
This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 1

Software Security - The Bigger Picture

Rudolph Araujo – Principal Software Security Consultant

Foundstone Professional Services, A Division of McAfee

1 Abstract

Developers are often blamed for software

security mishaps and punished through losses in

wages or embarrassed on walls of shame1! At

Foundstone, we believe developers, for the

most part, don't write insecure code

intentionally or because they are negligent,

they do so because they haven't been taught

any better and don't receive adequate help and

guidance from other stakeholders. Essentially,

when dealing with software security, it is often

a common fallacy to focus all together too

much on the development phase of the

software development lifecycle and not enough

on the others. This paper therefore focuses on

three key support activities that could help

tremendously in improving the security of

projects churned out by your development

teams:

 Security Requirements Engineering - As

with software quality in general, the

lack of security requirements leads to

insecure software.

 Security Acceptance Testing - Quality

assurance teams specialize in testing

software yet rarely test for security.

And no, we don't mean penetration

testing!

 Security Knowledge Management -

When a security incident occurs can we

ensure lessons are learned across the

organization?

Through our experience having worked with a

number of organizations to augment their

software development lifecycles we have

discovered how such activities can help produce

higher quality and secure applications that

make everyone happy especially developers

who keep their reputation, jobs and hard-

earned pay checks!

2 Introduction

The security community and industry has

evolved tremendously since the late 80s when

the first "security attack" was perpetrated in

the form of the Morris Worm. This led to the

creation of the Computer Emergency Response

Team or CERT as it is popularly known. For the

next decade or so the focus on the industry was

on securing the network and to a lesser extent

on securing the host. As a result of this, the

major security technologies of that era were the

devices and software we almost take for

granted today - the firewalls, intrusion

detection systems and virus scanners. However,

as the Internet exploded and the World Wide

Web went from being an academic network of

computers to a platform upon which business

was done, the threats also evolved. Now the

attackers began to attack not just the network

and the host but the applications that sat on

top of these. In many ways these applications

represented the crown jewels - the confidential

data, the precious intellectual property and

lieven
Stamp

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 2

business intelligence that organizations and

indeed consumers did not want to lose.

Increasingly, organizations succeeded in getting

their “ducks in a row" on the network and host

side as tried and tested solutions became

available. However, development teams were

struggling with dealing with securing the

application. Enter vulnerabilities such as the

buffer overflow, SQL injection, and cross site

scripting; the list could go on.

So how have we dealt with this problem over

the last few years? As one would expect, the

first attempt at dealing with problems was to

not deal with them at all. The approach was to

release software, hope for the best and then fix

issues as they were publicly reported. Next

came the phase of penetration testing a few

weeks or days before going into production.

This again provided little time to effectively fix

the issues discovered. As an industry, we

continued to evolve and the next phase was to

go hunting through code for the common

classes of vulnerabilities that were in the news

– whether this was buffer overflows in the 90s

or common web application vulnerabilities

more recently. The more strategic of the

organizations at this point invested in software

security training and building policies such as

language specific coding standards to aid their

developers to deal with the problem and to

prevent the introduction of vulnerabilities in the

future. The focus from the beginning has been

on developers and the development phase for

the most part and only rarely touching on some

of the secure design elements. As a

consequence of this focus, it almost became

instinctive to blame developers and hold them

responsible for vulnerabilities in the application.

If something went wrong, it must have been the

developer's fault - especially now that we have

this great firewall solution and this secure

coding standard!

3 Holistic Software Security

Unfortunately it appears that as a community

we the software security folks have not learned

as much as we should have from the decades of

research into software engineering. If you treat

a security vulnerability as a bug first and a

security issue second, you can quickly adapt

many of the lessons that have been learned

with regards to improving the security of

software applications.

Software security must be viewed holistically. It

is achieved through the combination of

effective people, process and technology with

none of these three on their own capable of

fully replacing the other two. This also means

that just like software quality in general,

software security requires that we focus on

security throughout the application's life cycle -

or from cradle to grave as some like to say.

Unfortunately thus far, most of the effort has

focused on activities such as application

penetration testing, security code reviews and

to a lesser extent on threat modeling.

