

Creating OWASP ZAP

Extensions and Add-ons
Version 1.0

Johanna Curiel
Johanna.curiel@owasp.org

Abstract
A Step by Step guideline on how to create OWASP ZAP Extensions and Add-Ons for version 2.1.0

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

1 | P a g e

Table of Contents
Introduction .. 2

What are zap extensions? ... 2

Code conventions for developing new extensions ... 3

My first Extension ... 3

Step 1: Download source code and Build ZAP .. 4

Step 2: Create new extension ... 4

Step 3 : Define Message.properties file(s) .. 8

Message.properties text translation... 9

Step 4: Refresh and Run.. 9

Testing Extension code ... 10

Step 5 (optional): Add New Libraries .. 11

Creating an add-on ... 11

Libraries in add-on .. 15

Build the add on .. 15

Configure a new Add-on using Alpha branch - Build.xml ... 15

Build Add-On exampleTopMenu .. 15

Deploy the add-on .. 17

Build-Add on code... 18

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

2 | P a g e

Introduction
The Zed Attack Proxy (ZAP) is an easy to use integrated penetration testing tool for finding vulnerabilities in

web applications. It is designed to be used by people with a wide range of security experience and as such is

ideal for developers and functional testers who are new to penetration testing. ZAP provides automated

scanners as well as a set of tools that allow you to find security vulnerabilities manually.

This is a quick, step by step guideline about how to create extensions and Add-Ons in OWASP ZAP.

What are zap extensions?
Zap extensions are java packages that extend the existing functionality within OWASP ZAP. This concept

could be called the “Extension Mechanism” which provides a standard way to create custom features or API’s

to Java applications

OWASP ZAP contains major functionalities in the Parosproxy.paros packages. Paros, which is an open source

Java program with multiple functionalities, it’s not been updated since 2006. OWASP ZAP uses part of these

functionalities and has built many new. Therefore when building a new custom extension for OWASP ZAP,

you need to create a package within org.zaproxy.zap extension.

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

3 | P a g e

The code that you produce as a new extension needs to go through different phases. You could consider your

new package as a “Proposal” that will be feature in the “Marketplace”. This concept is proposed by Simon

Bennetts (aka PSIION), the Project Leader of OWASP ZAP, to get new contributors onboard but also allow

users at an early stage development of the new extension to test it and provide feedback to the new feature.

By creating features as new extensions, it makes the program manageable and modular.

Code conventions for developing new extensions
OWASP ZAP has a set of development rules and guidelines that must be followed. Please go to

https://code.google.com/p/zaproxy/wiki/DevGuidelines and review these guidelines. In addition, I will

highlight some regarding the creation of new packages:

 All significant new code should be under the org.zaproxy.zap package.

 All functionality should be fully documented in the help pages. However the documentation can be

added after the code has been checked in as long as this is done before the next release. Note that

the wiki help pages must not be changed manually - these reflect the last release, and are generated

from the help pages using a script.

 Please create Issues for all significant changes and post messages to the development group so that

everyone knows what’s going on

My first Extension
The easiest way to understand how to build a new extension is by following a simple example. In the wiki

https://code.google.com/p/zap-extensions/wiki/Examples you can find some basic info, however this

example explains step by step how to create this example templates into a new extension

In the wiki you can find 4 different examples. The first 2 are scanner rules and the last ones explain how to

extent menu’s with new features.

From this, we will create the TOP-LEVEL menu item

https://code.google.com/p/zaproxy/wiki/DevGuidelines
http://code.google.com/p/zaproxy/source/browse/#svn%2Ftrunk%2Fsrc%2Forg%2Fzaproxy%2Fzap
http://code.google.com/p/zaproxy/source/browse/#svn%2Ftrunk%2Fsrc%2Fhelp%2Fzaphelp%2Fzaphelp
http://code.google.com/p/zaproxy/issues/list
http://groups.google.com/group/zaproxy-develop
https://code.google.com/p/zap-extensions/wiki/Examples

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

4 | P a g e

Step 1: Download source code and Build ZAP
There is a very detailed guideline on how to get the latest OWASP ZAP source code and configure properly

your Eclipse environment. Raul Siles of Taddong is updating these guidelines which explain in very detail how

to Build ZAP. Keep in mind that this info can change depending on the version of ZAP. You can find the latest

guides here http://code.google.com/p/zaproxy/wiki/Building

Step 2: Create new extension
 Create a new folder exampleTopMenu, under the project OWASP ZAP in your workspace location. Located

the folder “..\src\org\zaproxy\zap\extension” and place 2 files into the folder. In the wiki you will find the

code of the extension class and the Message.properties file.

