_— : :
& .. Common Pitfalls in
Cryptography

T e
L e
-
-
-
-
-
-
-
-
-
-
.
.
-
.
-
-
.
.
-
-
-
-
-
-
-
s - - -
‘:: III:-

Ap pSec shayz@comsecglobal.com
Israel

lv 2 Copyright © 2006 - The OWASP Foundation
Ju y 006 Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License.

-
.

Shay Zalalichin,
CISSP

S e
.

Information Security

) COMSEC Consulting The OWASP Foundatio

http://www.owasp.or

Agenda

m Demonstrating Crypto Failures
B Common Crypto Terminology
m The "Top 10" Crypto Pitfalls

m Conclusions

OWASP AppSec Israel 2006 e 2

Example #1 — The Cesar Cipher

m Earliest known Substitution Cipher
m Invented by Julius Caesar, 49 BC

m Used to communicate with his army officers and
keep the messages secure

B Replaces each letter by 3rd letter on

H example:
» MEET ME AFTER OWASP LECTURE
» PHHW PH DIWHU RZDVS OHFWXUH

Cryptanalysis of the Cesar Cipher

B Only have 26 possible ciphers
» A maps to A,B,..Z

m Could simply try each in turn using a Brute
Force Search

B Given Ciphertext, just try all shifts of letters
B Do need to recognize when have plaintext

OWASP AppSec Israel 2006 0 4

Cryptanalysis of the Cesar Cipher

<} Cesar cipher. - Microsoft Internet Explorer :”E”£|
. File Edit ‘iew Favorites Tools Help -ﬂ"'
e Back - J @ @ h /__\1 Search \::'\'Y‘Fa\-'orites &2 r’ﬁ:- :‘:,_ lJ_.iTI = J @:\7 - ﬁ ﬁ
: e £ == = =
! Address @ http:f o, quisque .com/fr/chasses/cryplofcesar, aspi "l Go
: Links @ Customize Links @ Free Hotmail @ Real world Wweb Hacking URL's - Web Application Security Consortium @ Windows 82 Windows Marketplace @ windows Media
|
Cesar cipher

Enter your text: |EUHDN PH

u] ETHLN FH

1 DTGCM OG

z C3FEL NF

3 BEREAE ME

4 AQDZI LD

=] ZPCYI EKEC

[YOBEH JB

7 ENAWG Ia

g WHEVF HZ

] VLYUE GY

10 TEETD FXE

11 TJWSC EW

1z SIVEE DV

13 RHUQAL CTT

14 QGTFEZ BT

15 PF2OY AS

16 QOERNE ZR

17 NDOHW Yo 1

15 MCPLY XP

19 LECET Wo

20 EANJT VN

i JEZMIS UM =
@ Done ® Internst

OWASP AppSec Israel 2006 5

Example #2 — Using ‘Complex’ Substitution Cipher

Definition Let A be an alphabet of ¢ symbols and M be the set of all strings of length
t over A. Let K be the set of all permutations on the set A. Define for each e € /C an
encryption transformation E, as:

Ee(m) = (e(mi)e(ma) -+ - e(my)) = (e1c2 - &) = ¢,

where m = (mimgz---m;) € M. In other words, for each symbol in a t-tuple, replace
(substitute) it by another symbol from .4 according to some fixed permutation e. To decrypt
¢ = (c1c2* - ¢;) compute the inverse permutation d = e~ and

Dd(c) = (d(C1)d(62) 0100 d(ct)) = (mlmz ce mt) =m.

B, is called a simple substitution cipher or a mono-alphabetic substitution cipher.

Example:
BABCDEFGHIJKLMNOPQRSTUVWXYZ

!

BDEFGHIJKLMNOPQRSTUVWXYZABC

OWASP AppSec Israel 2006 e 6

Cryptanalysis of ‘Complex’ Substitution Cipher

B The key space for the English Alphabet is very large:
26!~ 4 x 106

m It can be, however, broken easily, especially if the
message space has known structure.

m For example, in English texts the letter “"E” is the most
used letter.

B Hence, if one performs a frequency count on the ciphers,
then the most frequent letter can be assumed to be “E”

B Other letters are fairly rare (e.g. Z,],K,Q,X)

B Have also tables of single, double & triple letter
frequencies

Cryptanalysis of ‘Complex’ Substitution Cipher

ABCDETFGHTI]J]KLMNOPGO QRSTUVYVWXTY Z

OWASP AppSec Israel 2006 8

Cryptanalysis of ‘Complex’ Substitution Cipher

H Demo.

OWASP AppSec Israel 2006 e g

Example #3 — Data Encryption Standard

B US encryption standard [NIST 1993]
B 56-bit symmetric key, 64 bit plaintext input
m How secure is DES?

