
The	
  state	
  op	
  Apps	
  
From	
  an	
  eavesdroppers	
  perspective



Agenda

• Who  is  talking?  
• Testing  1000  Dutch  Android  apps  
• Down  the  rabbit  hole  
• Video



Who  we  are



What  we  do



Research  time!

SOftware  OwNage.



Testing  1000  Dutch  Android  Apps  on  SSL



Research  questions

• How  to  get  1000  apps?  
• What  is  our  threat  model?  
• What  is  private  data?  
• How  to  test  so  many?



What  we  did

• Scraping  the  store.  
• Gut  feeling  approach  on  private  data.  
• Scope  on  public  traffic  only.  (sign-­‐on/in).  
• Test  with  untrusted  cert  only  (self  signed).  
• Static  analysis  (has  high  false-­‐positive  rate).  
• Generating  traffic  (trigger  events)  -­‐  work  to  do.  
• Human  interaction  needed  :-­‐(



MiTM  Set-­‐up

1. Run  DHCP  server,  with  gateway  set  to  the  IP  of  the  AP;  
2. Run  intercepting  proxy  for  MiTM;  e.g.  mitmproxy;  
3. Forward    TCP  connections  (80  &  443)  through  proxy;  
4. NAT  other  connections;  
5. Run  Wireshark  to  inspect  non-­‐HTTP(s)  connections.



Steps

1. Static  analysis  (automated)  
2. Install  app  (automated)  
3. Launch  app  
4. Generate  traffic  
5. Inspect  traffic  
6. Uninstall  (automated)



It  took  us  3  months…  (spare  time)



What  did  we  see?

..  name,  address,  date  of  birth,  e-­‐mail,  phone,  username,  
password,  secrets,  insurance  policy  number,  bank  account,  
creditcard,  pictures,  medicine  prescriptions,  diary,  BSN,  
political  preference,  FB  credentials,  appointments,  tickets  ..



Results

531469

We  started  with  1000  apps

No  network  or  no  private  data

Sends  private  data



Results

63%	
  
332

37%	
  
199

We  continue  with  531.

SSL

No	
  SSL



Results

55%	
  
289

45%	
  
242

We  continue  with  531.

SSL

No	
  SSL	
  +	
  broken	
  SSL	
  (unknown	
  CA)



Result

55%	
  
289

45%	
  
242

45%  of  apps  dealing  with  private  data    
does  not    protect  you  against  MiTM!



What  happened  next?



Do  we  care?

45  organisations  contacted  us  for  details….

We  stopped  chasing…



AppVer  -­‐  Beta  -­‐  Sneak  Preview



Down	
  the	
  rabbit	
  hole



Common  flaws  Android  apps
• Insecure  SSL/TLS  (or  worse  no  SSL)  
• Insecure  Javascript  interface  

These  two  issues  combined  allows  for  remote  compromise  of  your  
data  -­‐  for  example  via  a  public  WiFi  hotspot



Insecure  SSL/TLS
• SSL/TLS  provides  integrity,  confidentiality  &  authentication  
• Default  SSL  implementation  provides  security  similar  to  web  

browsers  
• Various  ways  to  screw  this  up,  including:  

• Insecure  Trust  Manager  
• Insecure  Host  Name  Verifier  
• Insecure  SSL  Error  Handler  (WebView)  
• Mixed  content  (WebView)



Insecure  Trust  Manager  -­‐  example
public class InsecureX509TrustManager implements X509TrustManager {

    @Override
    public void checkClientTrusted(X509Certificate[] x509Certificates, String s) 

throws CertificateException {
    }

    @Override
    public void checkServerTrusted(X509Certificate[] x509Certificates, String s) 

throws CertificateException {
    }

    @Override
    public X509Certificate[] getAcceptedIssuers() {
        return null;
    }

}



Outlook.com  for  Android  -­‐  Insecure  SSL



Javascript  interface  (bridge)
• Used  in  combination  with  WebViews  
• Allows  Javascript  to  call  Java  methods  
• The  interface  can  be  any  Object  
• The  Object’s  public  methods  are  exposed  (with  some  

limitations)  

public void addJavascriptInterface (Object object, String name)

http://developer.android.com/reference/java/lang/Object.html
http://developer.android.com/reference/java/lang/String.html


Javascript  interface  -­‐  example
 class JsObject {
    public String toString() { return "injectedObject"; }
 }

 webView.addJavascriptInterface(new JsObject(), 
"injectedObject");

 webView.loadData("", "text/html", null);
 webView.loadUrl(

"javascript:alert(injectedObject.toString())");



Javascript  interface  -­‐  the  flaw
• On  Android  <  API  lvl  17  (4.2)  ANY  public  method  can  be  invoked  
• Including  Reflection  API  exposed  through  Object  (!)  

• Object.getClass()



Viber  -­‐  Insecure  SSL  +  Javascript  interface



How  about  iOS?



We  find  these  bugs  in  iOS  as  well!



We  find  these  bugs  in  iOS  as  well!



www.securify.nl

How  about  iOS?



Concluding
• Lots  of  apps  not  protected  against  eavesdropping  
• All  platforms  affected  
• Root  cause  varies  

• Debugging/testing  
• Vulnerabilities  in  libraries  
• Implementation  errors  

• Basic  check  is  not  hard  to  do!  
• Include  in  automated  tests  
• Test  release  builds  



Thank	
  you!

Questions?	
  
info@securify.nl	
  
@securifybv

mailto:info@securify.nl

