the same time, if not enough information is monitored or logged, then security alerting will be very hard to do based on the available information. To achieve this balance an application could use its own risk scoring system, monitoring at a system level what risk triggers have been spotted (i.e. invalid inputs, failed passwords, etc.) and use different modes of logging. Take an example of normal usage, in this scenario only critical items are logged. However if the security risk is perceived to have increased, then major or security level items can be logged and acted upon. This higher security risk could also invoke further security functionality as described later in this section.

Take an example where an online form (post authentication) allows a user to enter a month of the year. Here the UI is designed to give the user a drop down list of the months (January through to December). In this case the logged in user should only ever enter one of 12 values, since they typically should not be entering any text, instead they are simply selecting one of the pre-defined drop down values.

If the server receiving this form has followed secure coding practices, it will typically check that the form field matches one of the 12 allowed values, and then considers it valid. If the form field does not match, it returns an error, and may log a message in the server. This prevents the attacker from exploiting this particular field, however this is unlikely to deter an attacker and they would move onto other form fields.

In this scenario we have more information available to us than we have recorded. We have returned an error back to the user, and maybe logged an error on the server. In fact we know a lot more; an authenticated user has entered an invalid value which they should never have been able to do (as it’s a drop down list) in normal usage.

This could be due to a few reasons:
• There’s a bug in the software and the user is not malicious.

• An attacker has stolen the users login credentials and is attempting to attack the system.

• A user has logged in but has a virus/trojan which is attempting to attack the system.

• A user has logged in but is experiencing a man-in-the-middle attack.

• A user is not intending to be malicious but has somehow changed the value with some browser plugin, etc.

If it’s the first case above, then the company should know about it to fix their system. If it’s case 2, 3 or 3 then the application should take some action to protect itself and the user, such as reducing the functionality available to the user (i.e. no PII viewable, can’t change passwords, can’t perform financial transactions) or forcing further authentication such as security questions or out-of-band authentication. The system could also alert the user to the fact that the unexpected input was spotted and advise them to run antivirus, etc., thus stopping an attack when it is underway.

Obviously care must be taken in limiting user functionality or alerting users encase it’s an honest mistake, so using a risk score or noting session alerts should be used. For example, if everything has been normal in the browsing session and 1 character is out of place, then showing a red pop-up box stating the user has been hacked is not reasonable, however if this is not the usual IP address for the user, they have logged in at an unusual time, and this is the 5th malformed entry with what looks like an SQL injection string, then it would be reasonable for the application to react. This possible reaction would need to be stated in legal documentation.

In another scenario, if an attacker has got through the application defenses extracted part of the applications customer database, would the company know? Splitting information in the database into separate tables makes sense from an efficiency point of view, but also from a security view, even putting confidential information into a separate partition can make it harder for the attacker. However if the attacker has the information it can be hard to detect and applications should make steps to aid alerting software (e.g. SIEM systems). Many financial institutions use risk scoring systems to look at elements of the user’s session to give a risk score, if Johnny always logs in at 6pm on a Thursday from the same IP, then we have a trusted pattern. If suddenly Johnny logs in at 2:15am from an IP address on the other side of the world, after getting the password wrong 7 times, then maybe he’s jetlagged after a long trip, or perhaps his account has been hacked. Either way, asking him for out-of-band authentication would be reasonable to allow Johnny to log in, or to block an attacker from using Johnny’s account.

If the application takes this to a larger view, it can determine that on a normal day 3% of the users log on in what would be considered a riskier way, i.e. different IP address, different time, etc. If on Thursday it sees this number rise to 23% then has something strange happened to the user base, or has the database been hacked? This type of information can be used to enforce a blanket out-of-band authentication (and internal investigation of the logs) for the 23% of ‘riskier’ users, thereby combining the risk score for the user with the overall risk score for the application.

Another good option is ‘honey accounts’ which are usernames and passwords that are never given out to users. These accounts are added just like any other user, and stored in the DB, however they are also recorded in a special cache and checked on login. Since they are never given to any user, no user should ever logon with them, however if one of those accounts are used, then the only way that username password combination could be known is if an attacker got the database, and this information allows the application to move to a more secure state and alert the company that the DB has been hacked.

What to Review
When reviewing code modules from a security alerting point of view, some common issues to look out for include:

• Will the application know if it’s being attacked? Does it ignore invalid inputs, logins, etc. or does it log them and monitor this state to capture a cumulative perception of the current risk to the system?

• Can the application automatically change its logging level to react to security threats? Is changing security levels dynamic or does it require a restart?

• Does the SDLC requirements or design documentation capture what would constitute a security alert? Has this determination been peer reviewed? Does the testing cycle run through these scenarios?

• Does the system employ ‘honey accounts’ such that the application will know if the DB has been compromised?

• Is there a risk based scoring system that records the normal usage of users and allows for determination or reaction if the risk increases?

• If a SIEM system is being used, have appropriate triggers been identified? Has automated tests been created to ensure those trigger log messages are not accidentally modified by future enhancements or bug fixes?

• Does the system track how many failed login attempts a user has experienced? Does the system react to this?

• Does certain functionality (i.e. transaction initiation, changing password, etc) have different modes of operation based on the current risk score the application is currently operating within?

• Can the application revert back to ‘normal’ operation when the security risk score drops to normal levels?

• How are administrators alerted when security risk score rises? Or when a breach has been assumed? At an operational level, is this tested regularly? How are changes of personnel handled?

References
TBD

22 Review for active defense
Attack detection undertaken at the application layer has access to the complete context of an interaction and enhanced information about the user. If logic is applied within the code to detect suspicious activity (similar to an application level IPS) then the application will know what is a high-value issue and what is noise. Input data are already decrypted and canonicalized within the application and therefore application-specific intrusion detection is less susceptible to advanced evasion techniques. This leads to a very low level of attack identification false positives, providing appropriate detection points are selected.

The fundamental requirements are the ability to perform four tasks:
1. Detection of a selection of suspicious and malicious events.

2. Use of this knowledge centrally to identify attacks.

3. Selection of a predefined response.

4. Execution of the response.

22.1 Description
Applications can undertake a range of responses that may include high risk functionality such as changes to a user’s account or other changes to the application’s defensive posture. It can be difficult to detect active defense in dynamic analysis since the responses may be invisible to the tester. Code review is the best method to determine the existence of this defense.

Other application functionality like authentication failure counts and lock-out, or limits on rate of file uploads are ‘localized’ protection mechanisms. This sort of standalone logic is ‘not’ active defense equivalents in the context of this review, unless they are rigged together into an application-wide sensory network and centralized analytical engine.
It is not a bolt-on tool or code library, but instead offers insight to an approach for organizations to specify or develop their own implementations – specific to their own business, applications, environments and risk profile – building upon existing standard security controls.

