

OWASP APPSENSOR

DETECT AND RESPONSE

TO ATTACKS FROM WITHIN

THE APPLICATION

SUMMER OF CODE 2008

Michael Coates

Senior Application Security Engineer

Aspect Security, Inc.

michael.coates@aspectsecurity.com

© 2002-2008 OWASP Foundation

This document is licensed under the Creative Commons Attribution-ShareAlike 2.5 license

2

TABLE OF CONTENTS

Contents

Table of Contents .. 2

Introduction ... 4

Detection ... 6

Detection: Attack Type ... 7

Detection: Information Captured ... 7

Detection Points ... 8

Signature Based Events.. 8

Behavior Based Events ... 10

Response ... 11

Determining Malicious Intent ... 11

Categorizing Malicous Intent .. 12

Response Actions .. 12

Recommended Thresholds ... 14

Monitoring System trend Events .. 15

Recommended System Trend Thresholds .. 15

Trend Example: .. 15

Implementation ... 17

Aspect Oriented Implementation ... 17

Business Layer Implementation .. 17

References ... 19

Appendix A: Detailed Event Description .. 20

Signature Based Events Detailed Description .. 20

Request Exception Detailed Description ... 20

Authentication Exception Detailed Description .. 21

 OWASP AppSensor Summer of Code 2008

 3

Session Exception Detailed Description ... 24

Access Control Detailed Description .. 27

Input Excption Detailed Description .. 29

Encoding Exception Detailed Description .. 30

Command Injection Detailed Description .. 31

File IO Detailed Description ... 33

Behavior Based Events Detailed Description ... 34

User Trend Detailed Description ... 34

System Trend Detailed Description ... 35

Appendix B: Response – Suspect vs. Attack Events ... 37

Appendix C: Implementation – Aspect Oriented vs. Business Layer ... 40

4

INTRODUCTION

The concept of AppSensor is to detect malicious activity within an application before a user is able to identify and

exploit a vulnerability. This objective is possible because many vulnerabilities will only be discovered as a result of

trial and error by the attacker. If AppSensor can identify an attacker probing for potential vulnerabilities and take

responsive action quickly, it may be possible to prevent the attacker from identifying an exploitable vulnerability.

The AppSesnsor document is a conceptual framework and not a tool or library. This document offers prescriptive

guidance to implement intrusion detection capabilities into existing application utilizing standard security controls

and recommendations for automated response policies based upon detected behaviour.

 OWASP AppSensor Summer of Code 2008

 5

ARCHITECTURE

AppSensor contains two modules, a detection unit and a response unit. The detection unit is responsible for

identifying malicious behavior based upon defined polices. Detection points can be integrated into presentation,

business and data layers of the application. The detection unit reports activity to the response unit. The response

unit will take an action against the user. The action taken will depend upon the whether the event is an evident

attack or a suspicious event, the user’s history of malicious actions and the defined policy of response actions.

AppSensor will be integrated into the application such that a specific exception will be thrown whenever the

application detects a suspicious or attack event. AppSensor will be aware of the thrown exception and catalog this

event and applicable details. Per the response policy, AppSensor will take action against the responsible user

which can include security warnings, account lockout, admin notification etc. AppSensor must have appropriate

rights and hooks within the application to perform such response actions.

6

DETECTION

When detecting malicious activity the system must distinguish between two possible scenarios. First, the detected

activity may have been caused by an unintentional user error or by a crafty attacker seeking to hide their attack

attempts. However, since the detected activity could result in an undesirable system response, it is important to

not disregard this activity entirely. This type of activity will be referred to as “Suspect”. This classification is used

since it is not clear from the single event if the user is intentionally performing malicious actions against the system.

Second, the action could be clearly an intentional malicious activity. These types of actions are highly unlikely to

have been generated by a user mistake and are highly likely to be an attack attempt against the application. This

type of activity will be referred to as “Attack” since it is evident that the user is malicious and attempting to

perform an illegal operation on the system.

Detected Activity Possibilities

Suspect

Suspicious Activity

Example: The user submits a username which contains the

characters ‘; at the end.

Analysis: This could be the result of the user accidently

hitting these two keys when attempting to press enter.

Also, this could be a user attempting to discover a SQL

injection vulnerability in the login page.

Attack

 Clear Malicious Activity

Example: The user submits a URL with a parameter

containing the value ‘1=1—‘.

Analysis: This is a clear attack using SQL injection and

would not be caused by any sort of user error.

In order to determine which category the malicious activity belongs to it is important to consider the following

questions:

• Could this activity result from a typo or inadvertent key press by the user?

• Does the user have to leave the normal flow of the application to perform this activity?

• Are additional tools or software needed to perform the identified activity?

It is important to accurately classify detected activities as Suspect or Attack so that responsive action is not

unjustly performed against a non-malicious user.

 OWASP AppSensor Summer of Code 2008

 7

DETECTION: ATTACK TYPE

The following Exception Types are used within AppSensor. The left column “Exception” is the type of exception

which is thrown. The right column “# of Detection Points” is the total number of detection points defined for the

exception type. The number and types of detection points defined in this document represent detection for

common attacks which could be performed on most applications. When implementing AppSensor, it is

recommended to enhance or modify the detection points to aptly suit the application.

Exception # Detection

Points

Request 4

Authentication 11

Access Control 6

Session 4

Input 2

Encoding 2

Command Injection 4

File IO 2

User Trend 4

System Trend 3

Each detection point will contain the following information:

• ID: A unique identifier for the detection point

• Event: The title of the event detected

• Exception Type: The exception category of the detected event

• Description: Text to describe the malicious activity

• Considerations: Any items that should be considered when implementing the detection point

• Example: An example of a user action which would trigger this event

DETECTION: INFORMATION CAPTURED

It is vital that when an event is detected that sufficient information is recorded. The following information is

recommended to record whenever an event is detected.

