
Developer's Guide to
Cross Site Scripting

OWASP New Zealand Day 2017

whoami

Felix Shi (@comradepara)
◦ A security guy at Xero

◦ Infosec
◦ Running
◦ Cartography

Disclaimer: Something about my own
opinions does not reflect those of my
employer.

Disclaimer

Disclaimer: This is a primer to Cross
Site Scripting (XSS), it is by no means
an exhaustive list.

Please consult your local security
team or physician if you think you are
suffering from XSS.

Presentation Overview

1. Background
◦ Fundamentals
◦ What is XSS
◦ Why should you care
◦ Why is it still an issue
◦ Exploitation theory

2. Demo
◦ Exploitation practice
◦ Prevention theory
◦ Prevention practice

▫ Backend
▫ Frontend
▫ Content Security Policy

◦ Mitigation practice
▫ Input validation
▫ Cookie Flags

Background

Fundamentals

What's in a modern web application?

◦ Stuff the browser uses
▫ HTML, Javascript, CSS, pretty pictures

◦ Stuff the server uses
▫ Ruby, Java, C#, Python etc.

◦ Persistent server side storage
▫ SQL databases, file systems

Fundamentals

HTML

◦ Has been around since forever
▫ (Correction: Invented in the late 80s)

◦ The building block of the web

◦ Elements on the page are
described using tags

<h
tm

l>

<h
ea

d>

<ti
tle

>w
hy

Fundamentals

HTML Tags

◦ Hello I'm bold
◦ <u> Underlined </u>
◦

Fundamentals

HTML Tags

◦ Hello I'm bold
◦ <u> Underlined </u>
◦

Hello I'm bold
Underlined

Fundamentals

Ways to include Javascript on a page

◦ <script>console.log("Hello");</script>
◦ <script src="test.js" />
◦

And many other ways!!!

Fundamentals

What can you do with Javascript?

◦ Alter the look and functionality of the
page

◦ Access private user data associated
with the site

◦ Perform actions on the user's behalf

But I trust the webapps I use!

Let's talk about...

Cross Site

Scripting!

What is Cross Site Scripting (XSS)?

What is Cross Site Scripting (XSS)?

Someone can get their own
Javascript to run in the context of
your site

Why should I care?

¯_(ツ)_/¯

Who does it affect?

How could it affect the user?

◦ The user's browser executes the
malicious Javascript

◦ Alter the look and functionality of the page

◦ Access private user data associated with the site

◦ Perform actions on the user's behalf

¯_(ツ)_/¯

Who does it affect?

How could it affect your company?

◦ Loss of trust
▫ Bad PR

◦ Fixing technical debt is expensive
▫ Which leads to angry product owners
▫ Anger leads to hate, something... dark side

◦ Regulation / Compliance issues
▫ Some certs require a clean pentest report

Why is it still an issue?

Why is it still an issue?
Because handling user defined data is hard

Exploitation Time!!!

XSS Exploitation Theory

◦ Identify the entry points of user
defined data.

◦ Identify how the above data gets used
on the page.

◦ The goal of XSS is to get the browser
to execute user defined scripts.

XSS Exploitation Theory

◦ Identify the entry points of user
defined data.

◦ Identify how the above data gets used
on the page.

◦ The goal of XSS is to get the browser
to execute user defined scripts.

Types of Cross Site Scripting - Reflected

Example URL
http://trustedsite/search.php?q=<script>alert(1);</script>

Page source returned to the victim
<html>...<div>

<script>alert(1);</script>
</div>...</html>

Exploitation Vector:
Social Engineering, an attacker crafts a URL and
gets people to click on it.

Types of Cross Site Scripting - Stored

Script Entry Point
▫ Various places, all ending up in persistent

storage.
■ For example: Entries in a guestbook

Exploitation Vector
▫ User just needs to visit page that renders the

stored script.

▫ More dangerous than reflected XSS.
■ Can be prepared in advance
■ Can affect multiple users

Types of Cross Site Scripting - DOM Based

Example user data
http://trustedsite/search.php?q=<script>alert(1);</script>

Page source excerpt
...<script>

document.write(document.URL.indexOf("q=")+2);
</script>..

Note that the XSS script does not appear in the
source code.

Demo Time!

 :D

Defence

Prevention Theory

◦ XSS issues are introduced when user
supplied Javascript snippets are
executed by the browser

◦ Faulty handling of user provided data

Defence

◦ Multiple user defined strings were
rendered on the page:

▫ The title URL parameter
▫ Username field
▫ Message field

Defence

URL:
http://url/entries?title=<script>alert(1);</script>

HTML Output:
<h1>

Thank you for signing my
<script>alert(1);</script>

</h1>

Defence

◦ Don't allow user input
▫ Not possible IRL :(

◦ Ensure that user provided data is
validated when appropriate

◦ Ensure that user provided data is
properly encoded/escaped on output

What is
Encoding

?????

