o Developer's Guide to
Cross Site Scripting

OWASP New Zealand Day 2017

® whoami

O Felix Shi (@comradepara)
o A security guy at Xero

o |Infosec
o Running
o Cartography

Disclaimer: Something about my own

opinions does not reflect those of my
employer.

Disclaimer

Disclaimer: This is a primer to Cross
Site Scripting (XSS), it is by no means
an exhaustive list.

Please consult your local security
team or physician if you think you are
suffering from XSS.

® Presentation Overview

() 1. Background 2. Demo
Exploitation practice

o

o Fundamentals

o What is XSS o Prevention theory

o Why should you care o Prevention practice
o Whuy is it still an issue = Backend

o Exploitation theory = Frontend

= Content Security Policy
Mitigation practice

= |nput validation

= Cookie Flags

o

e Background

C

® Fundamentals

) What's in a modern web application?

o Stuff the browser uses [
= HTML, Javascript, CSS, pretty pictures

o Stuff the server uses
= Ruby, Java, C#, Python etc.

o Persistent server side storage &
= SQL databases, file systems

C

® Fundamentals

) HTML

o Has been around since forever
o (Correction: Invented in the late 805s)

o The building block of the web

o Elements on the page are
described using tags

® Fundamentals

O HTML Tags

o Hello I'm bold
o <U> Underlined </u>
o

® Fundamentals

O HTML Tags

o Hello I'm bold

o <uU> Underlined </u>
o

HelloI'mbold &
Wi

N
[|E @@ﬂu
B4 il

Underlined B
I

® Fundamentals

O Ways to include Javascript on a page

o <script>console.log("Hello"):</script>
o <script src="testjs" />
o

And many other ways!!!

® Fundamentals

O What can you do with Javascript?

o Alter the look and functionality of the
page

o Access private user data associated
with the site

o Perform actions on the user's behalf

‘ But | trust the webapps | use!

| et's talk about...

‘ What is Cross Site Scripting (XSS)?

‘ What is Cross Site Scripting (XSS)~

Someone can get their own

Javascript to run in the context of
your site

® \Who does it affect?

) How could it affect the user?

o The user's browser executes the
malicious Javascript

o Alter the look and functionality of the page

o Access private user data associated with the site

o Perform actions on the user’s behalf

(N)/"

C

® \Who does it affect?

) How could it affect your company?

o |Loss of
= Bad PR

o Fixing technical debt is expensive

= Which leads to angry product owners
= Anger leads to hate, something... dark side

- Regulation / Compliance issues
= Some certs require a clean pentest report

‘ Why is it still an issue?

Because handling user defined data is hard

® XSS Exploitation Theory

O o |dentify the entry points of user
defined data.

o |dentify how the above data gets used
on the page.

o The goal of XSS is to get the browser
to execute user defined scripts.

® XSS Exploitation Theory

O o |dentify the entry points of user
defined data.

o |dentify how the above data gets used
on the page.

o The goal of XSS is to get the browser
to execute user defined scripts.

Types of Cross Site Scripting - Reflected

Example URL

http://trustedsite/search.php?g=<script>alert(1);</script>

Page source returned to the victim

<html>..<div>

<script>alert(1);</script>
</div>..</html>

Exploitation Vector:

Social Engineering, an attacker crafts a URL and
gets people to click on it.

® Types of Cross Site Scripting - Stored

) Script Entry Point

= Various places, all ending up in persistent
storage.
m For example: Entries in a guestbook

Exploitation Vector

= User just needs to visit page that renders the
stored script.

= More dangerous than reflected XSS.
m Can be prepared in advance
m Can affect multiple users

Types of Cross Site Scripting - DOM Based

Example user data
http://trustedsite/search.php?g=<script>alert(1);</script>

Page source excerpt

..<SCript>

document.write(document.URL.indexOf("'q=")+2);
</script>..

Note that the XSS script does not appear in the
source code.

e Defence

® Prevention Theory

() o XSS issues are introduced when user
supplied Javascript snippets are
executed by the browser

o Faulty handling of user provided data

C

® Defence

) o Multiple user defined strings were
rendered on the page:

o The title URL parameter
o Username field
o Message field

Defence

URL.:
http://url/entries?title=<script>alert(1);</script>

HTML Output:
<h1>
Thank you for signing my
<script>alert(1):</script>
</hl>

® Defence
O o Poenrtalewuserinput
o Not possible IRL i(

o Ensure that user provided data is
validated when appropriate

o Ensure that user provided data is
properly encoded/escaped on output

C

® Defence

) HTML Encoding is a technigue that
converts potentially unsafe characters
into their encoded form.