While all of the aforementioned activities are

critical to improving the security of your

applications, they are by no means the only

ones. Unfortunately, both as a community at

large and as individuals looking to tackle the

software security problem in our development

teams we have tended to ignore the non-

developer focused activities. In this paper we

present three of these activities. We share the

experiences we have gained in effectively

implementing these activities for large

development teams as well as the value they

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 3

bring to improving the security of the

applications developed by these teams.

3.1The Foundstone Security Frame2

Before we dig into the specifics of each of the

three activities that are the focus of this paper,

it helps to define a common frame of reference

to view software security problems and

solutions. Defining such a frame has helped to

both be better prepared going into a software

development project as well as to perform

better root cause analysis when faced with

vulnerabilities. In the context of this paper, we

will use this security frame in each of the three

activities to help us be more efficient, effective

and thorough within each domain.

 Configuration Management: As part of this

category we consider all issues surrounding

the security of configuration information

and deployment. For instance, any

authentication and / or authorization rules

embedded in configuration files or how the

framework and application deal with error

messages.

 Data Protection in Storage & Transit: The

nature of issues included in this category

cover the handling of sensitive information

such as social security numbers, user

credentials or credit card information. It is

also covers the quality of cryptographic

primitives being used, required / minimum

key lengths, entropy and usage vis-à-vis

industry standards and best practices.

 Authentication: We consider here the usage

of strong protocols to validate the identity

of a user or component. Further, issues

such as the possibility or potential for

authentication attacks such as brute-force

or dictionary based guessing attacks also fall

within the realm of this category.

 Authorization: The types of issues that are

considered under this category include

those dealing with appropriate mechanisms

to enforce access control on protected

resources in the system. Authorization flaws

could result in either horizontal or vertical

privilege escalation.

 User & Session Management: This category

is concerned with how a user’s account and

session is managed within the application.

The quality of session identifiers and the

mechanism for maintaining sessions are

some of the considerations here. Similarly,

user management issues such as user

provisioning and de-provisioning, password

management and policies are also covered

as part of this category.

 Data Validation: This is the category

responsible for the most well known bugs

and flaws including buffer overflows, SQL

injection and cross site scripting. Length,

range, format and type checking for inputs

and outputs are considerations here.

 Error Handling & Exception Management:

This category is responsible for ensuring

that all failure conditions such as errors and

exceptions are dealt with in a secure

manner. The nature of issues covered in this

category range from detailed error

messages, which lead to information

disclosure, to how user friendly security

error messages are.

 Auditing and Logging: This category of

issues is concerned with how information is

logged for debugging and auditing

purposes. The security of the logging

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 4

mechanism itself, the need and presence of

an audit trail and information disclosure

through log files are all important aspects.

3.2 Security Requirements Engineering

One of the most ignored parts of a security

enhanced software development life cycle is the

security requirements engineering process. One

of the prime reasons for this oversight is that

security is assumed to be a technical issue and

therefore best handled during architecture and

design or better still during implementation.

Since software requirements are often written

by business analysts who are non-technical, this

is a common conclusion.

The problem with this approach, as any

experienced software professional would tell

you, is that software which does not have its

requirements elicited, enumerated and well

documented will most likely be lacking in

quality. This is because developers do not have

a specific target with regards to embodying

security into the design and implementation.

Further, quality assurance folks have no

benchmark to validate the software against,

and traceability - a key software engineering

attribute - is unachievable. In fact it is hard to

even build a good threat model without a clear

idea of the security requirements.

This is a well understood concept in the general

field of software engineering. A lot of research3

has been performed on how to effectively elicit,

validate and document software requirements.

Further, most modern SDLC support tools

already provide some mechanism for

documenting requirements4. Hence, it should

not be too difficult to extend these systems and

the process itself to include security

requirements. The challenge however as

mentioned above is that most organizations we

work with are used to thinking solely about

functional requirements – requirements that

the system and business analysts writing them

can put their arms around. What different

widgets should the application have? How

should it respond to the click of a button in the

top right corner and so on? The non-functional

requirements on the other hand are often

marked as “N/A”. Our findings have been that

this is not necessarily because they are

considered unimportant, but because they are

assumed to be de facto requirements – “the

developers should know better than to build a

slow or insecure or unreliable system”. The

assumption always seems to be that these

requirements would be obvious and hence

don’t need to be documented.