Defence

HTML Encoding is a technique that
converts potentially unsafe characters
into their encoded form.

Character HTML Encoded

< <

> >

& &

Defence - Encoding

Input:

<script>
alert(1);

</script>

HTML Encoded Output:

<script>
alert(1);

</script>

Defence - Encoding

Input:

<script>
alert(1);

</script>

HTML Encoded Output:

<script>
alert(1);

</script>

User sees:
<script>alert(1);</script>

Defence - Encoding

Input:

<script>
alert(1);

</script>

HTML Encoded Output:

<script>
alert(1);

</script>

User sees:
<script>alert(1);</script>

NO SCRIPT EXECUTION FOR YOU!!1 >:)

HTML Encoding for Developers

Templates: Django, Flask, Rails v. > 3.0,
Mustache for Node.JS
◦ Secure by default

▫ Automatically HTML encodes user data

Opting out of HTML Encoding in Flask:
 {{username | safe}}

Defence - Encoding (Backend)

HTML Encoding for Developers

◦ Most modern front-end Javascript
frameworks also HTML encode their
output by default.
▫ For example: Angular.js, React.js

Opting out of HTML Encoding in React.js...

Defence - Encoding (Frontend)

dangerouslySetInnerHTML

Defence - Encoding (Frontend)

dangerouslySetInnerHTML

Defence - Encoding (Frontend)

Awesome Method Name!

"Are you sure you want to shoot yourself in the foot?"

HTML Encoding for Developers

Still want to do encoding on the server-side
manually?
◦ Use an established library!

▫ .NET (If you are not using Razor)
■ System.Web.HttpUtility.HtmlEncode

▫ Java
■ StringEscapeUtils.esapeHTML

Don't write your own encoding library

Defence - Encoding (Back-end)

We
HTML Encoded

Everything!

It is
Demo TimeAgain! :D

OH NOES! :(

Defence

◦ Another user defined data was found
used the page:
▫ Alternate text for the user's avatar

<img src='auto generated url'
alt='Username'/>

Defence

Username:
<script>alert(1);</script>

With HTML Encoding:
<img src = 'generated_url'
alt = '<script>alert(1);</script>' />

Defence

Username:
' onload=alert(1) v='

With HTML Encoding:
<img src = 'generated_url'
alt = '' onload=alert(1) v='' />

Note: Not all HTML Encoder encodes the
apostrophe character.

Defence

Username:
' onload=alert(1) v='

With HTML Encoding:
<img src = 'generated_url'
alt = '' onload=alert(1) v='' />

Note: Not all HTML Encoder encodes the
apostrophe character.

Let's talk

about

Encoding
(Again)

Encoding Again

This time the user defined data was used
inside a HTML attribute.

Other examples of user data in
attributes:

<input type="text" value="user data" />

Encoding Recap

Another Encoding mechanism must be
used in this scenario.

Attribute Encoding

Character Attribute Encoded

' '

" "

Defence

Username:
' onload=alert(1) v='

With Attribute Encoding:
<img src = 'some auto generated url'
alt = '' onload=alert(1) v='' />

Defence

Attribute Encoding for the Developers

If you are using templates
Make sure you wrap user input in quotes!

Defence

Attribute Encoding for the Developers

Use the appropriate attribute encoding
method in your framework.

◦ Use an established library!
▫ .NET

■ System.Web.HttpUtility.HtmlAttributeEncode
▫ Java (OWASP Encoder)

■ org.owasp.encoder.Encode.forHTMLAttribute

Knowingwhen to usewhich encoding is important!! :O

Context

HTML
<div>user input</div>

HTML Attribute
<input value="user input">

URL
http://mysite/index?title=user input

Context

Javascript Escaping
<script>var title = user input;</script>

Style / Cascading Style Sheet
background-image: user input;

And some others...

Context

Sometimes you need to use multiple
encodings!

<script>
var title = ' ';alert(123); </script>
<script>alert(1);//';
</script>

Context

Sometimes you need to use multiple
encodings!

<script>
var title = ' ';alert(123);

</script>
<script>

alert(1);//';
</script>

Context

Sometimes you need to use multiple
encodings!

<script>
var title = ' ';alert(123);

</script>
<script>

alert(1);//';
</script>

More ways to

prevent XSS

:D

Prevention - Input validation

Input Validation

◦ Should you allow special characters such as <
and > in some fields?

◦ A whitelist approach is always preferred over
blacklist

◦ Reject fields that have failed validation

◦ Ensure that input validation is used consistently
across all points of input

Prevention - Input validation

Input Validation

Special mention for user defined URLs!
 My site

Javascript can be embedded by prefixing the link
with javascript:

For example:
 Website

Prevention - Input validation

Input Validation

Special mention for user defined URLs!
 My site

Validation Strategy:
◦ Fail the validation if it starts with Javascript:
◦ Validate that the user data is a valid URL
◦ (Optional) Check if URL is on a blacklist

Prevention - Cookie Flags

Cookie Security Flags

◦ Prevent your precious session cookies from
being stolen by evil Javascript with the following
flags.