https://code.google.com/p/zap-

extensions/source/browse/trunk/src/org/zaproxy/zap/extension/exampleTopMenu/ExtensionTopMenu

http://code.google.com/p/zaproxy/wiki/Building
https://code.google.com/p/zap-extensions/source/browse/trunk/src/org/zaproxy/zap/extension/exampleTopMenu/ExtensionTopMenu
https://code.google.com/p/zap-extensions/source/browse/trunk/src/org/zaproxy/zap/extension/exampleTopMenu/ExtensionTopMenu

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

5 | P a g e

You can also download the example folder. Go to the following location:

https://code.google.com/p/zap-extensions/wiki/Examples and click on Extension including a right click menu

item

In the Example package create a class called ExtensionTopMenu.java

/*

 * Zed Attack Proxy (ZAP) and its related class files.

 *

 * ZAP is an HTTP/HTTPS proxy for assessing web application security.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

https://code.google.com/p/zap-extensions/wiki/Examples
https://code.google.com/p/zap-extensions/source/browse/trunk/src/org/zaproxy/zap/extension/exampleRightClickMsg/ExtensionRightClickMsgMenu.java
https://code.google.com/p/zap-extensions/source/browse/trunk/src/org/zaproxy/zap/extension/exampleRightClickMsg/ExtensionRightClickMsgMenu.java

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

6 | P a g e

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

package org.zaproxy.zap.extension.exampleTopMenu;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.ResourceBundle;

import javax.swing.JMenuItem;

import org.parosproxy.paros.Constant;

import org.parosproxy.paros.extension.ExtensionAdaptor;

import org.parosproxy.paros.extension.ExtensionHook;

import org.parosproxy.paros.view.View;

/*

 * An example ZAP extension which adds a top level menu item.

 *

 * This class is defines the extension.

 */

public class ExtensionTopMenu extends ExtensionAdaptor {

 private JMenuItem menuExample = null;

 private ResourceBundle messages = null;

 /**

 *

 */

 public ExtensionTopMenu() {

 super();

 initialize();

 }

 /**

 * @param name

 */

 public ExtensionTopMenu(String name) {

 super(name);

 }

 /**

 * This method initializes this

 *

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

7 | P a g e

 */

 private void initialize() {

 this.setName("ExtensionTopMenu");

 // Load extension specific language files - these are held in the

extension jar

 messages = ResourceBundle.getBundle(

 this.getClass().getPackage().getName() +

".Messages", Constant.getLocale());

 }

 @Override

 public void hook(ExtensionHook extensionHook) {

 super.hook(extensionHook);

 if (getView() != null) {

 // Register our top menu item, as long as we're not running

as a daemon

 // Use one of the other methods to add to a different menu

list

 extensionHook.getHookMenu().addToolsMenuItem(getMenuExample(

));

 }

 }

 private JMenuItem getMenuExample() {

 if (menuExample == null) {

 menuExample = new JMenuItem();

 menuExample.setText(getMessageString("ext.topmenu.tools.exam

ple"));

 menuExample.addActionListener(new

java.awt.event.ActionListener() {

 @Override

 public void actionPerformed(java.awt.event.ActionEvent e) {

 // This is where you do what you want to do.

 // In this case we'll just show a popup message.

 View.getSingleton().showMessageDialog(getMessageStri

ng("ext.topmenu.msg.example"));

 }

 });

 }

 return menuExample;

 }

 public String getMessageString (String key) {

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

8 | P a g e

 return messages.getString(key);

 }

 @Override

 public String getAuthor() {

 return Constant.ZAP_TEAM;

 }

 @Override

 public String getDescription() {

 return messages.getString("ext.topmenu.desc");

 }

 @Override

 public URL getURL() {

 try {

 return new URL(Constant.ZAP_EXTENSIONS_PAGE);

 } catch (MalformedURLException e) {

 return null;

 }

 }

}

Step 3 : Define Message.properties file(s)
It is important to keep in mind that every extension you build with its own display text (or text that can be

translated) must contain its own Message.properties file

An example ZAP extension which adds a top level menu item.