What to Review
In the case where a code review is being used to detect the presence of a defense, its absence should be noted as a weakness. Note that active defense cannot defend an application that has known vulnerabilities, and therefore the other parts of this guide are extremely important. The code reviewer should note the absence of active defense as a vulnerability.

The purpose of code review is not necessarily to determine the efficacy of the active defense, but could simply be to determine if such capability exists.

Detection points can be integrated into presentation, business and data layers of the application. Application-specific intrusion detection does not need to identify all invalid usage, to be able to determine an attack. There is no need for “infinite data” or “big data” and therefore the location of “detection points” may be very sparse within source code.

A useful approach for identifying such code is to find the name of a dedicated module for detecting suspicious activity (such as OWASP AppSensor). Additionally a company can implement a policy of tagging active defense detection points based on [http://capec.mitre.org/ Mitre’s Common Attack Pattern Enumeration and Classification] [reference] (CAPEC), strings such as CAPEC-212, CAPEC-213, etc.

The OWASP AppSensor detection point type identifiers and CAPEC codes will often have been used in configuration values [reference] (e.g. [https://code.google.com/p/appsensor/source/browse/trunk/AppSensor/src/test/resources/.esapi/ESAPI.properties?r=53 in ESAPI for Java]), parameter names and security event classification. Also, examine error logging and security event logging mechanisms as these may be being used to collect data that can then be used for attack detection. Identify the code or services called that perform this logging and examine the event properties recorded/sent. Then identify all places where these are called from.

An examination of error handling code relating to input and output validation is very likely to reveal the presence of detection points. For example, in a whitelist type of detection point, additional code may have been added adjacent, or within error handling code flow:

 if (var !Match this) {
 Error handling
 Record event for attack detection
 }

In some situations attack detection points are looking for blacklisted input, and the test may not exist otherwise, so brand new code is needed. Identification of detection points should also have found the locations where events are recorded (the “event store”). If detection points cannot be found, continue to review the code for execution of response, as this may provide insight into the existence of active defense.

The event store has to be analysed in real time or very frequently, in order to identify attacks based on predefined criteria. The criteria should be defined in configuration settings (e.g. in configuration files, or read from another source such as a database). A process will examine the event store to determine if an attack is in progress, typically this will be attempting to identify an authenticated user, but it may also consider a single IP address, range of IP addresses, or groups of users such as one or more roles, users with a particular privilege or even all users.

Once an attack has been identified, the response will be selected based on predefined criteria. Again an examination of configuration data should reveal the thresholds related to each detection point, groups of detection points or overall thresholds.

The most common response actions are user warning messages, log out, account lockout and administrator notification. However, as this approach is connected into the application, the possibilities of response actions are limited only by the coded capabilities of the application.

Search code for any global includes that poll attack identification/response identified above. Response actions (again a user, IP address, group of users, etc) will usually be initiated by the application, but in some cases other applications (e.g. alter a fraud setting) or infrastructure components (e.g. block an IP address range) may also be involved.

Examine configuration files and any external communication the application performs.
The following types of responses may have been coded:
• Logging increased
• Administrator notification
• Other notification (e.g. other system)
• Proxy
• User status change
• User notification
• Timing change
• Process terminated (same as traditional defenses)
• Function disabled
• Account log out
• Account lock out
• Collect data from user.

Other capabilities of the application and related system components can be repurposed or extended, to provide the selected response actions. Therefore review the code associated with any localised security measures such as account lock out.

References
• The guidance for adding active response to applications given in theOWASP_AppSensor_Project
•Category:OWASP Enterprise Security API

• https://code.google.com/p/appsensor/ AppSensor demonstration code

23 Race Conditions
Race Conditions occur when a piece of code does not work as it is supposed to (like many security issues). They are the result of an unexpected ordering of events, which can result in the finite state machine of the code to transition to a undefined state, and also give rise to contention of more than one thread of execution over the same resource. Multiple threads of execution acting or manipulating the same area in memory or persisted data which gives rise to integrity issues.

23.1 Description
With competing tasks manipulating the same resource, we can easily get a race condition as the resource is not in step-lock or utilises a token based system such as semaphores. For example if there are two processes (Thread 1, T1) and (Thread 2, T2). The code in question adds 10 to an integer X. The initial value of X is 5.

X = X + 10

With no controls surrounding this code in a multithreaded environment, the code could experience the following problem:

 T1 places X into a register in thread 1
 T2 places X into a register in thread 2
 T1 adds 10 to the value in T1’s register resulting in 15
 T2 adds 10 to the value in T2’s register resulting in 15
 T1 saves the register value (15) into X.
 T1 saves the register value (15) into X.

The value should actually be 25, as each thread added 10 to the initial value of 5. But the actual value is 15 due to T2 not letting T1 save into X before it takes a value of X for its addition.

This leads to undefined behavior, where the application is in an unsure state and therefore security cannot be accurately enforced.

What to Review
• In C#.NET look for code which used multithreaded environments:
o Thread
o System.Threading
o ThreadPool
o System.Threading.Interlocked

• In Java code look for
o java.lang.Thread
o start()
o stop()
o destroy()
o init()
o synchronized
o wait()
o notify()
o notifyAll()

• For classic ASP multithreading is not a directly supported feature, so this kind of race condition could be present only when using COM objects.

• Static methods and variables (one per class, not one per object) are an issue particularly if there is a shared state among multiple threads. For example, in Apache, struts static members should not be used to store information relating to a particular request. The same instance of a class can be used by multiple threads, and the value of the static member cannot be guaranteed.

• Instances of classes do not need to be thread safe as one is made per operation/request. Static states must be thread safe.
o References to static variables, these must be thread locked.
o Releasing a lock in places other then finally{} may cause issues.
o Static methods that alter static state.

References
• http://msdn2.microsoft.com/en-us/library/f857xew0(vs.71).aspx

24 Buffer Overruns
A buffer is an amount of contiguous memory set aside for storing information. For example if a program has to remember certain things, such as what your shopping cart contains or what data was inputted prior to the current operation. This information is stored in memory in a buffer. Languages like C, C++ (which many operating systems are written in), and Objective-C are extremely efficient, however they allow code to access process memory directly (through memory allocation and pointers) and intermingle data and control information (e.g. in the process stack). If a programmer makes a mistake with a buffer and allows user input to run past the allocated memory, the user input can overwrite program control information and allow the user to modify the execution of the code.

Note that Java, C#.NET, Python and Ruby are not vulnerable to buffer overflows due to the way they store their strings in char arrays, of which the bounds are automatically checked by the frameworks, and the fact that they do not allow the programmer direct access to the memory (the virtual machine layer handles memory instead). Therefore this section does not apply to those languages. Note however that native code called within those languages (e.g. assembly, C, C++) through interfaces such as JNI or ‘unsafe’ C# sections can be susceptible to buffer overflows.