On examining this problem a little bit further,

we discovered that the problem to a large

extent was a lack of awareness and knowledge

of the people writing the requirements. The

non-functional requirements can be very

technical –consider specification of the

encryption algorithm, cipher mode, key lengths

and rotation parameters. Defining requirements

around all of those would typically require a

detailed understanding of the mechanisms

around cryptography - not something that is

typically found in the job description of a

business analyst.

As a solution to this issue we present a

template driven approach which is designed

specifically to help the non-technical

stakeholder to define very technical security

requirements. While this approach does involve

some amount of prior effort to create the

templates, we have seen it to be tremendously

effective in both ensuring that security

requirements are documented (and not just

with “N/A”!) and then implemented and tested.

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 5

The first step in this approach is for an

organization or team (depending on the size

and variety of applications involved) to identify

all the relevant drivers for security

requirements that would, could and should

influence development. In our experience, most

often you will see a lot of commonality among

the various applications developed within the

organization or team and hence we attempt to

leverage that commonality and thus gain

efficiencies across multiple projects

In our experience it is best to think about these

drivers along the following categories. As

mentioned above, most of these drivers will

influence many, if not all, of the applications

churned out within an organization.

 Regulatory Compliance5 – This involves

specific requirements that would be

mandated by various governmental

agencies. Depending on the legal

environment within which the organization

operates and the application’s scope, a

number of regulations could be relevant.

Some of these include:

o Sarbanes-Oxley, Section 404
o Health Insurance Portability and

Accountability Act
o Payment Card Industry Data Security

Standard
o Gramm-Leachy Bliley Act
o SB 1386 and other State Notification

Laws
o BASEL II
o Federal Information Security

Management Act
o EU Data Protection Directive
o Children's Online Privacy Protection Act
o Local Key Escrow Laws

 Industry Regulations and Standards: These

include typically standards that are specific

to an industry such as financial services.

This category in our classification is also

setup to include standards bodies such as

ISO and the norms they define. Examples

include:

o ISO 17799
o FFIEC Information Technology

Examination Handbook6
o SCADA Security7
o OWASP Standards8
o OASIS9

 Company Policies: Most organizations that

we work with have a slew of internal

policies that should and could affect the

development of an application. Among the

most common ones here are:

o Privacy Policies

o Coding Standards

o Patching Policies

o Data Classification Policies

o Information Security Policies

o Acceptable Use Policies

o Export Control

o Open Source Usage

 Security Features: Finally, most applications

will have some form of security feature. For

instance, authentication and authorization

models that replicate real world role based

access control. Similarly, administrative

interfaces that will be used for user

management including provisioning and de-

provisioning.

For some of the above axes it is best to work

with the legal department and internal audit to

arrive at the list of relevant regulations. Once

that superset has been defined, the next step is

to examine each of these regulations through

the eyes of both someone who speaks legalese

and a software development expert. The aim

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 6

here is to convert the list of legal requirements

which would guarantee compliance to a set of

core technical requirements for software that is

impacted by these regulations. The Foundstone

Security Frame can come in extremely handy

here. For each of the relevant drivers from

above consider the various categories in the

security frame and how they might be

impacted. For instance, if your organization is

regulated by Gramm-Leach-Bliley Act (GLBA),

privacy of personally identifiable information

(PII) is absolutely critical. This in turn can have

implications across multiple Security Frame

categories not the least of which being Data

Protection in Storage & Transit. The outcome of

this step should essentially be a set of specific

requirements along the various security frame

categories that would satisfy each of the drivers

defined above. It is vital at this stage to also

rationalize the various requirements obtained

above getting rid of overlapping or redundant

requirements.

A parallel step in this requirements process is to

classify the applications as being impacted by

the drivers. In our experience this is best done

by creating a large matrix with the various

drivers above forming the columns and the

application set forming the rows. Classification

then is the task of checking the appropriate

boxes depending on whether, based on legal

and other opinions an application is impacted

by a specific driver.