◦ HttpOnly: Cookie is not accessible via Javascript
◦ Secure: Cookie can only be sent via HTTPS

Prevention - Content Security Policy

Content Security Policy (CSP)

Go to this talk to listen to hear it from the pros:

So we broke all CSPs... You won't guess what
happened next! (16:00, the same room you are in)
- Lukas Weichselbaum & Michele Spagnuolo

Prevention - Content Security Policy

Content Security Policy (CSP)

Go to this talk to listen to hear it from the pros:

So we broke all CSPs... You won't guess what
happened next! (16:00, the same room you are in)
- Lukas Weichselbaum & Michele Spagnuolo

Prevention - Content Security Policy

Content Security Policy (CSP)

Go to this talk to listen to hear it from the pros:

So we broke all CSPs... You won't guess what
happened next! (16:00, the same room you are in)
- Lukas Weichselbaum & Michele Spagnuolo

Links:
https://speakerdeck.com/mikispag/so-we-broke-all-csps-dot-dot-dot-you-wont-guess-what-happened-next
-michele-spagnuolo-and-lukas-weichselbaum

https://deepsec.net/docs/Slides/2016/CSP_Is_Dead,_Long_Live_Strict_CSP!_Lukas_Weichselbaum.pdf

https://speakerdeck.com/mikispag/so-we-broke-all-csps-dot-dot-dot-you-wont-guess-what-happened-next-michele-spagnuolo-and-lukas-weichselbaum
https://speakerdeck.com/mikispag/so-we-broke-all-csps-dot-dot-dot-you-wont-guess-what-happened-next-michele-spagnuolo-and-lukas-weichselbaum
https://speakerdeck.com/mikispag/so-we-broke-all-csps-dot-dot-dot-you-wont-guess-what-happened-next-michele-spagnuolo-and-lukas-weichselbaum
https://deepsec.net/docs/Slides/2016/CSP_Is_Dead,_Long_Live_Strict_CSP!_Lukas_Weichselbaum.pdf
https://deepsec.net/docs/Slides/2016/CSP_Is_Dead,_Long_Live_Strict_CSP!_Lukas_Weichselbaum.pdf

Now
For the

Takeaway

Message
(You don't have to put up with me for much longer)

Takeaway

Developers Developers Developers

◦ Know where user data's used on the page
◦ Know the frameworks you are using
◦ Encode / Escape user data properly
◦ Validate input when appropriate
◦ Set cookie security flags
◦ Use Content Security Policy

Takeaway

Testers Testers Testers

◦ Take note of pages that contain user data
◦ Test by inserting script and see if they executed
◦ Look for XSS as a part of your quality assurance

process
◦ Use a proxy:

▫ ZAP, Burp, Charles, Fiddle
◦ Ask your security team for guidance
◦ Automate whenever possible

Misc.

Useful Links

More info on XSS
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Testing_for_Cross_site_scripting
https://www.google.com/about/appsecurity/learning/xss/
https://excess-xss.com/

Test Strings for the QAs
http://ha.ckers.org/xss.html
http://htmlpurifier.org/live/smoketests/xssAttacks.php

Content Security Policy (CSP)
https://developers.google.com/web/fundamentals/security/csp/
https://content-security-policy.com/

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Testing_for_Cross_site_scripting
https://www.owasp.org/index.php/Testing_for_Cross_site_scripting
https://www.google.com/about/appsecurity/learning/xss/
https://www.google.com/about/appsecurity/learning/xss/
https://excess-xss.com/
https://excess-xss.com/
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://htmlpurifier.org/live/smoketests/xssAttacks.php
http://htmlpurifier.org/live/smoketests/xssAttacks.php
https://developers.google.com/web/fundamentals/security/csp/
https://developers.google.com/web/fundamentals/security/csp/
https://content-security-policy.com/
https://content-security-policy.com/

Misc.

Useful Links

Proxies:
Burp (free edition): http://portswigger.net/burp/
ZAP: https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
Fiddler: http://www.telerik.com/fiddler
Charles: https://www.charlesproxy.com/

Exercises:
The XSS Game: https://xss-game.appspot.com/
Google Gruyere: https://google-gruyere.appspot.com/
XSS/SQLi Lab VM Image: https://pentesterlab.com/exercises/xss_and_mysql_file

BeEF when you really want to mess around with XSS:
Browser Exploitation Framework (BeEF): https://github.com/beefproject/beef

Slide theme from slidescarnival.com

http://portswigger.net/burp/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://www.telerik.com/fiddler
https://www.charlesproxy.com/
https://xss-game.appspot.com/
https://google-gruyere.appspot.com/
https://pentesterlab.com/exercises/xss_and_mysql_file
https://github.com/beefproject/beef

Cheers

Cheers

and have an

awesome day! :D

