
The	
  state	
  op	
  Apps	
  
From	
  an	
  eavesdroppers	
  perspective



Agenda

• Who  is  talking?  
• Testing  1000  Dutch  Android  apps  
• Down  the  rabbit  hole  
• Video



Who  we  are



What  we  do



Research  time!

SOftware  OwNage.



Testing  1000  Dutch  Android  Apps  on  SSL



Research  questions

• How  to  get  1000  apps?  
• What  is  our  threat  model?  
• What  is  private  data?  
• How  to  test  so  many?



What  we  did

• Scraping  the  store.  
• Gut  feeling  approach  on  private  data.  
• Scope  on  public  traffic  only.  (sign-­‐on/in).  
• Test  with  untrusted  cert  only  (self  signed).  
• Static  analysis  (has  high  false-­‐positive  rate).  
• Generating  traffic  (trigger  events)  -­‐  work  to  do.  
• Human  interaction  needed  :-­‐(



MiTM  Set-­‐up

1. Run  DHCP  server,  with  gateway  set  to  the  IP  of  the  AP;  
2. Run  intercepting  proxy  for  MiTM;  e.g.  mitmproxy;  
3. Forward    TCP  connections  (80  &  443)  through  proxy;  
4. NAT  other  connections;  
5. Run  Wireshark  to  inspect  non-­‐HTTP(s)  connections.



Steps

1. Static  analysis  (automated)  
2. Install  app  (automated)  
3. Launch  app  
4. Generate  traffic  
5. Inspect  traffic  
6. Uninstall  (automated)



It  took  us  3  months…  (spare  time)



What  did  we  see?

..  name,  address,  date  of  birth,  e-­‐mail,  phone,  username,  
password,  secrets,  insurance  policy  number,  bank  account,  
creditcard,  pictures,  medicine  prescriptions,  diary,  BSN,  
political  preference,  FB  credentials,  appointments,  tickets  ..



Results
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Result

55%	
  
289

45%	
  
242

45%  of  apps  dealing  with  private  data    
does  not    protect  you  against  MiTM!



What  happened  next?



Do  we  care?

45  organisations  contacted  us  for  details….

We  stopped  chasing…



AppVer  -­‐  Beta  -­‐  Sneak  Preview



Down	
  the	
  rabbit	
  hole



Common  flaws  Android  apps
• Insecure  SSL/TLS  (or  worse  no  SSL)  
• Insecure  Javascript  interface  

These  two  issues  combined  allows  for  remote  compromise  of  your  
data  -­‐  for  example  via  a  public  WiFi  hotspot



Insecure  SSL/TLS
• SSL/TLS  provides  integrity,  confidentiality  &  authentication  
• Default  SSL  implementation  provides  security  similar  to  web  

browsers  
• Various  ways  to  screw  this  up,  including:  

• Insecure  Trust  Manager  
• Insecure  Host  Name  Verifier  
• Insecure  SSL  Error  Handler  (WebView)  
• Mixed  content  (WebView)



Insecure  Trust  Manager  -­‐  example
public class InsecureX509TrustManager implements X509TrustManager {

    @Override
    public void checkClientTrusted(X509Certificate[] x509Certificates, String s) 

throws CertificateException {
    }

    @Override
    public void checkServerTrusted(X509Certificate[] x509Certificates, String s) 

throws CertificateException {
    }

    @Override
    public X509Certificate[] getAcceptedIssuers() {
        return null;
    }

}



Outlook.com  for  Android  -­‐  Insecure  SSL



Javascript  interface  (bridge)
• Used  in  combination  with  WebViews  
• Allows  Javascript  to  call  Java  methods  
• The  interface  can  be  any  Object  
• The  Object’s  public  methods  are  exposed  (with  some  

limitations)  

public void addJavascriptInterface (Object object, String name)

http://developer.android.com/reference/java/lang/Object.html
http://developer.android.com/reference/java/lang/String.html


Javascript  interface  -­‐  example
 class JsObject {
    public String toString() { return "injectedObject"; }
 }

 webView.addJavascriptInterface(new JsObject(), 
"injectedObject");

 webView.loadData("", "text/html", null);
 webView.loadUrl(

"javascript:alert(injectedObject.toString())");



Javascript  interface  -­‐  the  flaw
• On  Android  <  API  lvl  17  (4.2)  ANY  public  method  can  be  invoked  
• Including  Reflection  API  exposed  through  Object  (!)  

• Object.getClass()



Viber  -­‐  Insecure  SSL  +  Javascript  interface



How  about  iOS?



We  find  these  bugs  in  iOS  as  well!



We  find  these  bugs  in  iOS  as  well!



www.securify.nl

How  about  iOS?



Concluding
• Lots  of  apps  not  protected  against  eavesdropping  
• All  platforms  affected  
• Root  cause  varies  

• Debugging/testing  
• Vulnerabilities  in  libraries  
• Implementation  errors  

• Basic  check  is  not  hard  to  do!  
• Include  in  automated  tests  
• Test  release  builds  



Thank	
  you!

Questions?	
  
info@securify.nl	
  
@securifybv

mailto:info@securify.nl