As a result of the two parallel steps mentioned

above, the team should now have a specific set

of technical requirements for each application

based on its requirement driver environment.

All of the above effort is intended to be

performed once and then revisited periodically.

In our experience, it is very rare that these

change very often or with each application

release. This is primarily because applications

tend to evolve very slowly with regards to the

drivers mentioned above. Further, as

mentioned above there is much opportunity to

leverage commonality across applications as

well since it is not atypical for many of the

applications to be operating within a similar

driver environment.

Having now defined this universal set of

requirements a priori, as each application

release is defined; the specific set of

requirements for that release can be drawn out

of this set. As part of this process, the data

classification and privacy policy can help to

identify which data elements handled by the

application are impacted by the drivers.

Additionally, it is also important to consider

which features being added in this release

would be impacted as well. Based on these

pieces of input and the universal set of

requirements a subset of those requirements

will be obtained that are relevant for this

specific release of this specific application. The

person formulating these requirements now

need not be an expert in security or any of the

security frame categories but can simply check

the appropriate boxes to obtain a set of

requirements. In fact this last per application

step can be easily automated through a

template or lightweight application which

references all the relevant policies, the

universal set of requirements, considers the

data elements in use and provides a set of

technical requirements that may leverage

encryption, access control and other security

mechanisms. These can then literally be copy-

pasted into the master requirements list.

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 7

To wrap-up this section let us consider an

illustrative example. Take for instance, an

online loan processing application. Such an

application will obviously make extensive use of

personally identifiable information and is

determined to be impacted by the Gramm-

Leachy Bliley Act driver. This in turn defines

specific requirements around the

confidentiality, integrity, availability and access

to data as well as audit trails that monitor and

report on such access. Now consider that a new

feature is being added that emails the result of

the loan decision to the customer. When a

business analyst is defining the requirements

around this new feature, he / she would need

to consider all of the different data elements

that would be part of this email, the transport

mechanism used by the email and

authentication around it. Based on business

need and security, it can then be decided to

avoid certain data elements or perhaps use a

secure email solution.

3.3 Security Acceptance Testing

As touched upon in the introduction to this

paper, traditional security tests have focused on

penetration testing. However, in most software

development life cycles we have a specific

quality assurance (QA) phase. Moreover, very

commonly now we see unit tests and build

verification tests in addition to the QA phase.

Unfortunately, penetration testing is often

performed too late in the life cycle - after the

entire system has been built and deployed. It

would be remiss for us to not leverage these

earlier testing opportunities to catch as many

problems as early as possible.

However, incorporating security into these

testing methodologies is non-trivial. Part of the

reason is that the typical security tester’s

mindset is different from a quality assurance

tester or developer. Both traditional software

testers and security testers attempt to break

down software, however, the former typically

approach this problem by attempting to look

for failures to meet a specific set of

requirements and features. For instance, a

classical software tester is concerned with

whether the login feature works i.e. when they

type in a valid user name and password that the

specific user is logged on. Further, they will also

test to make sure that if an incorrect username

and password are entered the user is not

logged in. A security tester on the other is not

so much concerned with the login feature but

with getting access to the application in an

unauthorized manner. Hence, he / she are

going to attempt brute forcing or SQL injection

to access the account. Similarly, he / she will be

paying special attention to the error messages

displayed on a failed login. You can see a clear

difference in the two approaches and similar

examples can be drawn from all of the various

features of the application. Hence, the first step

in embodying security testing within the usual

testing phases in a software development

lifecycle is to work on developing the right

mindset. This is primarily an issue of training

and exposure. Using training tools such as the

Hacme Series10 from Foundstone, software

testers can learn about the various types of

vulnerabilities as well as the simple mechanisms

used to test for the presence of such

vulnerabilities.

The next step is to determine the level of effort

of security testing that should be embodied

within the development cycle. Most QA folks

are used to estimating testing effort based on

the number of features and software

requirements. They do this by being intimately

involved in the functional and design reviews.