• Time of attack

• URI / URL

• Logged in user

• Malicious Activity Detected

• Entire HTTP Request

8

DETECTION POINTS

The following table provides an overview of the recommended detection points within the application. See

Appendix A: Detailed Event Description for a description of each event.

SIGNATURE BASED EVENTS

ID Event Exception

R
e

q
u

e
st

RE1 Unexpected HTTP Commands RequestException

RE2 Attempts To Invoke Unsupported HTTP

Methods

RequestException

RE3 GET When Expecting POST RequestException

RE4 POST When Expecting GET RequestException

A
u

th
e

n
ti

ca
ti

o
n

AE1 Use Of Multiple Usernames AuthenticationException

AE2 Multiple Failed Passwords AuthenticationException

AE3 High Rate Of Login Attempts AuthenticationException

AE4 Unexpected Quantity Of Characters In

Username

AuthenticationException

AE5 Unexpected Quantity Of Characters In Password AuthenticationException

AE6 Unexpected Types Of Characters In Username AuthenticationException

AE7 Unexpected Types Of Characters In Password AuthenticationException

AE8 Providing Only The Username AuthenticationException

AE9 Providing Only The Password AuthenticationException

AE10 Adding Additional POST Variables AuthenticationException

AE11 Removing POST Variables AuthenticationException

 OWASP AppSensor Summer of Code 2008

 9

S

e
ss

io
n

SE1 Modifying Existing Cookies SessionException

SE2 Adding New Cookies SessionException

SE3 Deleting Existing Cookies SessionException

SE4 Substituting Another User's Valid Session ID Or

Cookie

SessionException

SE5 Source IP Address Changes During Session SessionException

SE6 Change Of User Agent Mid Session SessionException

A
cc

e
ss

 C
o

n
tr

o
l

ACE1 Modifying URL Arguments Within A GET For

Direct Object Access Attempts

AccessControlException

ACE2 Modifying Parameters Within A POST For Direct

Object Access Attempts

AccessControlException

ACE3 Force Browsing Attempts AccessControlException

ACE4 Evading Presentation Access Control Through

Custom Posts

AccessControlException

In
p

u
t

IE1 Cross Site Scripting Attempt InputException

IE2 Violations Of Implemented White Lists InputException

E
n

co
d

in
g

EE1 Double Encoded Characters EncodingException

EE2 Unexpected Encoding Used EncodingException

C
o

m
m

a
n

d
 I

n
je

ct
io

n

CIE1 Blacklist Inspection For Common SQL Injection

Values

CommandInjectionException

CIE2 Detect Abnormal Quantity Of Returned Records. CommandInjectionException

CIE3 Null Byte Character In File Request CommandInjectionException

CIE4 Carriage Return Or Line Feed Character In File

Request

CommandInjectionException

F
il

e
 I

O

FIO1 Detect Large Individual Files FileIOException

FIO2 Detect Large Number Of File Uploads FileIOException

10

BEHAVIOR BASED EVENTS

U
se

r
T

re
n

d
 UT1 Irregular Use Of Application UserTrendException

UT2 Speed Of Application Use UserTrendException

UT3 Frequency Of Site Use UserTrendException

UT4 Frequency Of Feature Use UserTrendException

S
y

st
e

m
 T

re
n

d

STE1 High Number Of Logouts Across The Site SystemTrendException

STE2 High Number Of Logins Across The Site SystemTrendException

STE3 High Number Of Same Transaction Across The

Site

SystemTrendException

 OWASP AppSensor Summer of Code 2008

 11

RESPONSE

The power of AppSensor is its placement within the application for detection and its ability to respond to malicious

activity in real time. The most common response activities will be user warning messages, logout, account lockout

and admin notification. However, since AppSensor is connected into the application, the possibilities of response

actions are limited only by the capabilities of the application.

When developing the response policy it is vital to determine the appropriate thresholds for response actions. The

objective is to appropriately deter malicious activity and prevent determined attackers from successfully

identifying vulnerabilities, while minimizing the impact when false positives are recorded from non-malicious user

activity.

DETERMINING MALICIOUS INTENT

When responding to detected malicious activity the system must distinguish between three possible scenarios.

First, the activity may have been unintentional and caused by user error. Second, the activity could be suspicious

activity that is difficult to conclusively determine if malicious and intentional. Third, the action could be clearly an

intentional malicious activity.

Malicious Intent

• Possible User Error

• Possible Attack

• Clear Malicious Activity

In order to determine which category the malicious activity belongs to it is important to consider the following

questions:

• Could this activity result from a typo or inadvertent key press by the user?

• Does the user have to leave the normal flow of the application to perform this activity?

• Are additional tools or software needed to perform the identified activity?

• Could a common application error be responsible for this activity?

Suspicious Event:

• Could occur during user experience with site or browser

• Could occur as result of non-malicious user error

Attack Event:

• Outside of the normal application flow

• Requires Specials Tools

• Requires Special Knowledge

12

CATEGORIZING MALICOUS INTENT

Some events detected by AppSensor could be the result of user error and not a malicious attack. AppSensor must

work to achieve two goals. First, ensure that non-malicious users that have made inadvertent mistakes are not

unjustly punished. Second, detect and respond to malicious attack actions. To achieve these goals the detection

events have been categorized into two classes, Suspect and Attack. Suspicious events are those actions which

could be the result of a user error or an intentional, but non-malicious, user action. For example, a non-malicious

user may inadvertently press the less than character “<” when attempting to press the letter “m” and submit this

field. This inadvertent action should not be interpreted as a potential XSS or injection attack.