This file defines the default (English) variants of all of the

internationalised messages

ext.topmenu.desc=Example extension which provides a top level menu

ext.topmenu.tools.example=topmenu: an example menu

ext.topmenu.msg.example=topmenu: An example message

This text is used in the menu application. In fact, once you get acquaintance with the OWASP ZAP code, you

will find this file and multiple translation text files under ‘lang’ package, still, remember that your extension

must have its own Message.properties file.

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

9 | P a g e

Message.properties text translation
If you wish to have your text translated into multiple languages, then you need to add additional properties

files such as the example above. For the proper translation of your extension text, you must submit your

translation files to http://crowdin.net/project/owasp-zap/activity_stream

Step 4: Refresh and Run
Go back to eclipse environment, Refresh the project by right-click the “src” folder under the project and

select ‘Refresh’ from the drop down menu.

Right click the ‘src’ again and select Run

When the ZAP application launches, right click in the left pane or the bottom pane of the ZAP window. You

will see a new menu item as follows:

http://crowdin.net/project/owasp-zap/activity_stream

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

10 | P a g e

Testing Extension code
Now we have a basic example, all the code does is display a small window

You can use this example to build your own code. Open the Java class ExtensionTopMenu.java in the package

and look for the following code:

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

11 | P a g e

In the commented code, you can define the methods that you want to call from here

Step 5 (optional): Add New Libraries
Your new code might require the use of new jars of libraries. For development purposes you can place these

JAR files in the lib folder

Copy the Jar files into the lib folder in your workspace “..\workspace\zaproxy\lib” then select the Jar files and

add then to the Build Path however, for deployment of this extension then we need to convert it as an add-

on.

Creating an add-on
Now that we have the example extension ready, you can proceed to make this extension and add on.

Any new add on can be considered in the first development stage ‘Alpha’ . There are indeed 3 development

stages

 Alpha

 Beta

 Final (trunk)

For each one there is a different branch based on the ZAP version.

On the wiki you can find some basic information about building add-on and their relevant code source

http://code.google.com/p/zaproxy/wiki/ZapAddOns

The extension that we have created needs an additional file, a “ZapAddOn.xml” .The ZAP add-on file is a

standard jar file, but ideally should include a ZapAddOn.xml file at the top level - this contains information

about the contents of the add-on and allows it to be loaded and unloaded dynamically.

<zapaddon>

 <name>Short text name (no HTML)</name>

 <version></version> <!-- Integer than increments with each (released) change -->

 <description>Longer test description (no HTML), but not too long!</description>

http://code.google.com/p/zaproxy/wiki/ZapAddOns
https://code.google.com/p/zap-extensions/source/browse/trunk/src/org/zaproxy/zap/extension/ZapAddOn.xml

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

12 | P a g e

 <author>Author (no HTML)</author>

 <url/> <!-- Optional URL to more info, eg on the zap-extensions wiki -->

 <changes/> <!-- Optional, text summary of changes since the last version -->

 <dependson> <!-- Optional, to be used if this addon depends on other addons -->

 <zapaddonid/> <!-- id (and optionally version) of other addon this one depends on - can be multiple of these -->

 </dependson>

 <extensions> <!-- Optional, to be used if this addon includes extensions -->

 <extension/> <!-- Full class name of the extension - can be multiple of these -->

 </extensions>

 <ascanrules> <!-- Optional, to be used if this addon includes active scan rules -->

 <ascanrule/> <!-- Full class name of the active scan rule - can be multiple of these -->

 </ascanrules>

 <pscanrules> <!-- Optional, to be used if this addon includes passive scan rules -->

 <pscanrule/> <!-- Full class name of the passive scan rule - can be multiple of these -->

 </pscanrules>

 <filters> <!-- Optional, to be used if this addon includes filters -->

 <filter/> <!-- Full class name of the filter - can be multiple of these -->

 </filters>

 <files> <!-- Optional, to be used if this addon includes raw files -->

 <file/> <!-- Relative file name (to this package, and the users directory) - can be multiple of these -->

 </files>

 <not-before-version/> <!-- Optional, to be used if this addon can only be run from the specified version e.g. 2.1.0 -->

 <not-from-version/> <!-- Optional, to be used if this addon can not run from the specified version e.g. 2.4.0 -->

</zapaddon>

For building an add-on, you need actually another build file found in “zap-extensions” project. These zap-

extensions repositories are found under http://zap-extensions.googlecode.com/svn

In the following branch you can find the extension code ready to be built as an add-on:

http://zap-extensions.googlecode.com/svn

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

13 | P a g e

Go to your workspace where you have setup this repository and look for the build.xml file in the relevant

branch

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

14 | P a g e

Copy paste this Build.xml file in the workspace repository where you need to build your add-on extension.