24.1 Description
To allocate a buffer the code declares a variable of a particular size:
• char myBuffer[100]; // large enough to hold 100 char variables

• int myIntBuf[5]; // large enough to hold 5 integers

• Widget myWidgetArray[17]; // large enough to hold 17 Widget objects

As there is no automatic bounds checking code can attempt to add a Widget at array location 23 (which does not exist). When the code does this, the complier will calculate where the 23rd Widget should be placed in memory (by multiplying 23 x sizeof(Widget) and adding this to the location of the ‘myWidgetArray’ pointer). Any other object, or program control variable/register, that existed at this location will be overwritten.

Arrays, vectors, etc. are indexed starting from 0, meaning the first element in the container is at ‘myBuffer[0]’, this means the last element in the container is not at array index 100, but at array index 99. This can often lead to mistakes and the ‘off by one’ error, when loops or programming logic assume objects can be written to the last index without corrupting memory.

In C, and before the C++ STL became popular, strings were held as arrays of characters:
• char nameString[10];

This means that the ‘nameString’ array of characters is vulnerable to array indexing problems described above, and when many of the string manipulation functions (such as strcpy, strcat, described later) are used, the possibility of writing beyond the 10th element allows a buffer overrun and thus memory corruption.

As an example, a program might want to keep track of the days of the week. The programmer tells the computer to store a space for 7 numbers. This is an example of a buffer. But what happens if an attempt to add 8 numbers is performed? Languages such as C and C++ do not perform bounds checking, and therefore if the program is written in such a language, the 8th piece of data would overwrite the program space of the next program in memory, and would result in data corruption. This can cause the program to crash at a minimum or a carefully crafted overflow can cause malicious code to be executed, as the overflow payload is actual code.

FIGURE A10.23
Buffer overflow example

 void copyData(char *userId) {
 char smallBuffer[10]; // size of 10
 strcpy (smallBuffer, userId);
 }

 int main(int argc, char *argv[]) {
 char *userId = “01234567890”; // Payload of 12 when you include the ‘\n’ string termination
			 // automatically added by the “01234567890” literal
 copyData (userId); // this shall cause a buffer overload
 }

What to Review: Buffer Overruns
C library functions such as strcpy (), strcat (), sprintf () and vsprintf () operate on null terminated strings and perform no bounds checking. gets() is another function that reads input (into a buffer) from stdin until a terminating newline or EOF (End of File) is found. The scanf () family of functions also may result in buffer overflows.

Using strncpy(), strncat() and snprintf() functions allows a third ‘length’ parameter to be passed which determines the maximum length of data that will be copied/etc. into the destination buffer. If this is correctly set to the size of the buffer being written to, it will prevent the target buffer being overflowed. Also note fgets() is a replacement for gets(). Always check the bounds of an array before writing it to a buffer. The Microsoft C runtime also provides additional versions of many functions with an ‘_s’ suffix (strcpy_s, strcat_s, sprintf_s). These functions perform additional checks for error conditions and call an error handler on failure.

The C code below is not vulnerable to buffer overflow as the copy functionality is performed by ‘strncpy’ which specifies the third argument of the length of the character array to be copied, 10.

FIGURE A10.24
Buffer overflow fix using strncpy

void copyData(char *userId) {
 char smallBuffer[10]; // size of 10
 strncpy(smallBuffer, userId, sizeof(smallBuffer)); // only copy first 10 elements
 smallBuffer[10] = 0; // Make sure it is terminated.
 }

 int main(int argc, char *argv[]) {
 char *userId = “01234567890”; // Payload of 11
 copyData (userId);
 }

Modern day C++ (C++11) programs have access to many STL objects and templates that help prevent security vulnerabilities. The std::string object does not require the calling code have any access to underlying pointers, and automatically grows the underlying string representation (character buffer on the heap) to accommodate the operations being performed. Therefore code is unable to cause a buffer overflow on a std::string object.

Regarding pointers (which can be used in other ways to cause overflows), C++11 has smart pointers which again take away any necessity for the calling code to user the underlying pointer, these types of pointers are automatically allocated and destroyed when the variable goes out of scope. This helps to prevent memory leaks and double delete errors.

Also the STL containers such as std::vector, std::list, etc., all allocate their memory dynamically meaning normal usage will not result in buffer overflows. Note that it is still possible to access these containers underlying raw pointers, or reinterpret_cast the objects, thus buffer overflows are possible, however they are more difficult to cause.

Compliers also help with memory issues, in modern compilers there are ‘stack canaries’ which are subtle elements placed in the complied code which check for out-of-bound memory accesses. These can be enabled when compiling the code, or they could be enabled automatically. There are many examples of these stack canaries, and for some system many choices of stack canaries depending on an organizations appetite for security versus performance. Apple also have stack canaries for iOS code as Objective-C is also susceptible to buffer overflows.

In general, there are obvious examples of code where a manual code reviewer can spot the potential for overflows and off-by-one errors, however other memory leaks (or issues) can be harder to spot. Therefore manual code review should be backed up by memory checking programs available on the market.

What to Review: Format Function Overruns
A format function is a function within the ANSI C specification that can be used to tailor primitive C data types to human readable form. They are used in nearly all C programs to output information, print error messages, or process strings.

TABLE 24

Some format parameters:
The %s in this case ensures that value pointed to by the parameter ‘abc’ is printed as an array of characters.

For example:
char* myString = “abc”;
printf (“Hello: %s\n”, abc);

Through supplying the format string to the format function we are able to control the behaviour of it. So supplying input as a format string makes our application do things it’s not meant to. What exactly are we able to make the application do?

If we supply %x (hex unsigned int) as the input, the ‘printf’ function shall expect to find an integer relating to that format string, but no argument exists. This cannot be detected at compile time. At runtime this issue shall surface.

For every % in the argument the printf function finds it assumes that there is an associated value on the stack. In this way the function walks the stack downwards reading the corresponding values from the stack and printing them to the user.

Using format strings we can execute some invalid pointer access by using a format string such as:
• printf (“%s%s%s%s%s%s%s%s%s%s%s%s”);

Worse again is using the ‘%n’ directive in ‘printf()’. This directive takes an ‘int*’ and ‘writes’ the number of bytes so far to that location.

Where to look for this potential vulnerability. This issue is prevalent with the ‘printf()’ family of functions, ‘’printf(),fprintf(), sprintf(), snprintf().’ Also ‘syslog()’ (writes system log information) and setproctitle(const char *fmt, ...); (which sets the string used to display process identifier information).

What to Review: Integer Overflows
Data representation for integers will have a finite amount of space, for example a short in many languages is 16 bits twos complement number, which means it can hold a maximum number of 32,767 and a minimum number of -32,768. Twos complement means that the very first bit (of the 16) is a representation of whether the number of positive or negative. If the first bit is ‘1’, then it is a negative number.