Attack events are those activities which are highly unlikely to be the actions of a non-malicious user. These events

include modifying posts and injecting well formed SQL attack strings. Due to the necessity of specialized tools,

security specific knowledge or customized attacks, these events are treated as intentional malicious actions. More

generally, any action performed by a user which is not presented in the user interface may be classified as a

malicious and intentional attack.

Establishing two categories of events allows AppSensor to immediately react to the clearly malicious actions while

still monitoring the suspicious events. It is quite possible that a large number of suspicious events are actually a

determined attacker attempting to keep a low profile while performing tests.

See Appendix B: Response – Suspect vs. Attack Events for a breakdown of events by the categories of Suspect or

Attack.

RESPONSE ACTIONS

Detection of events is not useful without an automated response to deter and prevent a successful compromise. A

response policy should be established which sets specific thresholds and response actions based on the detection

actions of a user. In each case, the event and response action taken should be logged.

Example Response Actions

Security Violation Message Provide a visual warning message to the user to deter further

attack activity.

Examples:

“A Security Event Has Been Detected And Logged”

“A Security Error Has Occurred And Has Been Logged”

Pros: This may deter the casual attacker by alerting them that

their activities are being logged.

Cons: This will not deter a determined attacker and will

provide the attacker with some knowledge of what events are

 OWASP AppSensor Summer of Code 2008

 13

being detected as malicious

Account Logout Log the account out.

Pros: This action will cause difficulty with most automated

tools since the attack or scanning sequence will be interrupted

after a small number of attacks. Logging out the user account

will also provide a clear indication to a user that the

performed actions are being logged and the application is

responding to the attacks.

Cons: Automated tools can be modified to automatically re-

authenticate to bypass this response action.

Account Lockout Lock the user account. The user account could be permanently

locked, unlocked after a pre-set amount of time (such as 30

minutes), or unlocked after the user has contacted the help

desk.

Pros: Locking the account will cease the attack activity.

Cons: If the site does not control the creation of accounts,

then an attacker could generate numerous accounts and use

each one until it is locked.

Administrator Notification Notify the administrator via email or other methods of the

malicious activity.

Pros: An administrator could take additional actions or enable

additional logging capabilities in real-time. Notification is

especially effective for the system trend events which require

human analysis.

Cons: If used too often, this notification could become

another type of log which is mostly ignored.

14

RECOMMENDED THRESHOLDS

All security events generated by a user should be stored in a centralized location. Centralization of event data

allows the system to detect a user performing multiple attacks with a single area of the application and also

detects a user that is performing attacks across multiple areas of the application.

It is recommended that the response threshold consider the total number of security events generated from all

categories. The following table describes a recommended set of response thresholds.

• 3 Suspicious Events = 1 Security Event

• 1 Attack Event = 1 Security Event

• User events totals cleared on rolling 24 hrs basis

The following table illustrates a sample threshold for AppSensor. These values should be customized to meet the

specific needs of the application. For example, a highly sensitive application operating within a restricted

environment may consider even the most subtle suspicious activity to be a security event where account lockout

and administration notification is appropriate.

Security Events Response Action

2 Security Violation Message

3 Security Violation Message + Account Logout

5 Security Violation Message + Account Lockout 5 minutes

7 Security Violation Message + Account Lockout 30 minutes

10 Administration Notification + Account Lockout Indefinite

 OWASP AppSensor Summer of Code 2008

 15

MONITORING SYSTEM TREND EVENTS

Normal activity such as logging in or out of the application or performing a particular action such as updating an

address or password can be monitored to detect attacks. If these events are monitored on a regular basis to

determine expected activity levels, then a dramatic increase in a particular type of activity can be detected and

brought to the attention of an administrator.

It is difficult to implement an automated response to trend events since a sudden influx in activity could be the

result of a variety of non-attack items. However, there is a point where a spike in activity becomes so dramatic that

the spike should be investigated to determine the cause.

For example, advanced XSS worms and CSRF attacks on popular websites can cause significant damage the

application and users. XSS worms often spread by planting the payload of the worm within some portion of the

user’s profile. The ability to detect a dramatic spike in the use an update user profile method would enable the

application to detect the presence of the XSS worm.

Similarly, CSRF attacks may attempt to perform an operation on behalf of the user and then logout the account. A

sharp increase in the use of a particular method or the logout feature may enable the application to detect an

attack in progress.

RECOMMENDED SYSTEM TREND THRESHOLDS

Thresholds should be established for automated response due to a sudden shift in system trends. System trend

monitoring will not be useful without an automated response, since the value of this monitoring is proactively

identifying and stopping an attack.

For the first few weeks it will be necessary to simply capture system trend statistics. It is recommended to monitor

hourly usage rates and perform comparisons considering the day of the week and time of day. After sufficient

statistics’ are available, the automated response can be enabled.

TREND EXAMPLE:

The following policy has been implemented to notify administrators of suspicious activity related to a spike in

added friends for a social networking site.

System Trend %

Delta

Response Action

+200% Administration Notification

+500% Administration Notification

+1000% Temporarily Disable Add Friend Feature

16

I n order to implement this policy, AppSensor recorded trend data for 1 month and determined the average

number of friends added per 1000 users. The results are displayed in the blue line in the chart below. The graph

also displays response thresholds for 200%, 500% and 1000% increases in observed activity. Using this data,

AppSensor can detect an abnormal level of activity and immediately alert administrators of the suspicious situation.

In an extreme cause where use of the friend feature spikes to 1000% of normal activity levels, the policy instructs

AppSensor to temporarily disables the add friend feature until the situation can be investigated. By disabling the

site feature, a potential worm can be contained and the site may remain operational. Without such automated

controls, a worm could bring down the entire social network site before administrators or able to even identify the

suspicious activity.