» In 1977, Diffie and Hellman proposed a machine costing an
estimated US$20 million which could find a DES key in a single
day

» By 1993, Wiener had proposed a key-search machine costing
US$1 million which would find a key within 7 hours

» In 1998 the EFF built Deep Crack which costs $250,000 and
decrypted DES in 56 hours of work

» In 1999 (Six months later) in collaboration with Distributed.net,
Deep Crack decrypted DES in 22 hours and 15 minutes — less
then a day!

OWASP AppSec Israel 2006 9 10

Example #3 — Enhancing DES

m What if we want to ‘enhance’ its strength
beyond of 2567

m We might consider ‘enhancing’ the algorithm to
perform Double Encryption with two different
56-bit Keys

» C = EK1(EK2(M))

m Total strength is considered to be: 2112 (twice
as strong as the original DES)

©

Example #3 — Breaking the Enhancement

m However ...

B Time & Memory tradeoff attack called ‘Meet-in-the-
Middle’ (from Diffie & Hellman) can be performed
against the ‘improved’ algorithm breaking it in only 2757
guesses

m Attack includes:
» Using know P, C
» Computing Ek1(P) for all k1

» Computing Dk2(C) for all k2
= Checking if Ek1(P) = Dk2(C) and if so, the key was found!

OWASP AppSec Israel 2006 9 12

Example #4 — Using Public Key Mechanism

m Alice generates Ea & Da
m Alice sends Bob Ea
m Bob generates Eb & Db
m Bob sends Alice Eb

m Alice sends Bob encrypted messages using Eb and
decrypts incoming messages using Da

m Bob sends Alice encrypted messages using Ea and
decrypts incoming messages using Db

What can go wrong?

Common Pitfalls — Introduction

m Covers the popular mistakes & pitfalls that
software developers do while using crypto within
their applications

m Based on a few hundred security audits that
Comsec performed over the last 6 years

m The list is not bound to any technology /
application infrastructure or programming
language

m Note: This list is far from being complete but
serves its purpose to describe common mistakes

©

The “"Top 10” List of Crypto Pitfalls

. Security by Obscurity

Jsing Traditional Cryptography
Jsing Proprietary Cryptography
Using Insecure Random Generators
. ‘Hiding" Secrets

Using Weak Keys

Memory Protection

Not Using ‘Salted’ Hash

. Using MAC Insecurely

0.Insecure Initialization

= OO NODUAWN

#1: Security by Obscurity

B One of the basic security princi|3|es that every software
developer / designer should follow when writing secure
applications

m In the crypto context, usually related to:
» Hiding the Crypto algorithms / protocols being used
» Hiding the Crypto keys generation algorithms
» Hiding the Crypto keys
» Hiding initialization parameters
» Etc.

B Simply does not work ... Once revealed, usually results in
total breakdown of the system security model

m Side effect is the prevention of “other-eyes” from
inspecting / reviewing the algorithms being used for
potential weaknesses that can be fixed

©

#2: Using Traditional Crypto

m "Traditional” or “Classical” Cryptography covers
algorithms and techniques used to perform
cryptographic operations in the “old-days”

m Popular examples include:
» Shift Cipher (e.g. Caesar / C3)
» Substitution Cipher
» Affine Cipher
» Vigenere Cipher
» Etc.

m Effective Cryptanalysis techniques / tools are considered
common knowledge and usually result in the total
breakdown of these algorithms

©

#3: Using Proprietary Crypto

B Includes the modification of standard crypto algorithms
or the usage of proprietary new crypto algorithms

m Usually combined with #1 (Security by Obscurity)

B In most cases standard algorithms / methods cover most
aspects needed by software developers

B Unless you have vast experience and significant
resources to invest in the cryptanalysis research of the
new algorithm — usually results in poor algorithm that
can be easily broken

©

#4: Using Insecure Random Generators

m Usually Random Generators are not truly
random but rather Pseudo Random algorithms

B Common usage of the random generators in the
crypto context usually includes a generation of:
» One-time-passwords
» Access codes
» Crypto keys
» Session identifiers
» Etc.

#4: Using Insecure Random Generators (cont.)

B Some of the generators were planned to support
statistical requirements (e.g. uniformly distribution) and
not to provide secure unpredictable values

B Some of the generators are required to be initialized by
using SEED value. Usage of the same SEED provides the
same sequence — causing the choosing of the SEED to
be critical for security

m Using random generators that are considered insecure or
the insecure initialization of these generators usually
results in the ability of an attacker in predict other values
that were generated by the random generator

©

#5: ‘Hiding’ Secrets

B Secure systems need to handle secrets

B These secrets are usually access credentials to
other systems (e.g. DBMS) or crypto keys
(sometimes even to protect those access
credentials)

B In many cases, to protect those secrets
developers ‘hides’ them in several places such
as:

» Application source code
» Configuration files
» Windows Registry

#5: ‘Hiding’ Secrets (cont.)

m It is common belief that since application code is
‘compiled’ into binary executable it would be
hard to extract them

B The fact is that extracting those secrets from
application ‘compiled’ code is eventually not as
hard as it seems and can be done using various
tools and techniques

B Some programming languages (e.g. Java, .NET)
do not produce ‘true’ binary making the
extraction job even easier

©

#5: ‘Hiding’ Secrets (cont.)