The representation of some boundary numbers are given in table 25.

Table 25

If you add 1 to 32,766, it adds 1 to the representation giving the representation for 32,767 shown above. However if you add one more again, it sets the first bit (a.k.a. most significant bit), which is then interpreted by the system as -32,768.

If you have a loop (or other logic) which is adding or counting values in a short, then the application could experience this overflow. Note also that subtracting values below -32,768 also means the number will wrap around to a high positive, which is called underflow.

FIGURE A10.25
Integer overflow

#include <stdio.h>

int main(void){
 int val;
 val = 0x7fffffff; 	/* 2147483647*/
 printf(“val = %d (0x%x)\n”, val, val);
 printf(“val + 1 = %d (0x%x)\n”, val + 1 , val + 1); /*Overflow the int*/
 return 0;
}

The binary representation of 0x7fffffff is 1111111111111111111111111111111; this integer is initialized with the highest positive value a signed long integer can hold.

Here when we add 1 to the hex value of 0x7fffffff the value of the integer overflows and goes to a negative number (0x7fffffff + 1 = 80000000) In decimal this is (-2147483648). Think of the problems this may cause. Compilers will not detect this and the application will not notice this issue.

We get these issues when we use signed integers in comparisons or in arithmetic and also when comparing signed integers with unsigned integers.

FIGURE A10.26
Integer overflow flaw comparing integers

int myArray[100];

 int fillArray(int v1, int v2){
 if(v2 > sizeof(myArray) / sizeof(int) -1){
 return -1; /* Too Big */
 }
 myArray [v2] = v1;
 return 0;
 }

Here if v2 is a massive negative number the “if” condition shall pass. This condition checks to see if v2 is bigger than the array size.

If the bounds check was not performed the line “myArray[v2] = v1” could have assigned the value v1 to a location out of the bounds of the array causing unexpected results.

References
• See the OWASP article on [[Buffer_overflow_attack|Buffer Overflow]] Attacks.

• See the OWASP article on [[Buffer_Overflow|Buffer Overflow]] Vulnerabilities.

• See the [[:Category:OWASP Guide Project|OWASP Development Guide]] article on how to [[Buffer_Over-
flows|Avoid Buffer Overflow]] Vulnerabilities.

• See the [[:Category:OWASP Testing Project|OWASP Testing Guide]] article on how to [[Testing_for_Buffer_
Overflow (OWASP-DV-014)|Test for Buffer Overflow]] Vulnerabilities.

• See Security Enhancements in the CRT: http://msdn2.microsoft.com/en-us/library/8ef0s5kh(VS.80).aspx

image2.png
OWASP_AlphaRelease_CodeReviewGuide2.0.pdf - Foxit PhantomPDF Express &

JIN

Tt | sreton 24 p0FSqn + [l Rotateview + | ‘S T Fvistle L ZoamOut | His Scamer~ Bonkpage Clpboud

Edt, protect

1R | *T

A
Select B From From From

programmer i
page valiation the developer wil necd to regress back to 2.0 validation mode. <httpRuntime requestialdaton-
Mode="2.0"/>

3. Code reviewer needs to make sure page validation s never turned off on anywhere and f it is understand
why and the risks it opens the organization to. <%@ Page Language="C#" ValidationRequest="alse"

.NET MVC
When MVC web apps are exposed to malicious XS5 code, they will not throw an error like the following one:

Server Error in /' Application.

A potentially dangerous Request QueryString value was detected from the client

D T ——
oottt vt s e e i il

st D e s e . g e b e e

Toavoid this vulnerability, make sure thatis being use the following code snippet:
<%server.HtmlEncode(stringValue)%>

image3.png
OWASP_AlphaRelease_CodeReviewGuide2.0.pdf - Foxit PhantomPDF Express
VDY PR PROTRCT PSR MR
J Orteoge Q0% -]
e PhantomPDF

Note i Cipboard ~ O Fit width Zoom In
s 8 . Q From Business Try Business.
Rotateview * | “See. T Fvistle X zoom Out Barkpoge Cipbomrd | 250558

Hond st sdct
Tt | sreon 2% p0FSgn +

start OWASP_AphaRelease C... x
> 4.4 Framework Specific Configuration: Apache Tomeat -
The serverxmi[3] file should be reviewed to ensure security related parameters are configured as expected.
L] The tomeat serverxml file defines many security related parameters.

®

=
APACHE TOMCAT SECURITY PARAMETERS

& = Ems

& “This is the shutdown port.

maxpostize, maxParameterCount servr, SSLEnabled,secure,ciphers.

a i s i
K4
A4 conContet, prvegedsowtinking

“Tomcat provides a number ofiters which may be conigured toincoming requests

Filters are especially powerful, and a code review should validate they are used unless there is a compelling
reason not to. See Provided Filters(4] for detailed information. More guidelines on securely deploying Apache
Tomcat can be found in the CIS Apache Tomcat [5].

4.5 Framework Specific Configuration: Jetty
Jetty adds several security enhancements: .

image4.png
Hend |Select Select

OWASP_AlphaRelease_CodeReviewGuide2.0.pdf - Foxit PhantomPDF Express
J Orteoge Q0% -]

G Note §24 Clipboard ~ O FitWidth ®, zoom In o
Rotateview | Sa= 1 Ftvsile © Zoom Out BinkPage Cipboard

PhentonPDF
Business

Text | Amnotation /% POF Sign ~ |5

Start OWASP_AlphaRelesse C.

WEBLOGIC SECURITY PARAMETERS

Roletoprincpal mappings are extenaly defined in WebLogic Admin Console
Asign’ pincipalto 3 role when runring s thatrole

Contains the run-as principalname descrptor

‘Contais securitypermision-spec descriptor

Tomcat providesa number ofiters which may be configured t ncoming requests
Specity application permissions 6]

Explcly assign princpals toa ole-

More information on WebLogic additional deployment descriptors may be found at weblogic.xmi Deployment
Descriptors. [7]

For general guidelines on securing web applications running within WebLogic, see Programming WebLogic
Security [8] and the NSA's BEA WebLogic Platform Security Guide. [8]

4.8 Programmatic Confiqus

image5.png
OWASP_AlphaRelease_CodeReviewGuide2.0.pdf - Foxit PhantomPDF Express &
VIEW FOmM PROTECT suse Hm

o
v &8

73 Clboard ~ O Ftwidth| @ zoom In

T e & 0 e Qe | o0 gy ¥ Ry e
st o

2 Fom _ From From
Text Ametation /% POF Sgn -) RotateView + | Sze.) Fitvisble L ZoomOut | Flese Scumer= Harkpage Clpbosrd
start OWASP_AphaRelease C... x v
» Settings, debug settings, web service settings, etc. Without knowledge of these fles, a transactional analysis 5

would be very difficult and not accurate.