Since there is a build.xml file, rename it for example to ‘build-extension.xml’

In the build(extension).xml file look for this code which is important, so the extension add on can be built in

the workspace where you have OWASP ZAP configured:

Rename in case is necessary (zaproxy) for example like this (in my case my project is called zappy2

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

15 | P a g e

Libraries in add-on
For development purposes we have set the necessary new jars in the lib folder of the application, but for

building this extension as an add on, we need to create a new lib folder under the new extension, and place

the jar files in here.

Build the add on

Configure a new Add-on using Alpha branch - Build.xml

In the Build.xml found in the alpha branch, you just need to add a line to build your add-on:

In this case just add the value, which is the name of your extension.

Go to outline of the build file and look for the task ‘buil-all’ and run the ant task.

Build Add-On exampleTopMenu
Go to the task into your outline window and look for the task “build-exampleTopMenu”. Right click and run

the ant-taks

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

16 | P a g e

That’s all. You can look at the extension folder “zap-exts” and the add on has been created an a zap file,

containing the relevant code of your extension.

This file already contains the code of the add-on for the “exampleTopMenu” which we already have.

<target name="build-exampleTopMenu" description="build the exampleTopMenu extension">
 <antcall target="build-extension">
 <param name="extension" value="exampleTopMenu"/>
 <param name="type" value="example"/>
 <param name="version" value="1"/>
 <param name="name" value="Example extension demonstrating to top
level menu"/>
 <param name="changes" value=""/>
 </antcall>
 </target>

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

17 | P a g e

Deploy the add-on
Go to the task into your outline window and look for the task “deploy-exampleTopMenu”

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

18 | P a g e

The extension can be found in the build folder of your project workspace

Build-Add on code
Go to outline of the build file and look for the task “build-addon” and run the Ant task.

Creating OWASP ZAP Extensions
17th July 2013 – Version 1.0 – OWASP ZAP version 2.1.0

19 | P a g e

The code of that creates the add on is found in here. Keep in mind that if you want to define a specific build-

add on task for your custom add on, you need to create a task for that, but it is much easier to use the alpha

branch Build.xml for this purpose.

<target name="build-addon" description="build the specified addon">

 <xmlproperty file="${src}/org/zaproxy/zap/extension/${addon}/ZapAddOn.xml"/>
 <property name="file" value="${addon}-${status}-${zapaddon.version}.zap" />

 <antcall target="build-extension-help">
 <param name="extension" value="${addon}"/>
 </antcall>

 <jar jarfile="${dist}/${file}" update="true" compress="true">
 <zipfileset dir="${build}" prefix="">
 <include name="org/zaproxy/zap/extension/${addon}/**"/>
 </zipfileset>
 <zipfileset dir="${src}" prefix="">
 <include name="org/zaproxy/zap/extension/${addon}/Messages*"/>
 </zipfileset>
 <zipfileset dir="${src}" prefix="">
 <include name="org/zaproxy/zap/extension/${addon}/resource/**"/>
 </zipfileset>
 <zipgroupfileset dir="${src}/org/zaproxy/zap/extension/${addon}/lib/"
includes="*.jar" erroronmissingdir="false"/>
 <zipfileset dir="${src}"
includes="org/zaproxy/zap/extension/${addon}/ZapAddOn.xml" fullpath="ZapAddOn.xml"/>
 </jar>

 <antcall target="cleanup-extension-help">
 <param name="extension" value="${addon}"/>
 </antcall>

 <antcall target="append-to-versions-file">
 <param name="extension" value="${addon}"/>
 <param name="name" value="${zapaddon.name}"/>
 <param name="version" value="${zapaddon.version}"/>
 <param name="description" value="${zapaddon.description}"/>
 <param name="author" value="${zapaddon.author}"/>
 <param name="url" value="${zapaddon.url}"/>
 <param name="changes" value="${zapaddon.changes}"/>
 <param name="file" value="${file}"/>
 <param name="not-before-version" value="${zapaddon.not-before-version}"/>
 <param name="not-from-version" value="${zapaddon.not-from-version}"/>
 </antcall>
 </target>

