
Ruby On Rails
Security Project

Heiko Webers
42@bauland42.de

mailto:42@bauland42.de
mailto:42@bauland42.de

About
Heiko is the founder of bauland42.

I‘m running the Ruby on Rails Security Project
at http://www.rorsecurity.info

The Ruby on Rails Security Guide was made
possible by the OWASP Spring of Code 2007
& Summer of Code 2008.

http://www.rorsecurity.info
http://www.rorsecurity.info

The Guide
The Guide version 2 covers Ruby on Rails, MySQL and (a bit) server security.

Every chapter starts with an introduction and sometimes images of attack
scenarios.

The countermeasures are highlighted, so you can easily scan the Guide.

Thanks to my reviewers Steve Jones and Anthony Shireman.

It is now the official security manual for Ruby on Rails at
http://guides.rubyonrails.org/security.html

http://guides.rubyonrails.org/security.html
http://guides.rubyonrails.org/security.html

Ruby on Rails
Ruby is a dynamic object-oriented programming language based (partly) on
Perl, Smalltalk, Eiffel, Ada and Lisp.

“Ruby“.index(“u“)

Ruby on Rails is an open source web application framework based on Ruby.
Rails embraces „convention over configuration“, Model-View-Controller
(MVC), Don‘t-Repeat-Yourself (DRY) and testing.

Rails includes the abstract database wrapper ActiveRecord.

class Project < ActiveRecord::Base
 has_many :comments
end

class ProjectsController < ApplicationController
 def show
 @project = Project.find(params[:id])
 end
end<% @project.comments.each do |c| %>

 <%= c.comment %>
<% end %>

SQL Injection
Rails is potentially vulnerable to SQL
Injection, too.

Project.find(:all, :conditions => "name =
'#{params[:name]}'")

But Rails has some clever helper
methods, so SQL Injection is hardly a
problem.

Project.find_by_name(params[:name])

Project.find(:first, :conditions => ["name = ?", params[:name]])

Project.find(:first, :conditions => {:name => params[:name]})

XSS

Rails provides a whitelist filter for user input. tags = %w(b strong i em)
s = sanitize(user_input, :tags => tags)

And there is an output filter for SGML.
The SafeErb plugin reminds you to escape
external strings.

<%= html_escape(user_input) %>

The Guide talks about several other forms of injection, too: Ajax, CSS, Textile, Command Line,
Header Injection.

CSRF on Rails

Make sure POST actions may not be
used over GET.

verify :method => :post,
 :only => [:destroy],
 :redirect_to => {:action => :index}

Include a security token in non-GET
requests and check it on the server side.

protect_from_forgery :secret =>
 "123456789012345678901234567890"

http://www.webapp.com/project/1/destroy
http://www.webapp.com/project/1/destroy

Mass Assignment
def signup
 @user = User.create(params[:user])
end

Mass assignment saves you much work.

params[:user] #=> {:name => “ow3ned”,
 :admin => true}

But it may lead to new problems.

As a countermeasure, tell Rails which attributes
may be changed by mass assignment.

attr_accessible :name

Sessions
You have several options for sessions in Rails:
ActiveRecordStore and CookieStore are the most
popular.

Set-Cookie: app_session=
3b3c1b4398d8cba2ac1ec8687e4ab166

CookieStore stores the session data in the cookie, in
clear-text. Don‘t use a weak server-side secret, don‘t
store any secrets in the session and beware of replay
attacks.

config.action_controller.session = {
 :session_key => ‘app_session’,
 :secret =>
 ‘0x0dkfj3927dkc7djdh36rkckdfzsg’ }

User Management
There is a popular plugin for user management: restful_authentication. It takes care of activation of
the user account, session management and saves the password as a salted hash.

http://webapp.com/user/activate/a32409deaed49adee5382
http://webapp.com/user/activate/

http://webapp.com/user/activate/0403203040434034
http://webapp.com/user/activate/0403203040434034
http://webapp.com/user/activate/0403203040434034
http://webapp.com/user/activate/0403203040434034

Other topics

Redirection, File Up- and Downloads.

Intranet and Admin security.

Logging, good passwords, regular expressions and privilege escalation.

Thank you