Character HTML Encoded
< <
> >
& &

C

® Defence - Encoding

) Input:

<SCript>
alert(1);
</script>

HTML Encoded Output:

<script&at;
alert(1);
</script&agt;

® Defence - Encoding

O Input: HTML Encoded Output:
<ScCript> <script&agt;
alert(1); alert(1);
</script> </script&agt;
User sees:

<script>alert(1);</script>

® Defence - Encoding

O Input: HTML Encoded Output:
<ScCript> <script&agt;
alert(D); alert(D;
</script> </script&agt;

NO SCRIPT EXECUTION FOR YOU!!T >:)
User sees:
<script>alert(1);</script>

C

® Defence - Encoding (Backend)

) HTML Encoding for Developers

Templates: Django, Flask, Rails v. > 3.0,
Mustache for Node.JS

o Secure by default
= Automatically HTML encodes user data

Opting out of HTML Encoding in Flask:
{{username | safe}}

C

® Defence - Encoding (Frontend)

) HTML Encoding for Developers

o Most modern front-end Javascript
frameworks also HTML encode their
output by default.

o For example: Angular.js, React.js

Opting out of HTML Encoding in React,js..

® Defence - Encoding (Frontend)

O dangerouslySetinnerHTML

dangerouslySetinnerHTML

dangerouslySetInnerHTML is React's replacement for using innerHTML in the browser DOM.
In general, setting HTML from code is risky because it's easy to inadvertently expos
users to a cross-site ipting 5} attack. So, you can set HTML directly from React, but you
have to t'lp"F_”:' out da setInnerHTML and pass an object with a __html key, to remind
yourself that it's -'hru:_;er: us. For example:

® Defence - Encoding (Frontend)

O dangerouslySetinnerHTML

C

® Defence - Encoding (Back-end)

) HTML Encoding for Developers

Still want to do encoding on the server-side
manually?

o Use an established library!

= NET (If you are not using Razor)

m SystemWeb HttpUtility HtmIlEncode
= Java

m StringEscapeUtils.esapeHTML

Don't write your own encoding library

C

)

® Defence

o Another user defined data was founa

used the page:
o Alternate text for the user's avatar

<img src='auto generated url’
alt='"Username'/>

Defence

Username:
<script>alert(1);</script>

With HTML Encoding:

<img src = 'generated_url/’
alt = '<script>alert(1):</script>’ />

Defence

Username:
"onload=alert(1) v='

With HTML Encoding:

<img src = 'generated_url’
alt =" onload=alert(1) v=" />

Note: Not all HTML Encoder encodes the
apostrophe character.

Defence

Username:
"onload=alert(1) v='

With HTML Encoding:

<img src = 'generated_url’
alt =" onload=alert(1) v=" />

Note: Not all HTML Encoder encodes the
apostrophe character.

Encoding Again

This time the user defined data was used
inside a HTML attribute.

Other examples of user data in
attributes:

<input type="text" value="user data" />

C

® Encoding Recap

Attribute Encoding

) Another Encoding mechanism must be
used in this scenario.

Character

Attribute Encoded

/

S&H39:

r

&Quot;

C

® Defence

) Username:
"onload=alert(1) v='

With Attribute Encoding:

<img src = 'some auto generated url’
alt = '' onload=alert(1) v=' />

® Defence

) Attribute Encoding for the Developers

If you are using templates
Make sure you wrap user input in quotes!

® Defence

) Attribute Encoding for the Developers

Use the appropriate attribute encoding
method in your framework.

o Use an established library!
o NET
m System Web. HttpUtility. HtmIAttributeEncode
= Java (OWASP Encoder)
m org.owasp.encoder.Encode.forHTMLAttribute

C

® Context

) HTML
<div>user input</div>

HTML Attribute
<input value="user input”>

URL
http://mysite/index?title=user input

® Context

O Javascript Escaping
<script>var title = user input;</script>

Style / Cascading Style Sheet
background-image: user input;

And some others...

® Context

Sometimes you need to use multiple
encodings!

<ScCript>

var title = ' alert(123); </script>
<script>alert(1);//";
</script>

® Context

Sometimes you need to use multiple
encodings!

<ScCript>

var title = ' ;alert(123);
</script>

<Script>

alert(1);//";

</script>

® Context

Sometimes you need to use multiple
encodings!

<ScCript>

var title = ' alert(123);
</script>

<ScCript>

alert(1);//";

</script>

® Prevention - Input validation

() Input Validation

o Should you allow special characters such as <
and > in some fields?

o A whitelist approach is always preferred over
blacklist

o Reject fields that have failed validation

o Ensure that input validation is used consistently
across all points of input

Prevention - Input validation

Input Validation

Special mention for user defined URLS!
My site

Javascript can be embedded by prefixing the link
with javascript:

For example:
Website

C

® Prevention - Input validation

) Input Validation

Special mention for user defined URLS!
My site

Validation Strategy:

o Fail the validation if it starts with Javascript:
o Validate that the user data is a valid URL
o (Optional) Check if URL is on a blacklist

® Prevention - Cookie Flags

() Cookie Security Flags

o Prevent your precious session cookies from
being of¥ Javascript with the following

flags.