In1I5 7 there is a new configuration system which affects the hierarchy level and how one file can inherit from
W another. The following figure resumes how this work and the location of each file (Aguilar, 2006)

=
P e =
-
‘windows\system32\intsrv d:\MyApp

Itis possible to provide a file web.config at the root of the virtual directory for a web application. If the fle is
absent, the default configuration settings in machine.config will be used. If the file is present, any settings in
web,config will override the default settings.

Figure A5.9
Example web.config file

<authentication mode="Forms">
<forms name="name" v

image6.png
(OWASP_AlphaRelease_CodeReviewGuide2.0.pdf - Foxit PhantomPDF Express:
e T i =
D et et Y 3 irege Q040 - B = of

£ Cigbord + | U—b =]
st Bowort- | Qe | o |

sometaton % PoFSon ~ £l Rotseview + | Sze T Ftvstle QuzoomOut | Feo+ Scomer~ Barkpoge Cibomd | 25255 g
Toos Zoom Crete Upgrae toBusness

- ®
=

PARAMETERS IN THE WEB.CONFIG FILE
=

Start OWASP_AphaRelesse C... x

“The deaut uthentication mode is ASPNET forms bssed authentication.
a Specifies the URL where the request s redirected forloginif no valid authenticaton cooke s found.

Specifies tha the cookie i encypted using 30ES or DES but D i o performed onthe cookie. eware of plintest
ks

Cookie expiytime i minutes.

icrosoft

4.10 Framework Specific Configuration:

Security features can be configured in IS using the Web.config (application level) or ApplicationHost.config (server

level)file in the <system.webServer><security> section. The types of features that may be configured include:

« Permitted authentication methods

« Authorization rules

« Request filters and limits

+Use of SSL

«Source IP address filtering .

image7.png
OWASP_AlphaRelease_CodeReviewGuide2.0.pdf - Foxit PhantomPDF Express B e B o=

[# Typenriter (3 Snapshot ¥ = Bt
- i =" | and more wi
Cioboard + Prantonpor
‘Select i Actual |7 From From Business Try Business.
sromton 2% PoFSgn + Kl Rotateview + | Sze T Ftvsble QZoomOut | Fles+ Scamer~ Bankpage Cipbomrd | 2SS gn
Toos Zo0m Create Upgrade tousness
Start (OWASP_AlphaRelease _(x v
, e

]
11S SECURITY PARAMETERS

= = e]
% prepE——
vttt s
é [F——
a e
R
A [m—
PR——
R

Custom fitering s

image8.png
OWASP_AlphaRelease _CodeRevienGuide2.0.pdf - Foxit PhantomPDF Express

MUENT VIEW FORM PROTECT | SHARE HELf

T e (I sptret B O v Q2o |

S pboard - O Fevidin @ zoamin

and sdect al Fon Fom
Armotaton 2% POF S+ 7 RotateView + | Sae. [Fivble QZomout | Herr Scamer Sankbage Gnboard
Toos Zoom Crete Upgrade tousness

OWASP_AphaRelease C...

s NG
(HIGH PRIORITY)

9269%

Q)] [ss/223 DD e BE;ED

image9.png
56

OWASP_AlphaRelease_CodeReviewGtide2.0.pdf - Foxit PhantomPDF Express B = =

e e o

Aomatagon % PoF Sgn ~ 55 Rotate View *

Tools

Y e e L

b
T# Typewriter (5] SnapShot. N D Fite: Qo264% | H Edit, protect.
P . L o e B ® B B

o From From From From Business Try Business

sze [Fitvsble) Zoom Out Fies~ Scamner~ BlarkPage Cipboard | Do Editon

Zoom Create Upgrade to Business

OWASP_AlphaRelease(

ot being used strong names provides less benefits or no benefits atall.

How to use Strong Naming
Signing tools
In orderto create a trong name assembly there are a set of tools and steps that you need to follow

Using Visual Studio.
In order to use Visual Studio to create a Strongly Named Assembly, it i necessary to have a copy of the public/
private key pair file. It s also possible to create this pair key in Visual Studio

I VisualStudio 2005 the C, Visua Basic,and Visual J# integrated development environments (DES)allow you
to generate key pairs and sign assemblies without the need to create a key pair using Sn.exe (Strong Name
Tool.These IDEs have a Signing tab n the Project Designer..The use ofthe AssemblyKeyFileAttrbute o iden-
tifykey file pairs has been made obsolete in Vsual Studio 2005.

‘The following figure lustrates the process done by the compiler

- ASSEMBLY BINARY
-SIMPLENAME
-VERSION NUMBER
~cuLTuRE O

AssemaLy

c#VB Manitest
COMPILER ——— Nmber

SimpleName

etsdata
a
Digha Signature

Using Strong Name tool
“The Sign Tool s 2 commancHine tool that digitally signs fle, verifies signatures infiles, ortime stamps files.
“The Sign Tool is not supported on Microsoft Windows NT, Windows Me, Windows 98, or Windows 95.

In case you aren't using the“Visual Studio Command Prompt” Start >> Microsoft Visual Studio 2010 >> Visual
Studio Tools >> Visual Studio Command Prompt (2010)) you can locate sn.exe at %ProgramFilesté\Microsoft

SOKs\Windows\v7.0A\bintsn.exe
The following command creates a new,random ey par and sores it n keyPalcsnk.
sn-kkeyPairsnk

A < (03723 dp e BE@E 92.64%

image10.png
OWASP_AlphaRelease_CodeReviewGuide2.0.pdf - Foxit PhantomPDF Express &

VEW FORM PROTECT SuARE HEl

Select

Tt | sreon 2% p0FSgn +

Select

Srote

OQommSe=f & 0 B s

= D Fitwidth @ ZoomIn o - o PhantomPDE
7 on Fom Fom i
Roteven + Spe Tl Ftvste Qzomout | Fiese Scamer~ Honkpage Clobowrd

Start

OWASP_AphaRelesse ... x

<system.web>
<customErrors mode="0n" defaultRedirect="ErrorPage html"
redirectMode="ResponseRewite">
<error statusCode="400" redirect="BadRequest html" />
<error statusCode="404" redirect="FileNotFound.htmI"/>
</customErrors>
</system.web>
</configuration>

Input validation
Anything coming from external sources can be consider as input in a web application. Not only the user insert-
ing data through a web form, but also data retrieved from a web service or database, also headers sent from
the browsers fall under this concept. A way of defining when input is safe can be done through outlining a
trust boundary.