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 8

Along similar lines it is important to involve

these stakeholders in the threat modeling

process. This helps to not only identify security

risks but can also help prioritize those risks

based on business impact and thus help identify

the list of test areas. Once this has been done, it

is useful to simply integrate the relevant test

cases into test plans that exercise those areas

during a regular testing schedule.

Testing can then be split into a number of

phases. In our experience, different parts of the

security frame lend themselves better to some

phases rather than others.

Unit testing is typically performed by the

developers themselves and is often used as the

exit criteria from the development phase to a

formal testing phase. Testers here are looking

for both coverage and pass percentages. A

number of frameworks have been developed to

help with this process and to essentially provide

the infrastructure to make developers more

efficient and effective. One such framework is

provided within Visual Studio 2005. The

framework can auto-generate unit test cases

based on the APIs and functions exposed by

your code. This is therefore an effective place to

test data validation code. By resorting to fuzzing

-style techniques which provide random data

(“fuzz”) to the inputs of an application, exposed

interfaces can be tested to observe how they

react to different data elements both valid and

invalid. It is possible to test here for issues such

as buffer overflows, SQL injection and cross site

scripting as well as other types of injection

attacks. Unit testing can also be useful in testing

method level authorization rules wherein the

called method checks the authentication state

and permissions of the caller.

In our experience the most effective manner to

build such security unit test cases is to create an

attack library11 with commonly used attack

patterns and then running through this library

enumerating attacks against the API being

tested. The results in turn can be compared

against a known good value to determine if the

attack was successful. It is often best if the unit

test cases are defined within a peer

development group. Thus, one developer

defines the unit test cases and attack libraries

for code written by a different developer.

Build verification testing is another area that

could provide opportunities to test the security

of an application. A number of security testing

tools such as source code analyzers and web

application penetration testing tools provide

both the ability to integrate into build scripts as

well as scripting interfaces that allow their core

engines to be adapted to fit into existing testing

processes. Further, these tools also often have

rules engines that can be modified and

extended to create custom rule sets based on

risk and relevance. Organizations that have

successfully deployed such tools will often

define criteria for build acceptance that specify

along with other more traditional QA

parameters, the number and type of security

bugs that maybe present in a build that is

provided to the QA teams for rigorous testing.

One of the key lessons we have learned over

the years having worked with QA teams is that

they are very accepting of new testing

techniques and methodologies. However, it is

important to not cause any upheaval of the

actual QA process. It is therefore vital that all

security testing ultimately ties into the existing

and often times tried and testing quality

practices. One critical area this becomes

relevant is in the bug reporting area. We have

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 9

seen most success when security bugs prior to

release are treated just like other software

quality issues. This implies that firstly, all

security issues are entered into the same bug

tracking system and follow the same lifecycle.

For instance, a number of organizations are

used to thinking about bugs based on their

severity and priority. It is therefore vital to

convert the risk rating that is usually associated

with security bugs into a severity and priority.

These can vary based on the business risk that

these bugs pose but as a general rule of thumb

all high risk issues can be considered to have

the highest severity and priority, medium risk to

have medium severity but high priority and all

low risk issues to have low severity and medium

priority. It is however not atypical to see

business rules that mandate all security issues

be treated as highest priority. Once the security

issues have been entered into the bug tracking

system they should follow the same path other

bugs do in being assigned to a developer, fixed,

assigned back to the tester verification and

being closed and potentially added to

regression testing cycles. It is however

recommended to tag security bugs under a

separate SECURITY category in order to

facilitate obtaining an aggregate view. Secondly

this can also help to ensure that a security

trained developer is assigned to work on these

bugs rather than any developer. Doing this will

improve the chances of a correct solution free

from recurrent bugs. Further, given that most

bug tracking systems allow for their schema to

be extended it is also helpful to further classify

security bugs based on the security frame. As

mentioned above, performing statistical

analysis across bugs or after a release can thus

help identify root causes as well as techniques

and tools to prevent such bugs from

manifesting themselves again.