 OWASP AppSensor Summer of Code 2008

 17

IMPLEMENTATION

AppSensor detection points can be implemented into an application using one of two methods depending upon

the type of detection. They can be implemented by using a cross connecting aspect oriented method (ie Java

Filters) or by custom code within the business layer of the application. It is recommended to integrate AppSensor

using a secure programming approach, such as that provided by ESAPI, for maximum benefit and easy integration

in to the program.

See Appendix C: Implementation – Aspect Oriented vs. Business Layer for a recommended implementation of the

detection points using Aspect Oriented and Business Layer methods.

ASPECT ORIENTED IMPLEMENTATION

Java filters or similar aspect oriented programming methods can be used to easily integrate the following detection

points into the application. The benefit of using an aspect oriented approach is that the addition of AppSensor

functionality does not require any modifications to the existing program.

An example of a detection point which can be implemented with aspect oriented programming is CIE1:Blacklist

Inspection for Common SQL Injection Values. All GET requests can be inspected by the cross cutting filter for SQL

injection keywords such as ‘UNION’, ‘1=1—‘ etc. If a match were found, then CIE1 exception would be thrown.

BUSINESS LAYER IMPLEMENTATION

Some detection points should be implemented within the business layer of the application. It is recommended to

use a secure programming methodology, such as that provided by ESAPI, and integrate the detection points with

the ESAPI exceptions.

An example of a detection points that should be implemented in the business layer is direct object reference

manipulation attempts. In this case the business layer would be designed to create a list of acceptable object

references for the user and session. When the user response is received by the application the application will

compare the object reference sent by the user to the authorized list. If the item is not present in the authorized list

than an exception is thrown and ACE1: Modifying URL Arguments Within A GET For Direct Object Access Attempts

is thrown. Note: This particular detection point is easily accomplished using ESAPI’s object referencing code.

18

CONCLUSION

The threat of attacks against critical business applications continue to rise. AppSensor can provide tremendous

value by identifying malicious users and restricting or eliminating application access before a compromise is

possible.

The benefits of AppSensor do not come without some effort. For maximum benefits, AppSensor needs to be

integrated into the program and, at times, tightly coupled with the application itself. However, after the proper

integration is achieved, AppSensor will provide the intended benefits with minimal interaction from developers or

system administrators.

For those looking to implement AppSensor into a critical application, it is important to achieve appropriate support

from all involved parties (management, architecture, developers, etc). It is recommended to utilize this guide as a

blueprint for the design of AppSensor and to make modifications or enhancements as required for the specific

application.

 OWASP AppSensor Summer of Code 2008

 19

REFERENCES

OWASP Development Guide Project: http://www.owasp.org/index.php/Category:OWASP_Guide_Project

OWASP Risk Rating Methodology: http://www.owasp.org/index.php/How_to_value_the_real_risk

OWASP Top Ten Project: http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

OWASP Enterprise Security API (ESAPI) Project:

http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

20

APPENDIX A: DETAILED EVENT DESCRIPTION

SIGNATURE BASED EVENTS DETAILED DESCRIPTION

REQUEST EXCEPTION DETAILED DESCRIPTION

RE1 Unexpected HTTP Commands

RE2 Attempts To Invoke Unsupported HTTP Methods

RE3 GET When Expecting POST

RE4 POST When Expecting GET

RE1 Unexpected HTTP Commands

Exception Type RequestException

Description An HTTP request is received which contains unexpected commands. A list of accepted

commands should be generated (i.e. GET and POST) and all other HTTP commands should

generate an event.

Considerations

Example(s) Instead of a GET or POST request, the user sends a TRACE request to the application.

RE2 Attempts To Invoke Unsupported HTTP Methods

Exception Type RequestException

Description An http request is received which contains a non-existent HTTP command

Considerations

Example(s) Instead of a GET or POST request, the user sends a TEST request to the application (TEST is

not a valid http request)

RE3 GET When Expecting POST

Exception Type RequestException

 OWASP AppSensor Summer of Code 2008

 21

Description A page which is expecting only GET requests, receives a POST.

Considerations

Example(s) The user sends a GET request to a page which has only been used for POSTs

RE4 POST When Expecting GET

Exception Type RequestException

Description A page which is expecting only POST requests, receives a GET

Considerations

Example(s) The user uses a proxy tool to build a custom POST request and sends it to a page which has

been accessed by GET requests.

AUTHENTICATION EXCEPTION DETAILED DESCRIPTION

AE1 Use Of Multiple Usernames

AE2 Multiple Failed Passwords

AE3 High Rate Of Login Attempts

AE4 Unexpected Quantity Of Characters In Username

AE5 Unexpected Quantity Of Characters In Password

AE6 Unexpected Types Of Characters In Username

AE7 Unexpected Types Of Characters In Password

AE8 Providing Only The Username

AE9 Providing Only The Password

AE10 Adding Additional POST Variables

AE11 Removing POST Variables

AE1 Use Of Multiple Usernames

22

Exception Type AuthenticationException

Description Multiple usernames are attempted when logging into the application. The assignment of

login attempts to a user can be based off of a sessionID given to the user when they visit

the website. Correlating based on IP address is difficult since multiple users could be using

the site from the same IP address (e.g. corporate NAT)

Considerations An attacker could bypass this detection by intercepting the post requests and removing the

sessionID.

Example(s) User first tries username bob, then username sue, then steve etc

AE2 Multiple Failed Passwords

Exception Type AuthenticationException

Description For a single username, multiple bad passwords are entered

Considerations

Example(s) User tries username:password combination of user:pass1, user:pass2, user:pass3, etc

AE3 High Rate Of Login Attempts

Exception Type AuthenticationException

Description The number of logins sent per minute becomes too high indicating an automated login

attack

Considerations An attacker could bypass this detection by intercepting the post requests and removing the

sessionID.

