

Countering Jamming Attacks Against Mobile Communications

Dr. Reiner Dojen

Data Communications Security Laboratory, Department of Electronic & Computer Engineering University of Limerick, Ireland

Presentation Overview

- Security Protocols
- Jamming
- Jamming attack against a mobile communications protocol: Suppress & Desynchronise Attacks
- Sample: Chen-Lee-Chen

Cryptographic Security Protocols

Cryptographic Security Protocols

- A communication protocol that is based on a cryptographic system
- A prescribed sequence of interactions between principals designed to achieve certain goals
- Goals include:
 - Secrecy, Key distribution, Key agreement, Integrity Protection, Authentication, Non-repudiation, Anonymity

Participants

- Honest Principals
 - follow particular protocol faithfully, do not cheat
- Trusted Third Parties (Servers)
 - trusted by all principals
 - Have authority over certain information
- Dishonest Principals (Attacker, Intruder)
 - Try to manipulate protocol to achieve unfair advantage

Security Protocols vs Communication Protocols

- Communication Protocols:
 - reachability of all legal states
 - avoidance of infinite loops
 - deal with accidental/random modifications (interference, bit flips)
- Security Protocols:
 - gain of information by attacker/intruder
 - passive attacker (listening only)
 - active attacker (modifies, may use multiple sessions)
 - "Attacker never play by the rules"

Attacker Ability

- Eavesdrop/Packet Sniffing
- Send Messages
- Replay recorded messages
- Modify/tamper with Messages in transit
- Jamming/Stopping Message
- Spoofing Addresses/Identities
- Impersonate an address and lie in wait
- Attacker may also be legitimate principal
- Summary: Attacker has full control over communication environment!!!

Attacks on Protocols

- Replay Attack
 - Attacker records old messages and replays them at later stage
- Parallel Session
 - Attacker starts a new session to obtain further information
- Type Flaw
 - Using one component instead of another (e.g. swap key with identity)
- Denial of Service (DoS)
 - Prevent legitimate use of system

Jamming Attacks against Mobile Communications

What is Jamming?

 Transmission of radio signals that disrupt communications by decreasing the signal to noise ratio.

- Jamming uses transmitter:
 - tuned to the same frequency as the receiving equipment
 - uses the same type of odulation
 - enough power
- Overrides any signal at the receiver

Defence Strategies

- Constant Jammer:
 - Spread-spectrum techniques
 - Frequency hopping (physical layer)
 - Channel Surfing (link layer)
 - Spatial retreat (escape jammer)
 - Hard to defend against at application layer
 - Sufficient power: impossible to stop 8
- Deceptive/Random Jammer
 - Ensure communication continues after jamming has stopped - application layer ⁽²⁾

Dynamic Shared Secrets

- Many security protocols for wireless communications use one-time shared secrets for authentication purposes
- Used by the owning principals to prove their identity
- Same protocol run establishes a new instance of the shared secret (for next session).
- Messages of the protocol that establish the new shared secret => update mechanism (UM)
- UM serves two purposes:
 - generation of a new instance of the shared secret
 - agreement on the same new shared secret

 UM aims to ensure synchronous storage of the shared secret

Update Mechanism for Dynamic Shared Secrets

Atomic Update Mechanism?

- Update mechanism often regarded as an atomic unit.
- However, UM is a sequential process:
 - One principal (A) updates the shared secret first from θi to θi+1.
 - 2. A computes the message containing the new operating value $\theta i+1$.
 - 3. A sends the message to the other principal (B).
 - 4. B receives the message from A.
 - 5. On successful authentication of A, B updates its shared secret to $\theta i+1$.

Suppress-and-Desynchronise Attacks

- Suppress-and-Desynchronise (SD) attacks interfere with update mechanism
- Message in UM is suppressed to desynchronise storage of secrets
- Successful SD attack leads to permanent DoS condition

Normal Protocol Execution

Network Control Centre (NCC)

Network's Secret Table

Mutual Authentication by Proving Possession of Shared Secret

Secret Table

Authentication Request after SD-Attack Desynchronised Users Fail Authentication

User's Memory Network Control Centre (NCC)