Finally, it is also helpful to classify security

issues into four categories while entering them

into the bug tracking system or while

commenting on the fix:

 Security Flaws: A security flaw is an issue

that has come about due to an

inappropriate design decision or

implementation choice. They are generally

architectural or design problems and have

global implications. An example of a flaw

would be a user authentication system that

does not adequately protect passwords in

the data store. Moreover this class of

problems often stem from the fact that the

design specification was itself incomplete or

didn’t address the issue specifically. Thus, it

is quite possible that a flaw might exist in an

application even though the developers

have implemented the design specification

completely and correctly.

 Security Bugs: A security bug is a code level

problem. Often semantic in nature, they are

usually the result of a coding error or bad

implementation of a design decision. An

example of a bug is a buffer overflow. These

issues typically tend to be language specific.

 Commendations: A commendation is a note

of good security. Our experience is that this

is as important to note the positive security

attributes as it is the negative. Positive

enforcement encourages repetition of good

practices and can also help to highlight best

practices that may have been implemented

unbeknownst of their security value.

 Recommendations: There are many ways of

designing software. These findings list some

considerations for future revisions that

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 10

would facilitate enhanced or improved

security. This category of issues is also used

to convey any insight into better software

development practices that the application

developers can adopt. For instance, specific

software or architecture design patterns

might be recommended.

This classification like the security frame

classification can provide valuable results that

help measure the effectiveness and merit of

performing security testing earlier rather than

later in the lifecycle. They can also help

reemphasize the need and value of activities

such as threat modeling and peer code reviews.

3.4 Security Knowledge Management

Of all the activities in the software development

life cycle, this is probably the one that may not

seem very important. Unfortunately as

members of the security community we have all

too often seen organizations fall victim to issues

that were fixed in other parts of the

organization - sometimes even within the same

team! While this is embarrassing, it is easily a

symptom of the lack of effective knowledge

management. Valuable lessons can be learned

from the experiences and mistakes of others

both within the same organization and

externally. However, most development teams

have no way of drawing these lessons and it is

therefore vital to share this information

through an appropriate channel. While training

is certainly an important aspect in improving

overall security consciousness among

developers, it is also important that developers

have access to a central repository and portal

for providing them with guidance on a day to

day basis. This is especially important in large

development organizations.

In our experience, the medium that lends itself

best to this form of information sharing is a

software security portal. Such a portal would

provide a number of key functions such as:

 Document repository to house all of the

policies, methodologies, process

documents, guidelines and best practices

developed as part of the security enhanced

SDLC process.

 Threat modeling artifact storage so that

incremental threat modeling can be easily

performed after the initial effort of building

the first threat model. Moreover, this is

especially significant since it is not

uncommon that a number of the

applications within an organization or group

are architecturally similar in nature and

technology and hence share a similar attack

surface. Thus the threat model for one such

application can serve as an excellent

building block for the others.

 Metrics reporting to provide the

stakeholders with measurements to justify

the return on security investment. These

can include statistics from actual

measurements within the organization on

effectiveness of the S-SDLC process,

improvements in productivity, decrease in

security vulnerabilities, and other data

points of interest.

In addition, another tremendously effective tool

is an organization wide knowledge sharing Wiki.

Through its support for effective content

management and quick refactoring, Wiki12

technology is an excellent model for

collaboration between large numbers of

individuals. One has to only look at the success

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 11

of wikipedia.org at building a collaborative

online encyclopedia to understand the potential

contained within this technology. Having been

in the field working with development teams it

is quite common to observe that a number of

groups and development teams are already

using Wikis within their teams to document

design and architecture as well as lessons

learned from prior bugs and testing efforts.

When this is the case extending such a Wiki to

encompass the software security drive is not

hard. Further, there are a number of free and

useful Wiki solutions available such as the very

popular MediaWiki13.

A software security Wiki would be a central

repository providing readers with a single and

common location where they can find

information covering aspects such as:

 security architectures that are in use within

other groups

 thoroughly reviewed and tested code

snippets for commonly used tasks

 links to additional information about

software security on the Internet as well as,

 lessons learned from previous security

issues identified in applications during

internal testing or third party reviews.