Example(s) User sends the following login attempts within 1 second. user1:pass1, user1:pass2,

user2:pass3, user2:pass4

AE4 Unexpected Quantity Of Characters In Username

Exception Type AuthenticationException

Description The user provides a username with a large number of characters

Considerations

Example(s) The user sends a username that is 200 characters long

 OWASP AppSensor Summer of Code 2008

 23

AE5 Unexpected Quantity Of Characters In Password

Exception Type AuthenticationException

Description The user provides a password with a large number of characters

Considerations

Example(s) The user sends a password that is 200 characters long

AE6 Unexpected Types Of Characters In Username

Exception Type AuthenticationException

Description The user provides non-printable characters such as the null byte. Any characters below hex

value 20 or above 7E are considered illegal (decimal values of below 32 or above 126)

Considerations The range will need to be adjusted for international characters.

Example(s) The user sends a username that contains ascii characters below 20 or above 7E

AE7 Unexpected Types Of Characters In Password

Exception Type AuthenticationException

Description The user provides characters such as the null byte, alt-characters, (WHAT IS THE NAME FOR

THOSE)

Considerations The range will need to be adjusted for international characters.

Example(s) The user sends a password that contains ascii characters below 20 or above 7E

AE8 Providing Only The Username

Exception Type AuthenticationException

Description The user submits a post request which only contains the username variable. The password

variable has been removed. This is different from only providing the username in the login

form since in that case the password variable would be present and empty.

Considerations

Example(s) The user uses a proxy tool to remove the password variable from the submitted post

24

request.

AE9 Providing Only The Password

Exception Type AuthenticationException

Description The user submits a post request which only contains the password variable. The username

variable has been removed. This is different from only providing the password in the login

form since in that case the username variable would be present and empty.

Considerations

Example(s) The user uses a proxy tool to remove the username variable from the submitted post

request.

AE10 Adding Additional POST Variables

Exception Type AuthenticationException

Description Additional, unexpected post variables are received during an authentication request.

Considerations

Example(s) The user uses a proxy tool to add the additional post variable of admin=true to the post

request

AE11 Removing POST Variables

Exception Type AuthenticationException

Description Expected post variables are not present within the submitted authentication requests

Considerations

Example(s) The user uses a proxy tool to remove an additional post variable, such as guest=true, from

the post request

SESSION EXCEPTION DETAILED DESCRIPTION

SE1 Modifying Existing Cookies

SE2 Adding New Cookies

 OWASP AppSensor Summer of Code 2008

 25

SE3 Deleting Existing Cookies

SE4 Substituting Another User's Valid Session ID Or Cookie

SE5 Source IP Address Changes During Session

SE6 Change Of User Agent Mid Session

SE1 Modifying Existing Cookies

Exception Type SessionException

Description A request is received containing a cookie with a modified value. This could be determined if

the cookie is modified to an illegal value.

Considerations

Example(s) The user uses a proxy tool to change the encrypted cookie to an alternative value which

does not properly decode within the application. Or, the user modifies an unencrypted

cookie and sets an illegal value for a particular variable.

SE2 Adding New Cookies

Exception Type SessionException

Description A request is received which contains additional cookies that are not expected by the

application.

Considerations

Example(s) The user uses a proxy tool to add additional cookies to the request.

SE3 Deleting Existing Cookies

Exception Type SessionException

Description A request is received which does not contain the expected cookies.

Considerations

Example(s) The user uses a proxy tool to remove cookies or portions of cookies from a request.

SE4 Substituting Another User's Valid Session ID Or Cookie

26

Exception Type SessionException

Description A request is received which contains cookie data that is clearly from another user or

another session.

Considerations This may only be possible to detect in unique situations where the cookie value is clearly

not valid for this user.

Example(s) The user uses a proxy tool to substitute valid data from another user or session into the

cookie. An example would be changing some sort of identification number within the

cookie.

SE5 Source IP Address Changes During Session

Exception Type SessionException

Description Valid requests, containing valid session credentials, are received from multiple source IP

addresses.

Considerations Detection of a different IP address may be difficult since some network providers change

source IP address between requests. However, it may be safe to flag events if the IP address

changes to one which is located in a different country than the previous request.

Example(s) User A's session is compromised and User B begins using the account. The requests

originating from User B will possibly contain a different source IP address the User A. The

source IP addresses could be the same if both users where behind the same NAT.

SE6 Change Of User Agent Mid Session

Exception Type SessionException

Description The User-Agent value of the header changes during an authenticated session. This indicates

a different browser is now being used. Although this value is under the control of the

sender, a change in this may indicates that the session has been compromised and is being

used another individual. This will likely not be the case that the user has simply copied and

pasted the URL from one browser to another on the same system because this action would

not copy over the appropriate session identifiers.

Considerations This detection point may inhibit the ability for an authorized penetration test. However,

that is a good thing in all other situations.

Example(s) Midsession, the User-Agent changes from Firefox to Internet Explorer

Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.8.1.14) Gecko/20080404

Firefox/2.0.0.14

 OWASP AppSensor Summer of Code 2008

 27

 to

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1; .NET CLR 2.0.50727; Media

Center PC 5.0; .NET CLR 3.0.04506; InfoPath.2)

ACCESS CONTROL DETAILED DESCRIPTION

ACE1 Modifying URL Arguments Within A GET For Direct Object Access Attempts

ACE2 Modifying Parameters Within A POST For Direct Object Access Attempts

ACE3 Force Browsing Attempts

ACE4 Evading Presentation Access Control Through Custom Posts

ACE1 Modifying URL Arguments Within a GET For Direct Object Access Attempts

Exception Type AccessControlException

Description The application is designed to use an identifier for a particular object, such as using

categoryID=4 or user=guest within the URL. A user modifies this value in an attempt to

access unauthorized information. This exception should be thrown anytime the identifier

received from the user is not authorized due to the identifier being nonexistent or the

identifier not authorized for that user.