o HttpOnly: Cookie is not accessible via Javascript
o Secure: Cookie can only be sent via HTTPS

C

® Prevention - Content Security Policy

) Content Security Policy (CSP)
Go to this talk to listen to hear it from the pros:

So we broke all CSPs... You won't guess what
happened next! (16:00, the same room you are in)

- Lukas Weichselbaum & Michele Spagnuolo

C

® Prevention - Content Security Policy

) Content Security Policy (CSP)
Go to this talk to listen to hear it from the pros:

So we broke all CSPs... You won't guess what
happened next! (16:00, the same room you are in)

- Lukas Weichselbaum & Michele Spagnuolo

Prevention - Content Security Policy

Content Security Policy (CSP)

Go to this talk to listen to hear it from the pros:

So we broke all CSPs... You won't guess what
happened next! (16:00, the same room you are in)

- Lukas Weichselbaum & Michele Spagnuolo

Links:

https://speakerdeck.com/mikispag/so-we-broke-all-csps-dot-dot-dot-you-wont-guess-what-happened-next
-michele-spagnuolo-and-lukas-weichselbaum

https://deepsec.net/docs/Slides/2016/CSP_Is_Dead. Long_Live_Strict_ CSP!_Lukas_Weichselbaum.pdf

https://speakerdeck.com/mikispag/so-we-broke-all-csps-dot-dot-dot-you-wont-guess-what-happened-next-michele-spagnuolo-and-lukas-weichselbaum
https://speakerdeck.com/mikispag/so-we-broke-all-csps-dot-dot-dot-you-wont-guess-what-happened-next-michele-spagnuolo-and-lukas-weichselbaum
https://speakerdeck.com/mikispag/so-we-broke-all-csps-dot-dot-dot-you-wont-guess-what-happened-next-michele-spagnuolo-and-lukas-weichselbaum
https://deepsec.net/docs/Slides/2016/CSP_Is_Dead,_Long_Live_Strict_CSP!_Lukas_Weichselbaum.pdf
https://deepsec.net/docs/Slides/2016/CSP_Is_Dead,_Long_Live_Strict_CSP!_Lukas_Weichselbaum.pdf

® Tokeaway

() Developers Developers Developers

o Know where user data's used on the page
o Know the frameworks you are using

- Encode / Escape user data properly

o Validate input when appropriate

o Set cookie security flags

o Use Content Security Policy

® Tokeaway

() Testers Testers Testers

o Take note of pages that contain user data
o Test by inserting script and see if they executed
o Look for XSS as a part of your quality assurance
process
o Use a proxuy:
= ZAP, Burp, Charles, Fiddle
o Ask your security team for guidance
o Automate whenever possible

Misc.

Useful Links

More info on XSS
https://www.owasp.org/index.ohp/Cross-site_ Scripting_ (XSS)

https://www.owasp.org/index.php/Testing_for_Cross_site_scripting

https://www.google.com/about/appsecurity/learning/xss/

https.//excess-xss.com/

Test Strings for the QAs
http://ha.ckers.org/xss.html

http://htmlpurifier.org/live/smoketests/xssAttacks.php

Content Security Policy (CSP)
https:.//developers.google.com/web/fundamentals/security/csp/

https://content-security-policy.com/

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Testing_for_Cross_site_scripting
https://www.owasp.org/index.php/Testing_for_Cross_site_scripting
https://www.google.com/about/appsecurity/learning/xss/
https://www.google.com/about/appsecurity/learning/xss/
https://excess-xss.com/
https://excess-xss.com/
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://htmlpurifier.org/live/smoketests/xssAttacks.php
http://htmlpurifier.org/live/smoketests/xssAttacks.php
https://developers.google.com/web/fundamentals/security/csp/
https://developers.google.com/web/fundamentals/security/csp/
https://content-security-policy.com/
https://content-security-policy.com/

Misc.

Useful Links

Proxies:

Burp (free edition): http://portswigger.net/burp/

ZAP: https://www.owasp.org/index.ohp/OWASP_Zed_ Attack_Proxy_Project
Fiddler: http://www.telerik.com/fiddler

Charles: https://www.charlesproxy.com/

Exercises:
The XSS Game: https:.//xss-game.appspot.com/

Google Gruyere: https.//google-gruyere.appspot.com/
XSS/SQLi Lab VM Image: https://pentesterlab.com/exercises/xss_and_muysqgl_file

BeEF when you really want to mess around with XSS:
Browser Exploitation Framework (BeEF): https://qgithub.com/beefproject/beef

Slide theme from slidescarnival.com

http://portswigger.net/burp/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://www.telerik.com/fiddler
https://www.charlesproxy.com/
https://xss-game.appspot.com/
https://google-gruyere.appspot.com/
https://pentesterlab.com/exercises/xss_and_mysql_file
https://github.com/beefproject/beef

e Cheers