We strongly believe that by encouraging such

sharing, development teams and organizations

can recognize tremendous gains by the wide

distribution of best practices, prevention of the

repetition of similar mistakes, improved

productivity through code and knowledge

sharing, and overall better software quality.

Especially when considering the disclosure of

information about vulnerabilities onto such a

knowledge sharing platform, some

considerations are vital. Firstly, such sharing

must only be considered after the issues in

question have been fixed and tested in

production applications. This will mitigate any

risk of the issue being exploited. Special care

must be taken when the vulnerability affects

other applications or if it exists in a product or

library that maybe shared. The bottom line is

the risk of disclosing the vulnerability too soon

and before affected applications have been

thoroughly patched must be weighed against

the benefits to be gained by the knowledge

sharing. Secondly, for each issue it is important

to sufficiently anonymize specific data. The aim

behind doing this is to avoid any kind of finger

pointing that could have a negative impact on

morale. On the other hand all such sharing must

be performed with a positive outlook of

learning from past mistakes rather than

focusing on the person or team that made the

mistake. Finally, it is also vital that not just the

issue be shared but also if possible the

mechanism used to discover that issue, the

design and architectural changes and thought

process that went into fixing the issue, the fix

itself as well as root cause analysis covering why

the issue was introduced, why it was not caught

earlier in the lifecycle and if and how the

software development lifecycle process and

mechanisms will be tweaked to prevent such

issues from making their way undetected into

applications. It is off course vital to make sure

that any code shared thus be thoroughly

reviewed and be free from security bugs and

flaws itself.

Another aspect of knowledge sharing deals with

the handling of third party components. A

number of software development projects

these days leverage third party components

(both open source and otherwise) and ship

these with their applications. Perhaps the

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 12

biggest case in point is libraries such as OpenSSL
14and zlib15. While as much as possible it is

recommended to use existing tried and tested

solutions, it is also important to track updates

and changes to those solutions. Because

components such as these are used so often

they are extensively tested both by the teams

that produce them as well as by the security

researcher community1617. This in turn implies

that security updates and patches are being

constantly released. If development teams are

not tracking these updates it is quite likely that

they would be distributing an old and possibly

vulnerable version of these shared, third party

libraries. On the other hand, the typical

developer may not have the wherewithal to be

constantly scouring the Internet and security

mailing lists to keep track of the latest security

vulnerabilities and patches. It is therefore vital

that as a team or an organization a process be

created to deal with this issue.

An effective way of doing this is to create a

listing of all the open source and shared third

party components in use across the

organization along with a matrix that tracks

which applications use which components.

Alongside this listing, it is also important to

maintain a link to the mailing list maintained by

the vendor through which it notifies about

security updates and patches. All of this

information can in fact be maintained on the

software security portal and wiki mentioned

above. Beyond this however, it is important to

assign a point person to each component whose

responsibility it would be to track such mailing

lists for their specific component. As soon as

they learn of an update they can then notify the

other teams using that component based on

the matrix described above. Further it is also

important that the point person also track

aspects such as reliability issues with the

patches that may affect the decision about

whether to deploy the updated components.

In our experience without such a mechanism it

is all too common to see applications that are

free from vulnerabilities themselves but are

exposed to highly critical problems in third

party components. A knowledge management

scheme as mentioned above not only can help

prevent this by defining the appropriate roles

and responsibilities but can also help share that

information across the development team and

organization to prevent others from falling

victim to it as well.

4 Conclusion

This paper has covered three of the activities

that we believe should exist as part of a security

enhanced software development life cycle for it

to be successful in improving the security of

your applications. These activities are non-

traditional in the sense that they do not merely

go after the development phase of the lifecycle.

However in our experience, having helped a

number of large organizations implement a

secure development lifecycle, we believe that

without getting these parts of the puzzle correct

your team will not achieve the best possible

results from any investment into software

security. It is also important to note that we

cover only three such activities in this paper in

order to provide them the justice they deserve.

However, they are by no means the only

activities. A truly effective security enhanced

software development lifecycle has many parts

to it and while they can be built over time, true

Zen is achieved only when all the parts are in

place. In getting there though, each additional

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 13

part will result in a marked improvement in the

security quality of your applications.

