Owasp Application Security Requirements
Document properties

Title


Identification and Authorisation

Version

0.1 (Draft)
Owner


Owasp

Author


Jamie Fisher


Pages


3

Classification

Public

Version control

	Version
	Date
	Author
	Description

	0.1
	September, 10 2007
	Jamie Fisher
	Draft

	0.x
	
	First Last
	


Release control

	Version
	Date
	Release Group
	Description

	0.1
	September 10, 2007
	Owasp Application Security Requirements list
	Discussion


File properties

Filename

Owasp Application Security Requirements - Identification and Authorisation.doc

Last saved

September 10, 2007 15:51 GMT+1

Creation date
September 10, 2007 15:51 GMT+1

Index

Introduction

The scope of this document is to outline requirements for inclusion in the Owasp Application Security Requirements guide.

Context

There needs to a description as to why ‘Identification and Authorisation’ is important to application security and possibly a narrative that may give meaning to certain examples used within the (draft) guide.


- 1 -
1.1 The application should display the index page as the default page where the user should be prompted for their log-in credentials.
1.2 Upon initial or first instance of requesting the application the user should be forced to select their password.
1.3 A script on the server (or perhaps functionality of the server itself) should verify the complexity of the password against an internal engine - whether it be a script or something more intuitive.
1.4 Never should an administrator or other privileged user have direct visible access to the user's credentials at this stage of user credential initialisation; passwords should be stored in a one way, irreversible format. For example, MD5 might be used to store the user's password.  A facility should exist for a password reset rather than administrative access to the password itself.

1.5 A user should not be able to proceed into the application until a new password has been selected and the user has successfully logged in with a new password.

1.6 Accessing any page within the application, either served directly from the application server or database server by directly entering the URL into the browser address bar without correct log-in into the application should display the index page as default where the user should be prompted for their log-in credentials.  For instance, a user should not be able to subvert or bypass the system or application user authentication controls by constructing syntax similar to the following: e.g., http://www.example.com/login.asp?userId=10887%20and%20''1'%20=%20'1''&password='%20or%20'=%20' 

1.7 When the user session expires and the user attempts to perform any other action, i.e., navigating to another page, the application should display the index page as default where the user should be prompted for their log-in credentials.

1.8 Under no circumstance should the application output a legitimate user account name for a session that has been timed out but rather serve the index page as default where a standard request should be displayed for user name and password credentials for authenticating to the application.

1.9 In the event the user ID and/or password sent in the HTTPS request is empty, the application should but rather serve the index page as default where a standard request should be displayed for user name and password credentials for authenticating to the application.

1.10 The application should submit or "broker" user credentials to the server or database - depending upon the access request - against the user ID and password in the user tables held on the server or database.

1.11 If the system does not find any records matching the given user ID and password combination, the user should be redirected to the login page with a generic message stating that the credentials are invalid.

1.12 If the system finds that the correct user ID us issued but the password issued does not match the password in the user information table, the user should be redirected to the login page with a message stating that the user ID or password is invalid.  Internally a script should run against the invalid log-in attempt where it should increment the user's invalid log-in attempt by one.  Internally the system should increment the "Invalid log-in tries count" against the user ID by one.  If the user log-in count exceeds three with a false result on the third try, the user should be locked from the system before the user can again gain access the system.

1.13 The application should not output information to the user as to whether either the user ID or password is invalid but rather inform the user the credentials supplied are invalid.



- 2 -
1.14 If the user ID and password supplied are correct, the system should check the user's logged in status.  This is to ensure concurrent user sessions are not allowed.  The system should then check to determine whether the user ID has been locked.  If the system finds the user's locked status is true, then it should redirect the user to the login page with an appropriate message stating the user ID was locked and the user should contact the administrator of the system to unlock the user ID.

1.15 Concurrently, the system should perform velocity checking against the IP address of the last known valid log-in from that user so as to ensure the user is logging in from an IP address range originating from within that country of origin.  It would be not be feasible to expect a user logging in from one geographic location and then from another within a specified amount of time, e.g., Correct credentials supplied from a user originating from the United Kingdom at GMT 10:00Hrs and a second log-in attempt from a user in Venezuela at GMT 10:27Hrs.

1.16 The web application must reject passwords that are the same as the user ID.

1.17 The web application must perform input validation on the value provided by the user for the login.  Should validation not successfully transpire, it may be possible for the user to 'inject' malicious code form the web application directly to the database, server or user's browser thus subverting logical security controls at both the client and server side.

1.18 If all of the above validations occur, the system should check the users logged in status.  If the system finds that the users logged in status is true, it should redirect the user to the login page stating that another user may currently be logged in to the system with that user ID.  Hence the user should not be allowed to log-in to the web application.  The web application should output static information to the user advising a method of contact if the user feels an error has occurred or other.  The information should be output to the page for that user's session.

1.19 If all the above validations occur, the system should update the users logged in status and the users last logged in time.  There is no requirement for the user to receive information relevant to the user's valid log-in and time.

1.20 After this process, the user should be redirected to a "standard view page" of the web application.

1.21 Authentication credentials such as passwords are required to be encrypted.  Similarly, any information relating to the user should be passed over a SSL/HTTPS session.  The configuration of the web application software must be such that the encryption settings are activated for the relevant data, i.e., server must be configured to understand which pages must generate a SSL/HTTPS session - certificates are optional.

1.22 The data encryption controls on the server or database must ensure that functionality does not lessen the security of the data.

1.23 The data encryption functionality must be configured such that the organisations data is not stored in a plainly readable format such as ASCII.

1.24 The web application must authenticate each and every session and enforce validation at both the client and server side.  This is so that the application prompts the user for their credentials when opening a second session when one is already active or to have such controls in place to ensure that concurrency is disallowed.

1.25 In reference to the user's session held by the browser, credentials provided to the user by the web application must be not cached within the browser.  This is to ensure controls are effective around session re-use and concurrency.  To maintain session state, and in the context of basic functions, e.g., performing browsing functions of the web application, the web application must re-issue user credentials - in the form of cookie - to the user's browser without requiring user input.  This is for the purpose of maintaining and managing user sessions.  This must transpire in every event except where the web application requires the user to manually re-enter their credentials, e.g., session time out and re-direct to index page occurs.


- 3 -