Defining what is known as trust boundary can help us to visualize all possible untrusted inputs. One of those
are user input ASPNET has different types of validations depending on the level of control to be applied. By
default, web pages code is validated against malicious users. The following is a list types of validations used
(MSDN, 2013):

Ensures thatth user doss notsipanentry.

Comparevaidator Compares uses entry sgaint 3 constant vlue, againt the valu ofanother
control(sing 3 comparison operator such as s than, equal o geater har,
orfora spedfcdata tpe.

Rangevaldator (Checks tht 3 users eniry i between specifd lower and upper boundares.

Youcancheck rangeswithinpars of numbrs sphabetc charactes, nd tes.

ReguiarEcpresionvaldtor Checks tht the entry matches ptter defined by reguiar expresson.Tis
ypeofvaldation enables you o checkfor predicabl sequences of characters,
sich s those n - mai acesse,elephone numbers,postal codes and 5o 0.

Customvaidstor (Checks th usr'senty using validtion logi thatyou wrte yoursl Tis type.
ofaldaton enabes you o check for values deived a run thne.

References
MSDN, 2013 *Securing ASPNET Configurations” available at http//msdn.microsoft.com/en-us/library/
ms1786999%28v=vs.100%29.aspx (Last Viewed, 25th July 2013)

4.16 .NET Authentication Controls
In the NET, there are Authentication tags in the configuration file.
‘The <authentication element configures the authentication mode that your applications use.

<authentication>

i)

g

Q) Q) [07/223 -D D& E]

image11.png
I?IEI OWASP_AlphaRelease_CodeReviewGide2.0.pdf - Foxit PhantomPDF Express B = B o=

i et ot [S Qmesne == 9 I”j Srdrentn
Note: B pboard - | (s D Fitwidth. @ Zoomn r.‘.... r.‘.... L :c::e:gu; o

soect .
sovotton £ P0r Scn + Sl Rotateview | Sae Tl Fivble GLZoomOut | Flest Scomer~ Bk page Cpbemrd liton

Tools Zoom Creste Upgrade to Business

Ouse Ahacsze C . x
o vocormge

Some ofthe avaflable s regarding securiy are CodePlex, 2010

Verfes fthe EnsbleEventialidtion directive s dssbled on cerai page.

Verfes i theValldateReques dirctive s disabled onacetain page.

Verfesf theViewstateEncyptionbode direcive i ot st 0 Neve on acertain page.

Verfesfthe EnsbleViewStatebac directive s ot st to s on crtai page.

Verfesfthe EnsbleViewstats drectve s not et o fls on 3 cetan page.

Verfesf the Page ViewsStateUsrkey i being used n theapplication t prevent CSRF:

Verfesthat debug compiltion s turned of.This slimistes potential peformance and -
cury sues rlted t cebug code enabled nd adiiona xtensive ror messages beng
retumes.

Verfs that the CustomErors secton i configured 10 have 3 defaul URL fo rediectinguses.
incaseof e,

Verfs that o credentils ar specifed under th form authenticaton coniguaton.

Verfes that systemush authenticaton forms ensbleCrossAppREdfects s set to true. The.
Setings nclcae f th user houkd b redecied 1o nother spplction u afer the uthen
ication proces Ifthe sttings s, th authenication proces willnot alow edirecion to
another applcation o host.This helps prevent an attacker t oce the user 1o be rediected
0 another it duing the uthenticaton process.Tis attack s commonly called Open red-
rectand i used mostly during phishing atacs.

Verfesthat the protection atrbute o the system.webauthenticationforms protection s
setto Allwhichspecfs tht the applicaion usa both datavlidaton and encrypion 0 help.
protect the authenticaton cookie

Verfes that the requireSSL atrbute o thesystem web uthenticaton forms confguraton
lmentis st 1o True which forces th authenication ook 1 specy th secure Sbute.
s drects the browser o oly provide the cooke ver SSL

Verfs that systemweb.authentication orms siingEspiation s set o flse when the s
s being srved over TP i wil frcethe authentictin cooke o have e imeout.
Vel nstead of eing refeshed by eachrequest Sne he cokiewil raverse over clartext
etwork and coud potentally b Intercepted, haing 3 faed tmeout value on the cookie
‘il the amountof time the cookde can b replaye. f he cookie s bing snt nlyover
HTTPS, s es ikl t be ntercepted and having the sidingExpiraton settingto T vl
Cause e timeout 0 berfreshed ater sach rquest whichgives a beter s xperince.

Verfis that the systemweb htpCookis hitpOnlyCoolles confguration seting s et True
Which force ll 2ok t b st it the FSpOnly atroute.

image12.png
]|

OWASP_AlphaRelease_CodeReviewGtide2.0.pdf - Foxit PhantomPDF Express

N

LFRT CONRNT VWM PROPRCT SERE %n f
To Typewiter (5] Snapshot J S rtrsse O 10890% -L'FT ‘T *7 .rw Saos
B Boors - | L O rewsn @ zeonin L i,
Annotation /% POF Sign * (5 Rotate View * Sze T Fit visble) Zoom Out e Scommer~ Elarknege. Cipbomrd | 2SS i

Tools

Zoom

Create Upgrade to Business

OWASP_AphaRelesse C... x

HepCookieshequiresstShouldseTrue

TaceShouidseDissbied

RoleManagerCookieRequiressLshouideTrve

RoleManagerCookieSidingexpiationshouldgeTrue

PagesEnableviewsiateMacshoudseTrve

PagesEnableEventiaidatonbustbeTrue

HitpRuntimeEnableHeaderCheckingshaudBeTrue

PagestalidateRequestShoukdseEnatied

CstomnorsMadsshouldgOn

MarkVerbHandlers it licateAntorgeryToken

Verifos that the sysem e pCookies equirSSL confguraton s st 0 Truewhichforces
i coldes b st it the secure. atbute.This NSt he IOWSE 0 ol provide the
CooeamerssL

Verifos tha the systemwebrace enable seting s st {0 flse which disables racing. It
recommended o disableracing onproduction serves o make ure that an atacker cannot
‘gaininformationfomtherace about your pplcation.Tacenformation can helpan atack-
rproe and compromise you spplicaton

Lok inthewe confifile o seef the uthorization section allows anonymous access.

Verifes that the system.webrlemanager cooieProecton i st 10 Al which enforces the
cookie tobe bothencrypted and valdated by theserver:

Verifes that the systemwebolemanager cookieRequireSSL trbute i st o True which
forcesthe ol manager cookie o specy thesecure atrbuta This ivects thebrowser to oy
providethe cookieover SSL

Verifies tht the system:webolemanager cookeSidingEpiations et 0ale when th e
s being served over HTTP Tiswilforca the authenication cooki t have » faed tmeot
Valu nsead of eing refeshed by each equest. Sinc the cookevwil raverse overcartxt
network and coukd potentiall be intercepted, having 2 d timeout value on the cookie
il he amount oftme th cooki can berepayeIfhe cookie s eingsent oy ver
HITPS, s kel 1o be nterceped and having the sldingExpiraton scting 1o Trse wil
Cause e timeout o be rereshed afer sach request which ives a better user experience.