5 About the Author

Rudolph serves as a Principal Software Security

Consultant and Trainer at Foundstone

Professional Services, A Division of McAfee.

Rudolph is responsible for creating and

delivering the threat modeling, security code

review and secure software engineering service

lines. He is also responsible for content creation

and training delivery for Foundstone's Building

Secure Software and Writing Secure Code -

ASP.NET and C++ classes. At Foundstone,

Rudolph has had the opportunity to work with

some of the biggest financial institutions,

technology and telecom companies as well as

with the open source community.

5.1 Experience

Rudolph has a solid background in computer

science fundamentals and many years of

software development experience on UNIX and

Windows at all levels of the application stack.

Prior to joining Foundstone, Rudolph led the

checks development team for BindView's (now

Symantec) bv-Control for Internet Security, a

vulnerability assessment product. In his role as

lead developer, Rudolph collaborated with a

global team in creating updates to the product,

which scanned for the presence of

vulnerabilities as they were released.

Rudolph has also worked as a software

developer at Morgan Stanley, where he was

responsible for creating Microsoft Office based

solutions for the Equity Research group. Most

recently, Rudolph was a researcher at Carnegie

Mellon University's CYLAB, investigating virus

and worm threats, especially over peer-to-peer

networks. His research interests also span the

domain of web service security, survivability,

and reliability.

Rudolph has diverse experience in a number of

areas of software development and security. He

has worked with both independent software

vendors as well as large corporate IT

organizations. Because of this, he has a unique

perspective on the challenges of building real-

world secure applications.

5.2 Notable Accomplishments

Rudolph is an experienced C / C++ and C#/.NET

developer and the author of a number of

Foundstone's software security auditing tools

including The .NET Security Toolkit, SSLDigger,

and Hacme Bank tools. Rudolph is also a regular

contributor to MSDN's webcast series. Rudolph

has been honored with the Microsoft Visual

Developer Security MVP Award in recognition of

his thought leadership and contributions to the

application security and developer

communities.

Rudolph is also a contributor to multiple online

and print journals such as MSDN, IEEE Security

& Privacy and Software Magazine, where he

writes a column on writing secure code. He has

also written the foreword for the Microsoft

Patterns and Practices Group's Web Services

Security Guide.

5.3 Professional Education

Rudolph earned an MS from Carnegie Mellon

University specializing in Information Security

and a BS in Computer Engineering from Goa

University in India.

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-sa/2.5/ Page 14

1 http://news.zdnet.co.uk/software/developer/0,39020387,39228663,00.htm
2 http://www.codesecurely.org/wiki/
3
 http://en.wikipedia.org/wiki/Requirements_analysis

4 http://msdn2.microsoft.com/en-us/teamsystem/default.aspx
5 http://msdn2.microsoft.com/en-us/library/aa480484.aspx
6 http://www.ffiec.gov/ffiecinfobase/index.html
7 http://www.sandia.gov/scada/standards_and_outreach.htm
8 http://www.owasp.org/index.php/Category:OWASP_Guide_Project
9 http://www.oasis-open.org/
10 http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/s3i_tools.htm
11 http://www.cs.umd.edu/ugrad/current/Research/Reilly&Marshall.pdf
12 http://en.wikipedia.org/wiki/Wiki
13 http://www.mediawiki.org/
14 http://www.openssl.org/
15 http://www.zlib.net/
16 http://osvdb.org/searchdb.php?action=search_title&vuln_title=openssl
17 http://osvdb.org/searchdb.php?action=search_title&vuln_title=zlib

	Software Security - The Bigger Picture
	Rudolph Araujo – Principal Software Security Consultant
	Foundstone Professional Services, A Division of McAfee
	1 Abstract
	2 Introduction
	3 Holistic Software Security
	3.1The Foundstone Security Frame
	3.2 Security Requirements Engineering
	3.3 Security Acceptance Testing
	3.4 Security Knowledge Management

	4 Conclusion
	5 About the Author
	5.1 Experience
	5.2 Notable Accomplishments
	5.3 Professional Education

