
Intrusion detection
for web applications

Intrusion detection
for web applications

 Łukasz Pilorz

 Application Security Team, Allegro.pl

Reasons for using
 IDS solutions

● known weaknesses and vulnerabilities
● balance between security and usability
● 3rd-party applications and libraries
● insecure client software
● additional layer of security
● fear, uncertainty, doubt

IDS, IPS or WAF?

IDS purpose

● data source for post-intrusion analysis
● real-time intrusion investigation
● holy grail: intrusion prevention

How can we detect unknown attacks?

Positive security model

● “accept known good” mantra
● allowed byte ranges
● regular expressions
● allowed variables whitelist

What about encoded (base64, weak encryption,
multiple charsets) or complex (HTML, file
upload) data?

Positive security model

● when application changes, whitelist has to
change too

● lots of alerts

● http://p1.tld/p2/p3.php/p4/p5=p6,p7?p8&p9=p0

● real-time protection? block them all!
● sanitizing wrong input could help

Why can't we do this in the application itself?

It's easier to fix applications,
than detect attacks

● usually true
● 3rd party software and libraries
● unknown attack methods

● security filters adding new vulnerabilities
● example: HTML filters

HTML filters review – March
2008

Tested: 5 popular anti-XSS HTML filters (PHP)

Results:
● 3/5 vulnerable to XSS (+1 already known 0-day)
● 2/5 included PHP code execution bugs (kses,

htmLawed)
● alternative syntax like Textile or Markdown also

not safe from XSS

Negative security model

● blacklist detection rules
● far less alerts
● classification by attack type, priority, etc.
● generic rules: often too general, false positives
● specific rules: very limited, often outdated

How to detect unknown attacks?

Examples

● Snort – known exploits

● ModSecurity Core Rules – generic

● PHPIDS – generic, focused on XSS

PHPIDS

● LGPL licensed IDS library for PHP applications
● impact rating for each malicious request
● could be added in auto_prepend_file, without

modifying application code
● attempts to detect unknown attack patterns

http://php-ids.org/

http://php-ids.org/

IDS vs OWASP Top Ten

What are we trying to detect?

● automated exploits
● automated vulnerability scanners
● manual attacks
● uncommon user behaviour

● intrusion vs vulnerability testing

How to recognize source type?

A1 - Cross Site Scripting (XSS)

● most common: <script, document.cookie
● dangerous HTML tags and attributes
● breaking out of HTML attribute
● JavaScript keywords

● comparing request and response

● PHPIDS regular expressions

XSS from attacker's view

● needs just one byte to detect vulnerability,
e.g. “, <, (

● easy to make it look innocent

<a href=”http://tested.site.tld/page.php?
id=article">Interesting article
<script>[Google Analytics]...

● usually needs at least several requests to
prepare working attack (for custom application)

XSS – detection

● hard to detect less common vulnerability testing
patterns

● recognizing malicious XSS code is easier
● time window between finding vulnerability and

developing exploit
● real-time detection could prevent attack

How to detect DOM-based XSS or 3rd party
JavaScript/CSS modifications?

XSS – reducing false positives

● different rules for public and private application
sections

● check for persistent XSS after HTML filtering
(response buffering or PHPIDS)

● don't alert when only single keyword/char
matches rule (skip non-malicious XSS)

● raise impact rating for suspicious or missing
Referer headers

● don't even think about “trusted IPs”

A2 – Injection Flaws

● paranoid mode: blocking semicolon and quotes
● checking for SQL (or other language) keywords

● 2.0, 2-0, 2-1, 2;[query]
● val'||', val';[query]
● 2 AND 1=1, 2 AND 1=2
● 2 UNION...SELECT [query]
● /*...*/, /*!...*/

● “page.tld/page?var=1/*&UNION SELECT*/”

SQL Injection

● relatively easy to detect malicious attacks
● many false positives, if we want to detect

vulnerability testing
● good results with whitelisting

● reducing false positives by checking traffic
between application and database (or in the
application, before executing query)

● real-time reporting of SQL query errors

Command/Code Injection

● much wider range of malicious code than for
SQL Injection

● detect vulnerability testing, not exploits
● reducing false positives by eliminating known

vectors

● common commands and functions
● `, {${, <?, <%
● real-time reporting of application errors

Other injection flaws

● LDAP

● XPath

● XSLT

● HTML

● HTTP

A3 – Malicious File Execution

● affects mostly PHP

● external URL in request (http://, ftp://)
● wrappers (data:, php:, ogg:, zlib:, zip:)
● /var/log/httpd/
● /proc/self/environ + User-Agent
● /, ../

● upload containing PHP code
● upload filename & extension

A4 – Insecure
Direct Object Reference

● easier to fix than detect
● whitelisting often doesn't help

● we can try to detect data harvesting tools
● multiple requests to the same page, with

different set of parameters
● repeating requests to a single page or a small

subset of pages
● small mistakes in automatically generated

requests (Referer, null bytes, missing headers
or cookies)

A5 – Cross Site Request Forgery
(CSRF)

● why black hats love CSRF?
● again, it's really easier to fix than detect

● external or missing Referer header
● missing cookies
● Accept header
● user trying to perform action while logged out
● user trying to remind password while logged in
● broken application flow

● Referer-less redirects, clickjacking

A6 – Information Leakage and
Improper Error Handling

● monitoring outbound traffic (e.g. ModSecurity)
● application code, HTML comments, error

messages (esp. SQL)

● 3rd party software may leak undocumented or
non-standard error messages

● what information should be treated as leakage
(and how IDS knows it)?

● Blind SQL Injection

Forcing errors

● var[]=1
● 1.1, 1x, ./1, /1
● “, ', !, %0A, %00

● wrong type of data
● wrong format of session identifier
● DoS
● ...

● too many possibilities to check requests

A7 – Broken Authentication and
Session Management

Session hijacking detection
● another one that is easier to fix in the

application itself (or rather “fix”)

After identifier is stolen:
● IP address change during session
● headers changed/missing during session

Before:
● tampering session identifiers
● XSS

Session hijacking
– attacker's view

● sniffing traffic
Spoof IP, everything else you already have.

● XSS
You don't need to hijack session identifier,
just force the victim to do whatever you
wanted.

● Referer header

A8/A9 – Insecure Cryptographic
Storage and Communications

● not much to do for an IDS
(at least on the server side)

● passing base64-encoded or weakly encrypted
values to the client

● WAF protection against tampering
● may be decrypted on client side and leak

information

● general brute-force attacks detection

A10 – Failure to Restrict URL
Access

● IDS has no information about user rights in the
application

● known vulnerabilities in libraries/include files
● brute-force detection may deal with fuzzing
● broken application flow

● whitelisting

● IPS/WAF as a hotfix solution

...

Log, block, alert

3-tier solution

Tier 1:
● log everything you can

Tier 2:
● detailed log of detected attack attempts

Tier 3:
● possible intrusions and bypasses

Tier 1

● log everything you can

● all application errors
(with their context)

● full requests
(URL, headers, cookies, body)

● full responses
(HTTP code, headers, body)

Tier 2

● detailed log of detected attack attempts

● IDS alerts
● combined data from several sources

● including vulnerability testing patterns
● including blocked/sanitized requests
● optionally: requests following blocked one

Tier 3

● possible intrusions and bypasses

● alerts that require manual verification

● generate as much as you are able to check
manually

● skip blocked requests

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35