Considerations

Example(s) The user modifies the following URL from site.com/viewpage?page=1&user=guest to

site.com/viewpage?page=22&user=admin

ACE2 Modifying Parameters Within A POST For Direct Object Access Attempts

Exception Type AccessControlException

Description The value of a non-free text html form element (i.e. drop down box, radio button) is

modified to an illegal value. The value either does not exist or is not authorized for the user.

Considerations

Example(s) The user uses a proxy tool to intercept a post request and changes the posted value to a

value that was not available through the normal display. For example, the user encounters

28

a dropdown box containing the numbers 1 through 10. The user selects 5 and then

intercepts the post to change the submitted value to 100.

ACE3 Force Browsing Attempts

Exception Type AccessControlException

Description An authenticated user sends a request for a non-existent page or a page that is not

authorized for the user.

Considerations

Example(s) The user is authenticated and requests site.com/PageThatDoesNotExist

ACE4 Evading Presentation Access Control Through Custom Posts

Exception Type AccessControlException

Description A post request is received which is not authorized for the current user and the user could

not have performed this action without crafting a custom POST request. This situation is

most likely to occur when presentation layer access controls are in place and have removed

the user’s ability to initiate the action through the presentation of the application. An

attacker may be aware of the functionality and attempt to bypass this presentation layer

access control by crafting their own custom message and sending this in an attempt to

execute the functionality.

Considerations Detecting this event requires the application to be aware of which controls/functionality or

hidden at the presentation layer due to access controls. If an access control violation occurs

for any of these items, then this event should be fired.

Example(s) The application contains the ability for an administrator to delete a user. This method is

normally invoked by entering the username and posting to https://oursite/deleteuser

Presentation layer access controls ensure the delete user form is not displayed to non-

administrator users. A malicious user has access to a non-administrator account and is

aware of the delete user functionality. The malicious user sends a custom crafted post

message to https:/ oursite/deleteuser in an attempt to execute the delete user method.

 OWASP AppSensor Summer of Code 2008

 29

INPUT EXCPTION DETAILED DESCRIPTION

IE1 Cross Site Scripting Attempt

IE2 Violations Of Implemented White Lists

IE1 Cross Site Scripting Attempt

Exception Type InputException

Description The HTTP request contains common XSS attacks which are often used by attackers probing

for XSS vulnerabilities. Detection should be configured to test all GET and POST values as

well as all header names and values for the following values.

Considerations

Example(s) The user uses a proxy tool to add an XSS attack to the header value and the

""displayname"" post variable. The header value could be displayed to an admin viewing log

files and the ""displayname"" post variable may be stored in the application and displayed

to other users.

<script>alert(document.cookie);</script>

<script>alert(xss);</script>

<script>alert(test);</script>

<script>alert(hi);</script>

alert(String.fromCharCode(88,83,83))

<BODY ONLOAD=alert('XSS')>

IE2 Violations Of Implemented White Lists

30

Exception Type InputException

Description The application receives user-supplied data that violates an established white list validation.

Considerations

Example(s) The user submits data that is not correct for the particular field. This may not be attack data

necessarily, but repeated violations could be an attempt by the attacker to determine how

an application works or to discover a flaw.

ENCODING EXCEPTION DETAILED DESCRIPTION

EE1 Double Encoded Characters

EE2 Unexpected Encoding Used

EE1 Double Encoded Characters

Exception Type EncodingException

Description An HTTP request is received which contains values that have been double encoded.

Considerations

Example(s) The user sends encodes the % symbol to %25 and appends 3C. The user is sending %253C

which may be interpreted by the application as %3C which is actually <.

EE2 Unexpected Encoding Used

Exception Type EncodingException

Description An HTTP request is received which contains values that have encoded in an unexpected

format.

Considerations

Example(s) The user encodes an attack such as alert(document.cookie) into the UTF-7 format and

sends this data the application. This could bypass validation filters and be rendered to a

user in certain situations.

 OWASP AppSensor Summer of Code 2008

 31

COMMAND INJECTION DETAILED DESCRIPTION

CIE1 Blacklist Inspection For Common SQL Injection Values

CIE2 Detect Abnormal Quantity Of Returned Records.

CIE3 Null Byte Character In File Request

CIE4 Carriage Return Or Line Feed Character In File Request

CIE1 Blacklist Inspection For Common SQL Injection Values

Exception Type CommandInjectionException

Description A request is received which contains common SQL injection attack attempts. The point of

this detection is not to detect all variations of a SQL injection attack, but to detect the

common probes which an attacker or tool might use to determine if a SQL injection

vulnerability is present. Add regular expressions here too?

Considerations Unless the site contains some sort of message board for discussing SQL injection, there is

little reason that the SQL injection examples should ever be received from a user request.

Use caution when adding SQL statements such as UNION or JOIN. These may create false

positives depending on valid information passed through parameters which may contain

these words.

Example(s) The user sends a request and modifies a URL parameter from category=5 to category =5' OR

'1'='1 in an attempt to perform an SQL injection attack. The user could perform similar

attacks by modifying post variables or even the request headers to contain SQL injection

attacks.

• ' OR '1'='1

• ' OR 'a'='a

• ' OR 1=1—

• xp_cmdshell

• UNION

• JOIN

CIE2 Detect Abnormal Quantity Of Returned Records

32

Exception Type CommandInjectionException

Description A database query is executed which returns more records than expected. For example, if

the query should only return 1 record and 100 records are returned, then something has

likely gone wrong.

Considerations Detection of this event will not likely indicate what malicious action the attacker has taken,

but it will indicate that the attacker has successfully bypasses the intended actions of the

application and accessed more data than intended.