Network's Secret Table

Vulnerable Protocols

- Mutual authentication and session key in terrestrial wireless fixed and mobile networks
 - A. Aziz and W. Diffie "Privacy and Authentication for Wireless Local Area Networks", IEEE Personal Communications, First Quarter 1994
- Certificate distribution for nodes in a mobile ad-hoc network for satellite communications using VSATs, cellular networks (GPRS), unmanned aerial vehicle (UAV) communications
 - Tseng, YM., "A heterogeneous-network aided public-key management scheme for mobile ad hoc networks", International Journal of Network Management, vol. 17, pp. 3–15, 2007
- Mutual authentication between a mobile user and the service provider in a LEO satellite communications system
 - Hwang, MS., Yang, CC., Shiu, CY.- "An authentication scheme for mobile satellite communication systems", ACM SIGOPS Operating Systems Review, Vol. 37, No. 4, October 2003, pp. 42-47.
 - YF. Chang and CC. Chang "An efficient authentication protocol for mobile satellite communication systems", ACM SIGOPS Operating Systems Review, Vol. 39, Issue 1 (January 2005), 70-84.
 - Chen T.H., Lee W.B. and Chen H.B. "A self-verification authentication mechanism for mobile satellite communication systems", Computers and Electrical Engineering, Volume 35, Issue 1 (January 2009), 41-48.

Example: CLC Protocol (2009)

1. U -> MEQ:: T_{ID} , MAC- $k_U(U_{ID}, T_{ID}, sk)$ 2. MEQ -> NCC: $\{T_{ID}, M_{A}, C_{ev}\}$ (U_{ID}, T_{ID}, sk), LEO_{ID} 3. NCC -> LEO: $\{T_{ID}, T_{IDnew}\}$ sk, LEO_{ID} 4. LEO -> U: $\{T_{ID}, T_{IDnew}\}$ sk

CLC Structure

CLC – Normal Execution

Attacking CLC

An SD attack inflicts asynchronous T_{ID} values for the NCC and U.

CLC Problems

- U times out and resends using old T_{ID}
- NCC: no knowledge of earlier failure, expects U to use updated value T_{IDnew}
- NCC denies access assumes replay of previous message
- U and NCC can not enter Data Exchange Phase
- U and NCC fail any further attempt to authenticate
- No resynchronisation phase or means are provided with the protocol
- Permanent Denial-of-Service Condition !!!

CLC – With Attack

Fixing CLC (1)

 "The transport layer guarantees delivery – indicated attack is not a problem"

Problems:

- Transport layer may report "cannot deliver"
 ⇒ actions taken by protocol must be specified
- Many transport layer protocols are easily corrupted ⇒ attacker can create incorrect acknowledgements

Fixing CLC (2)

 Accept current and previous secret (authenticate T_{ID} and T_{IDnew}), consider all earlier values as replays

Problem:

 Allows replay-attack: Intruder can repeatedly replay previous request to authenticate

Fixing CLC (3)

- NCC stores current and previous (most recent) T_{ID} values.
- If correct T_{ID} is used, proceed as in original protocol.
- If previous T_{ID} is used, deny access & send resynchronisation challenge that allows user to catch up on current T_{ID}.

Fixed CLC Structure

Fixed CLC Messages

1. U -> LEO: T_{ID} , MAC- $k_U(U_{ID}, T_{ID}, sk)$ 2. LEO -> NCC: T_{ID} , MAC- $k_U(U_{ID}, T_{ID}, sk)$, LEO_{ID}

3.a. NCC -> LEO: {GRANT, T_{ID}, T_{IDnew}}sk_{crt}, LEO_{ID} 4.a. LEO -> U: {GRANT,T_{ID}, T_{IDnew}}sk_{crt} Normal process

3.b. NCC -> LEO: {DENY, T_{ID}, T_{IDnew} }sk_{prev}, LEO_{ID} 4.b. LEO -> U: {DENY, T_{ID}, T_{IDnew} }sk_{prev} Re-sync phase

Fixed CLC – Normal Run

Fixed CLC – After Attack

Summary

- Jamming is always possible
- Need mechanisms at application layer to recover if message are lost
- Cannot trust transport layer
- Sample jamming attack (suppress & desynchronise) against CLC protocol
- Fixed CLC allows resynchronisation after attack

Relevant Publications

- Lasc, I., Dojen, R. and Coffey, T., "A Mutual Authentication Protocol with Resynchronisation Capability for Mobile Satellite Communications", IGI International Journal of Information Security and Privacy, Volume 5, Issue 1, January 2011, pp. 33-49
- Lasc, I., Dojen, R. and Coffey, T., "Countering jamming attacks against an authentication and key agreement protocol for mobile satellite communications", Elsevier Computers & Electrical Engineering (Special Issue on Modern Trends in Applied Security: Architectures, Implementations and Applications), Volume 37, Issue 2, March 2011, pp.160-168
- Lasc, I., Dojen, R., Coffey, T., "On Detecting New Attacks against Security Protocols that use Dynamic Shared Secrets", to appear in Elsevier Computers & Security