Veriies that the viewsate mac s nsbled.
Veriies that event valdtion s ensblec

Verifes that the sysem weh tpfuntime enableHeaderChecking attrbutes et o trve The
seting indicates whethe ASPNET should check e reques header fo potentalinjection
attacks. f an attack s detected, ASPNETresponds with an eror Thi foces ASPNET 10 3ply
he ValdateRequest protection t headers sent b thedient I attac s detected the 3p
plction throws HitpRequestValidationException.

Verty that validatefequestis enaed.
Verifos that theviewstate encryption e s ot conigued o ever encypt.

Verifes that the system il customErors mode s st to On or RemateOnly.Tis disble de-
lled error message retumed by ASPNET o remote users.

ValidateAntiforgeryTokenAttibute is use 1o protect aganst potental CSRF atacks against
ASPNETMVC applcatons.

A 4

111/223 B

sk O ——— @/

image13.png
(OWASP_AlphaRelease_CodeReviewGuide2.0.pdf - Foxit PhantomPDF Express.
PROTECT SHARE HEl

< O Fteage QUGN <] M= SEa K
L 5 v @ oo ,,L,ﬁ o1 i !
See DiFtvsle Qzomout | Fiese Scomere BlenkPoge Cipboard

and more with
PhentonPDF
Business

Start OWASP_AphaRelesse C... x
vy

4 raphy is defined in table 19. ~

=
=
Tansforning datafom on fom o another, typically with the i of makig the dta ease o work with.For ex-
e encoding binary dat (ich cold ot b printed 0.3 ceen n pitable ASCH farmat which ca be copy/
B pastec Notethat encoing does not i o id te dta. the method 1 et theencoded datsback o 1 orginal
=} form il e publcally known.

Essentally tis s randomess. Cryptographi unctons willneed 10 work with someform o andomness o low the
source dta o b encrypred i such a way that an tacher cannot revese the encypHion without the necessary k.
Having 2 good sourceofenropy i essentil o any ryprographic lgorthm..

e T e T

a e
e e s s s e A S e e e
S n i et

R A non-secret value that can be added to 2 hashing algorithm to modfy the fingerprint result. One attack against
ashing slgorthms i Tanbov table attack where all ource Vales are. pre-computed and 3 tble produced. The
atacker can then ke ngerprin ookt up i the able, and cortspond it 10 th ariginal data. Using 3 unique salt
Value forcach data o b hashed protecs againtrainbow ables, 253 rainbow bl fo eac sl vale would need 1o
becreatec whichwoukd gratly extend thetme taken by an attacker. Th sat s ot a secet and can besored or sent
i the fgerpint.

Tansfomation of source data o an encypted form that can be reversd bac o the aignal source. Typical he
Sigoitms used t encrypt are publcally known, bt ey on secre hey 10 quide th transormaton. An tacker
Without the ey should no be abe 0 ansfomn the data back o the rginal source.

Aformof encyption wher he same ey is known o bothth senderandtheeceiver. Tis s fast form of encryption,
owever requires secue,ou.of band method 1 pas the ymmerc key between th sender and recevr.

Aformofencyptionusing two keys,one 0 encrypt the data and one to decypt thedata backo it rgial orm. Tis
52 lower method of encrypton however ne o the keys an be publically known (fered t0 352 public key). The
other keyis calld a private ke and! s kep scrt. Ay dat encypted with the public key can be decrypted back >
s orginal form using the pivatehey. Silarly any dataencrypled withthe prvte ke Can be decrypied back o s
orginlform sing the pubic ke

i associton between an enfy (e, person, company) and 3 public key. Typicall i forms part o 3 publichey.
nfrastructurewhere cerai rsted enites (5, Cercae Authoriles nnteretTL)perform valiation o an etiles
cradentilsand asset (g their own cetfcte that adecared public key belongs th ey

1.1.2What to Review: Protection in Transit
The terms, Secure Socket Layer (S5L) and Transport Layer Security (TLS) are often used interchangeably. In
fact, SSL v3.1 is equivalent to TLS v1.0. However, different versions of SSL and TLS are supported by modem
‘web browsers and by most modern web frameworks and platforms. Note that since developments in attacks
‘against the SSL protocol have shown it to be weaker against attacks, this guide will use the term TLS to refer to
transport layer security over the HTTP or TCP protocols.

The primary benefit of transport layer security is the protection of web application data from unauthorized
losure and modification when it is transmitted between clients (web browsers) and the web application v
Q4 [13/223 -D D& 88 @m 080% O —+—— @ /4

image14.png
OWASP_AlphaRelease_CodeReviewGuide2.0.pdf - Foxit PhantomPDF Express B = B o=

AN VL F PROPRCT SIgRE 1D

T e Dl |] G Queevc]

ey
O Fevidin @ zoamin Hrartonste
Hand . Business Try Business.
somataton % PO Son ~ £ Rotseview + | Sze T Ftvistie zoom Out Baness TG

Tools Zoom Upgrade to Business

e
5 27

Salt usages and associated fingerprints

sosionntomrs @)

EAFODCEIDOTESA 121351 20CH2STRALAZTESODAIDGT
TFEIDEACISE RS SA1SF O DFFFSAATFOREDRDD.
1SOFGOZAEFEDF 2854 22BAESEEOADAO2TSDIGHOSF

L swmmcsorassaoonsmDisscanacon
DA SRS OMICEIASEIBERBATEAI03A
Salt='8ash87123Kinf9d8dq3w”

‘One way to generate a salt value is using a pseudo-random number generator, as shown in Figure A6.3 below.

private it minSaltSize =8;
private int maxSaltSize = 24;
privateint sasize;
private byte(] GetSalt(string input){
byte(] data;
el e
A 4

image15.png
EI@ OWASP_AlphaRelease_CodeReviewGuide2.0.pdf - Foxit PhantomPDF Express. B = B o=
[} | FOT comueNT vIEW Famw pROTECT suse HEp

{RF L F——{m} Pt

R = e 106.80% < fE
G [T ON Erems St [Dee T
& Note. & Clipboard » ' D> Fitwidth @ ZoomIn
Hand g Fon Fom Fom Fom
snotaton /% P0FSgn ~ 5] Rotateview ~ Sze [Ftveble GLZoomOut Mo Scamer slankpage Cisbosrd
Tods Zo0m Geste Upgrace to Busness
(OWASP_AlphaRelease C... X v

[Y —

READ CONFIG FILE —_

RETURNACTIONMAPPING ~ —

CONTROLLER
SERVIET

Config.xml

RETURN DATATO BEVIEWED/

EDITED bd

9
o
O mmmms —
o

In this example neither the controller servlet (central processing entity) nor the action classes have any access
‘control checks. If the user requests an internal action such as add user details, without authentication, it will
get processed, but the only difference is that the user will be shown an error page as resultant view will be

disallowed to the user.
e READ CONFIG FILE —

© i —

.