Example(s) The application is designed to allow a user to maintain 5 profiles. A user makes a request to

view all of their profiles. The database query, which is expected to always return 5 or less

results, returns 10000 records. Something in the application, or user’s actions, has caused

unauthorized data to be returned.

CIE3 Null Byte Character In File Request

Exception Type CommandInjectionException

Description A request is received to download a file from the server. The filename requested contains

the null byte the file name. This is an attempted OS injection attack.

Considerations

Example(s) The user modifies the filename of the requested file to download to contain the null byte.

The null byte can be added by inserting the hex value %00.

CIE4 Carriage Return Or Line Feed Character In File Request

Exception Type CommandInjectionException

Description A request is received which contains the carriage return or line feed characters within the

posted data or the URL parameters. This is an attempted HTTP split response attack.

Considerations

Example(s) The user includes the hex value %0D or %0A in the http request post data or URL

parameters.

 OWASP AppSensor Summer of Code 2008

 33

FILE IO DETAILED DESCRIPTION

FIO1 Detect Large Individual Files

FIO2 Detect Large Number Of File Uploads

FIO1 Detect Large Individual Files

Exception Type FileIOException

Description A file upload feature detects that a large file has been submitted for upload which exceeds

the maximum upload size

Considerations

Example(s) The user attempts to upload a large file to occupy resources or fill up disk space

FIO2 Detect Large Number Of File Uploads

Exception Type FileIOException

Description A user uploads an excessively large number of files.

Considerations

Example(s) A single user attempts to upload multiple small files to occupy resources or fill up disk space

34

BEHAVIOR BASED EVENTS DETAILED DESCRIPTION

USER TREND DETAILED DESCRIPTION

UT1 Irregular Use Of Application

UT2 Speed Of Application Use

UT3 Frequency Of Site Use

UT4 Frequency Of Feature Use

UT1 Irregular Use Of Application

Exception Type UserTrendException

Description The application receives numerous requests for the same page or feature from a user. The

user may be sending different data combinations or trying to detect errors in the page.

Considerations This detection point is appropriate to add to pages which perform operations or respond to

user supplied data versus pages which display static information.

Example(s) The user requests a particular page, such as the address update page, numerous times.

UT2 Speed Of Application Use

Exception Type UserTrendException

Description The speed of requests from a user indicates that an automated tool is being used to access

the site. The use of a tool may indicate reconnaissance for an attack or attempts to identify

vulnerabilities in the site.

Considerations Search spiders may request large quantities of pages from the unauthenticated portion of

the website. However, any scripted tool requesting large quantities of pages within the

authenticated portion of the site would be suspicious.

Example(s) The user utilizes an automated tool to request hundreds of pages per minute.

UT3 Frequency Of Site Use

 OWASP AppSensor Summer of Code 2008

 35

Exception Type UserTrendException

Description Does the user normally access the site 1 per week, and this is now many times per day

Considerations

Example(s)

UT4 Frequency Of Feature Use

Exception Type UserTrendException

Description The rate of a user utilizing a particular application feature changes dramatically.

Considerations

Example(s)

SYSTEM TREND DETAILED DESCRIPTION

STE1 High Number Of Logouts Across The Site

STE2 High Number Of Logins Across The Site

STE3 High Number Of Same Transaction Across The Site

STE1 High Number Of Logouts Across The Site

Exception Type SystemTrendException

Description A sudden spike in logouts across the application could indicate a XSS and CSRF attack placed

within the application which is automatically logging off users.

Considerations This requires the application to maintain normal usage levels of the application feature

usage.

Example(s) The hourly usage of the logoff feature of the application suddenly spikes by 500%.

STE2 High Number Of Logins Across The Site

36

Exception Type SystemTrendException

Description A sudden spike in logins across the application could indicate users being redirected to the

site from a phishing email looking to exploit a XSS vulnerability in the site.

Considerations This requires the application to maintain normal usage levels of the application feature

usage.

Example(s) The hourly usage of the logon feature of the application suddenly spikes by 500%.

STE3 High Number Of Same Transaction Across The Site

Exception Type SystemTrendException

Description A sudden spike in similar activity across numerous users of the application may indicate a

phishing attack or CSRF attack against the users.

Considerations This requires the application to maintain normal usage levels of the application feature

usage.

Example(s) The hourly usage of the update email address feature of the application suddenly spikes by

500%.