B Additional problems with ‘hard-coded’ secrets
are that they are hard to maintain and expose
these secrets to developers or to less secure
environments (e.g. Testing, Integration, Source
Control)

B As for hiding the secrets in external resources
(e.qg. files), plenty of available tools can be easily
used to discover the resource used for storage
and easily recover the secret

#6: Using Weak Keys

B Systems that use crypto must use crypto keys to
perform various crypto activities (e.g. for
encryption, decryption, MAC)

B These crypto keys are sometime based on
chosen passwords that might seem long & hard
but when used as keys are weak

m Other cases include key generation using an
insecure generator (e.g. pseudo random
generator or other ‘obscured’ techniques)

#6: Using Weak Keys (Cont.)

B The strength of the entire crypto scheme is
heavily dependent upon keys’ strength

m It is important to notice that strength is not
always equal to length

» Example:

= 8 char alpha numeric passwords strength is not equal to 64-
bit crypto key but rather to 40-bit crypto key!

B Secure crypto schemes (e.g. AES, RSA) are
almost useless and can be easily defeated when
used with weak keys

©

#7: Memory Protection

B In most cases sensitive crypto data is stored in
the host’'s memory

m Most of the time this information is stored
unprotected (without any Encryption)

®m Many times this information is stored for a
longer period than actually needed (enlarging
the attack window)

m Many times the memory is not specifically
overwritten to perform the actual removal of the
sensitive information from memory

©

#7: Memory Protection (Cont.)

Bm In some programming languages the
information is even stored (usually due to
insufficient knowledge) within a mutable object
preventing it from being specifically erased ...

B Insufficient memory protection jeopardizes the
sensitive information (usually crypto Keys) to be
‘leaked’ out to an unauthorized attacker causing
direct risk to the entire cryptosystem

©

#8: Not Using 'Salted’ Hash

m Crypto Hash Functions are sometimes used to
store ‘one-way’ version of Passwords (or other
credentials that needs to be authenticated)

m Popular implementation includes a simple
replacement of the Password field with the
‘Hashed’ version and the performance of the
checks against it

m Not using any 'Salt’ on the stored Hash Values
exposes this scheme to Dictionary Attack that
can totally break this scheme!

©

#9: Using MAC Insecurely

B MAC is used to secure the integrity of the
message and to authenticate the sender by
using a Shared Secret

m Popular MAC implementations are based on un-
keyed Hashes operated on the data combined
with the Shared Secret

B The Data + Shared Secret ‘combination’ is
usually the concatenation operation

#9: Using MAC Insecurely (Cont.)
B Due to its mathematical operation of the
iterative Hash function, if not carefully built, data

can be altered and a matching MAC can be
calculated without knowing the Shared Secret!

OWASP AppSec Israel 2006 0 30

#10: Insecure Initialization

m Standard crypto algorithms and mechanisms are based
on several parameters, most of them are defined during
initialization

» Examples include:
= Symmetric block encryption modes of operation (e.g. ECB)
= Asymmetric encryption (e.g. Modulus in RSA)
= RSA Padding mode

B These parameters define the way the algorithms work
and therefore have a direct impact on the algorithm
security level

m Failure to choose them carefully may ‘weaken’ the
algorithm exposing it to different types of attacks (e.g.
MITM, Existential Forgery)

©

#10: Insecure Initialization — Example

m Usage of Shared Modulus in RSA results in total
breakdown of the entire cryptosystem
» If Bob has (N, Eb) & (N, Db)
» And Alice has (N, Ea) & (N, Da)
» Bob can factor N and then calculate Da from Ea

OWASP AppSec Israel 2006 0 32

Conclusions

And if you can only take a few thing from this
oresentation:

Know what you are doing

Do not rely on ‘Obscurity’

Do not try to ‘Hide’ secrets

Do not re-invent the wheel

Generate Strong Keys and Protect them
Use only strong & standard Ciphersuites

OWASP AppSec Israel 2006 e 33

-
.

Shay Zalalichin,

.
A W
__‘El uestions?
CISSP
AppSec Division Manager,

EE———
i
.
]
.
o
.
o
o
o
o
o
.
.
o
.
.
.
.
.
o
.
.
4
.
.
o
o
.
i
(:: III:-

Ap pSec shayz@comsecglobal.com
Israel

lv 2 Copyright © 2006 - The OWASP Foundation
Ju y 006 Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License.

T e
.

http://www.owasp.or

Information Security

) COMSEC Consulting The OWASP Foundatio