CONTROLLER

Configxml
SERVIET

image16.png
EI) (OWASP_AlphaRelease_CodeReviewGuide2.0.pdf - Foxit PhantomPDF Express. gg = B =

] oy T Typeniter (3] Snapshot J O Ftpage Q106.50% ~ et
4 ° as e
Bt ey P 7 Clpboard D Fitwidth @ ZoomIn s e

Roteven + Sne. 1 tvisble @ zoomout

Tools Zoom

semotiton £ b0 Sen + o

Upgrade to Business

OWASP AphaRelease C... x
Should ot be used in sensitive applications and should fail code review.

22

UNSUCCESSFUL COUNTERMEASURES FOR CSRF ATTACKS

Cossteteues gy s, (@)

thatis high risk, e.g. changing password,
transferring funds, purchasing, the application may not simply execute the request, but should respond to the
request with another request for the user’s password, or an out-of-band (i.e. two-factor) authentication item.

Preventing CSRF
Checking if the request has a valid session cookie is not enough, the application needs to have a unique iden-
tifier assocaited with every HTTP request sent to the application. CSRF requests (from an attackers e-mail) wi
~ot have this valid unique identifier. The reason CSRF requests won't have this unique request identifier is the
_niaue ID is rendered as a hidden field. or within the URL. and is aboended to the HTTP reauest once a link/

850X 11.00 inch

image17.png
EI) (OWASP_AlphaRelease_CodeReviewGuide2.0.pdf - Foxit PhantomPDF Express. gg = B =

] oy T Typeniter (3] Snapshot J O Ftpage Q106.50% ~ et
4 ° as e
Bt ey P 7 Clpboard D Fitwidth @ ZoomIn s e

Roteven + Sne. 1 tvisble @ zoomout

Tools Zoom

semotiton £ b0 Sen + o

Upgrade to Business

OWASP AphaRelease C... x
Should ot be used in sensitive applications and should fail code review.

22

UNSUCCESSFUL COUNTERMEASURES FOR CSRF ATTACKS

Cossteteues gy s, (@)

thatis high risk, e.g. changing password,
transferring funds, purchasing, the application may not simply execute the request, but should respond to the
request with another request for the user’s password, or an out-of-band (i.e. two-factor) authentication item.

Preventing CSRF
Checking if the request has a valid session cookie is not enough, the application needs to have a unique iden-
tifier assocaited with every HTTP request sent to the application. CSRF requests (from an attackers e-mail) wi
~ot have this valid unique identifier. The reason CSRF requests won't have this unique request identifier is the
_niaue ID is rendered as a hidden field. or within the URL. and is aboended to the HTTP reauest once a link/

850X 11.00 inch

image18.png
B8 OWASP_AlphaRelease_CodeReviewGide2.0.pdf - Foxit PhantomPDF Express B = B o=

o Typewiter (31 Snapshot J O Ftpage Q[106.80% -

LN = et
Note - O Fit width Zoom In antomF
o s Gree o o B e
arvotaton /% POF Sign ~ 5] Rotate View = Szt T Ftvsble @, Zoom Out —_— eaton

Tools Zoom Upgrade to Business

OWASP_AlphaRelesse C.

[Y r———

2

REDIRECT RISKS
R

HITP/L1 302Found
Locaton: hp uwmwatiackescomipagebiml

Refsh=0 uhetp/tackecom/page il

Whefe an attacker has posted a redirecting URL on a forum, o sends in an e-mail, the web site can check the
referer header to ensure the user is coming from a page within the site, although this countermeasure will not
‘apply if the malicious URL is contained within the site itself.

Consider creating a whitelist of URLS or options that a redirect is allowed to go to, or deny the ability for the
user input to determine the scheme or hostname of the redirect. A site could also encode (or encrypt) the
URL value to be redirected to such that an attacker cannot easily create a malicious URL parameter that, when
unencoded (or unencypted), will be considered valid.

Forwards
‘The countermeasure for forwards i to either whitelist the range of pages that can be forwarded to
rediirects) and o enforce authentication on the forwarded paoe as well as the forwardina naae. This means

DB BB

image19.png
OWASP_AlphaRelease_CodeReviewGtide2.0.pdf - Foxit PhantomPDF Express

it Stere
I Typewriter (5] Snapshot J Q[106.80% - L’_T :T ;gq " : L
&) Zoomn L Prantorpor
soect L] . Fom Fom Fom Fam | EOROE
semataton % PoFSon ~ £l Rotsteview + | Sze T Ftvstle QuzoomOut | Feo+ Scomer~ Barkpoge Cibomd | 25255 g
Toos Zoom Crete Upgrae toBusness

OWASP_AphaRelesse C... x

‘The following figure displays the various parts of the URL:

- - fragment

v
interpretable as keys

T
2

hierarchical part interpretable as values

interpretable as filen
interpretable as filename

«foo/Jusername:password@example.com:8042/overthere/index.dtbtype=animal&name =narwhal#nose

[Y —

O———®4

RIEED DI>EE BEmEEFC wesw

image1.png
OWASP_AlphaRelease_CodeReviewGtide2.0.pdf - Foxit PhantomPDF Express

SHARE L
s L

oTECT
J Orteoge Q0% -]

) Fitwidth ®, Zoom In
e’ vt @ zoom out

= ¥

= &

i A

Fon Fom Fon Fom Gty ousness
Files~ Scanner» Blank Page Clipboard ‘Edition

is also easy to remediate and
protect against. This vulnerability covers SQL, LDAP, Xpath, OS commands, XML parsers.

Injection vulnerability can lead to.

1. Disclose/leaking of sensitive information.

2. Data integrity issues. SQL injection may modify data, add new data, or delete data.
3. Elevated privilege.

4. Gain access to back-end network.

Two main points are the cause of injection vulnerabilities...
1.5QL commands are not protected from the untrusted input. SQL parser is not able to distinguish between
code and data.

stingcustauery = | + request GetParameter("id") +

Code Data

Using SQL strings is very common in legacy applications where developers were not considering security. The.
issue i this coding technique does not tell the parser which part of the statement is code and which part is
data. This allows the attacker to modify the SQL statement by adding code to the data that was vsible from the
web site for the attacker to manipulate.

1. Untrusted input is acceptable by the application. There are several ways to mitigate injection vulnerability,

whitelicting reney et The fue hect wavs are All five shauld he ised tasther for a defence in denth annrnach