 OWASP AppSensor Summer of Code 2008

 37

APPENDIX B: RESPONSE – SUSPECT VS. ATTACK EVENTS

ID Title Exception Suspect Attack

R
e

q
u

e
st

RE1 Unexpected HTTP

Commands

RequestException x

RE2 Attempts To Invoke

Unsupported HTTP

Methods

RequestException x

RE3 GET When Expecting

POST

RequestException x

RE4 POST When Expecting

GET

RequestException x

A
u

th
e

n
ti

ca
ti

o
n

AE1 Use Of Multiple

Usernames

AuthenticationException x

AE2 Multiple Failed

Passwords

AuthenticationException x

AE3 High Rate Of Login

Attempts

AuthenticationException x

AE4 Unexpected Quantity

Of Characters In

Username

AuthenticationException x

AE5 Unexpected Quantity

Of Characters In

Password

AuthenticationException x

AE6 Unexpected Types Of

Characters In

Username

AuthenticationException x

AE7 Unexpected Types Of

Characters In Password

AuthenticationException x

AE8 Providing Only The

Username

AuthenticationException

AE9 Providing Only The

Password

AuthenticationException x

AE10 Adding Additional

POST Variables

AuthenticationException x

AE11 Removing POST

Variables

AuthenticationException x

S
e

ss
io

n

SE1 Modifying Existing

Cookies

SessionException x

SE2 Adding New Cookies SessionException x

SE3 Deleting Existing

Cookies

SessionException x

SE4 Substituting Another

User's Valid Session ID

Or Cookie

SessionException x

38

SE5 Source IP Address

Changes During

Session

SessionException x

SE6 Change Of User Agent

Mid Session

SessionException x

A
cc

e
ss

 C
o

n
tr

o
l

ACE1 Modifying URL

Arguments Within A

GET For Direct Object

Access Attempts

AccessControlException x

ACE2 Modifying Parameters

Within A POST For

Direct Object Access

Attempts

AccessControlException x

ACE3 Force Browsing

Attempts

AccessControlException x

ACE4 Evading Presentation

Access Control

Through Custom Posts

AccessControlException x

In
p

u
t

IE1 Cross Site Scripting

Attempt

InputException x

IE2 Violations Of

Implemented White

Lists

InputException x

E
n

co
d

in
g

 EE1 Double Encoded

Characters

EncodingException x

EE2 Unexpected Encoding

Used

EncodingException x

C
o

m
m

a
n

d
 I

n
je

ct
io

n

CIE1 Blacklist Inspection For

Common SQL Injection

Values

CommandInjectionException x

CIE2 Detect Abnormal

Quantity Of Returned

Records.

CommandInjectionException x

CIE3 Null Byte Character In

File Request

CommandInjectionException x

CIE4 Carriage Return Or Line

Feed Character In File

Request

CommandInjectionException x

F
il

e
 I

O
 FIO1 Detect Large Individual

Files

FileIOException x

FIO2 Detect Large Number

Of File Uploads

FileIOException x

U
se

r
T

re
n

d
 UT1 Irregular Use Of

Application

UserTrendException x

UT2 Speed Of Application

Use

UserTrendException x

UT3 Frequency Of Site Use UserTrendException x

 OWASP AppSensor Summer of Code 2008

 39

UT4 Frequency Of Feature

Use

UserTrendException x
S

y
st

e
m

 T
re

n
d

STE1 High Number Of

Logouts Across The

Site

SystemTrendException x

STE2 High Number Of Logins

Across The Site

SystemTrendException x

STE3 High Number Of Same

Transaction Across The

Site

SystemTrendException x

40

APPENDIX C: IMPLEMENTATION – ASPECT ORIENTED VS. BUSINESS LAYER

ID Title Exception Aspect

Oriented

Business

Layer

R
e

q
u

e
st

RE1 Unexpected HTTP

Commands

RequestException x

RE2 Attempts To Invoke

Unsupported HTTP

Methods

RequestException x

RE3 GET When Expecting

POST

RequestException x

RE4 POST When Expecting

GET

RequestException x

A
u

th
e

n
ti

ca
ti

o
n

AE1 Use Of Multiple

Usernames

AuthenticationException x

AE2 Multiple Failed

Passwords

AuthenticationException x

AE3 High Rate Of Login

Attempts

AuthenticationException x

AE4 Unexpected Quantity

Of Characters In

Username

AuthenticationException x

AE5 Unexpected Quantity

Of Characters In

Password

AuthenticationException x

AE6 Unexpected Types Of

Characters In

Username

AuthenticationException x

AE7 Unexpected Types Of

Characters In

Password

AuthenticationException x

AE8 Providing Only The

Username

AuthenticationException x

AE9 Providing Only The

Password

AuthenticationException x

AE10 Adding Additional

POST Variables

AuthenticationException x

AE11 Removing POST

Variables

AuthenticationException x

S
e

ss
io

n

SE1 Modifying Existing

Cookies

SessionException x

SE2 Adding New Cookies SessionException x

SE3 Deleting Existing

Cookies

SessionException x

 OWASP AppSensor Summer of Code 2008

 41

SE4 Substituting Another

User's Valid Session ID

Or Cookie

SessionException x

SE5 Source IP Address

Changes During

Session

SessionException x

SE6 Change Of User Agent

Mid Session

SessionException x

A
cc

e
ss

 C
o

n
tr

o
l

ACE1 Modifying URL

Arguments Within A

GET For Direct Object

Access Attempts

AccessControlException x

ACE2 Modifying Parameters

Within A POST For

Direct Object Access

Attempts

AccessControlException x

ACE3 Force Browsing

Attempts

AccessControlException x

ACE4 Evading Presentation

Access Control

Through Custom Posts

AccessControlException x

In
p

u
t

IE1 Cross Site Scripting

Attempt

InputException x

IE2 Violations Of

Implemented White

Lists

InputException x

E
n

co
d

in
g

 EE1 Double Encoded

Characters

EncodingException x

EE2 Unexpected Encoding

Used

EncodingException x

C
o

m
m

a
n

d
 I

n
je

ct
io

n

CIE1 Blacklist Inspection For

Common SQL Injection

Values

CommandInjectionException x

CIE2 Detect Abnormal

Quantity Of Returned

Records.

CommandInjectionException x

CIE3 Null Byte Character In

File Request

CommandInjectionException x

CIE4 Carriage Return Or

Line Feed Character In

File Request

CommandInjectionException x

F
il

e
 I

O
 FIO1 Detect Large Individual

Files

FileIOException x

FIO2 Detect Large Number

Of File Uploads

FileIOException x

U
se

r

T
re

n

d
 UT1 Irregular Use Of

Application

UserTrendException x

42

UT2 Speed Of Application

Use

UserTrendException x

UT3 Frequency Of Site Use UserTrendException x

UT4 Frequency Of Feature

Use

UserTrendException x

S
y

st
e

m
 T

re
n

d

STE1 High Number Of

Logouts Across The

Site

SystemTrendException x

STE2 High Number Of Logins

Across The Site

SystemTrendException x

STE3 High Number Of Same

Transaction Across The

Site

SystemTrendException x

