OWASP APPSENSOR
V1.1

DETECT AND RESPOND TO ATTACKS FROM
WITHIN THE APPLICATION

Michael Coates

Senior Application Security Engineer
Aspect Security, Inc.

michael.coates @aspectsecurity.com

© 2002-2009 OWASP Foundation
This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license.

€

TABLE OF CONTENTS

[0 Ao e [U T4 o] TR PO TP PP PP PTURUSRPROPRIN 4
(D71 =T 1 o] o T PP TP T PPRTP 6
(DL A=Yt u Lo T T N - ol N LY/ o T S SRUPE 7
Detection: INfOrmMation CAPLUIEiiiciiee et et e e e te e e s e et e e e e et e e e snaeeeesteeeesnsaeesanseeeesnsananeans 7
DEteCtioN POINTS ...eviiiiiiiiiiiiii e 8
SIZNATUIE BASEA EVENTS.....uuiiiiei ittt e e ettt e e e e e ettt e e e e e e eesabteeeeseeaeeeaaabsaeeaaeeesassaaaeaaeseasassaaseaaeeenassnnnrens 8
BENAVIOr BaSEO EVENTS......eiiiiiiiii ittt e b e e b e e sbe e s bt e st e st e e sabeeeaa e e sbbe s bt e ebeeeeane 10

RS PONSE i eaaaaaaes 11
Determining MaliCioUS INTENT ...cciii et e e e e et e e e e e e e e e s abaeeeeeeee s abbaaeaeesesansbaaseaaeeeanennns 11
Categorizing MaliCOUS INTENT ...cccuiiii e e e e st e e e st a e e e e aaaee e s taeeeasseeeesnsaeeesasseesanseeeeennnnnns 12
(24T oo T g =1 Yot [0 o -3 PP PTPPPTPN 12
RecoOMMENAEd THIrESNOIAS ..ottt e sr e e e st sre e e e emeenneees 14
MONILOrING SYSTEM ErENT EVENTSeiiiiiiei ettt e et e e e e e e et e e e e e eeeeeeeeabateeeeeeesaasbaaeeaeeeeasbaaseaeeeesansenn 15
Recommended System Trend ThreSholdseee i e e e e e eetae e e e e e e e sabraseeeeeeeanens 15
LEE=Ta Lol 2T 0] o [P 15

aaY o] [T aaT=T o1 €= 4 oo WU UUPN 17
Aspect Oriented IMPIEMENTATIONccic e se e e et e e e s aee e e s taeeeesteeessssaeesanseeeesssaeenansens 17
BUSINESS Layer IMPlemMENTAtioNccuiiiiiiee ettt et e e et e e e e nte e e e sataeesensaeeesnseeeeanteeeeansaeeesnsanaanans 17
(6e] a1 (V1Yo o IR T T TP PR O PP PPTPPRTOPR 18
RETEIENCES ...ttt e s b e bt e b e e e bttt e bee s b et e bt e sab e e s bt e e ab e e sa b e e eae e e sbb e e bee e e enne e be e e nnneeneas 19
Appendix A: Detailed EVENt DESCIIPLION........uuiiiiiii ettt e e e e e st e e e e e e e e s astaeeeeeseeastaeeeeaesennssaaeaaaaaens 20
Signature Based Events Detailed DeSCriplioN........cceiiiciiieieiiee e ctee st e sree e e e tae e e see e e e snaeeessreeesnnneesanaeeean 20
Request Exception Detailed DeSCHIPLIONcciii ittt e ettt e e e e e e et b e e e e e e eesabbaaeeeeseennnees 20
Authentication Exception Detailed DeSCriPLioNccuiiiciieeiiiiie ettt e s e sre e e e e e e neeeesareeean 21
Session Exception Detailed DeSCriplioN.ttt e e e e e e et e e e e e e e e bt e e e e e e e e nnraeeeas 25

OWASP AppSensor v1.1

Access Control Detailed DESCIIPLION.......cccuieeiiciie et e e eeee e et e e e e e satr e e e saraeeesstaeeeenseeeeennaeeesanseenan 27

Input EXcption Detailed DeSCriPioNcc..uiiiiiiie ettt e e e e et e e e e e st aa e e e e e eesnbaaseeeeeennnees 29
Encoding Exception Detailed DeSCriPtioNcui i iiiiiiiie ettt e e ettt e e e e e e e et ba e e e e e eesabbaaeeeeseennnes 30
Command Injection Detailed DESCIiPLION.........ciiiiii i e e e et e e e e e e e eaaareeeeeeeeasnaaeeaaeeann 31

File 1O Detailed DeSCIiPLION ..o..viiiceeee et ee et etee ettt e e et e e e e e e e st e e e et tee e essteeessaeeeasssaeesnssaeesnsneeansseeenansnns 33
Behavior Based Events Detailed DeSCriptioNuiiicciieecciie ettt e e ettt e e e e e e e s seve e e e se e e e sennaeessnteeeesnsaeeennes 34
User Trend Detailed DESCHIPLIONuiiiiciieeeiieeeciee e ctee e et e et e e st e e et te e e s e ar e e e staeeesssaeesnnsaeeansseeeasseeesnsnes 34
System Trend Detailed DESCIIPLIONuuiiiii i et e e ee e e e e e atr e e e e e e eeaarbeeeeeesennnnraeeeas 35
Appendix B: Response — SUSPect VS. ATEaCk EVENTSuiiiiiiiiiiiie ettt e et e e e e e e bara e e e e e 37
Appendix C: Implementation — Aspect Oriented vs. BUSINESS LAYETuviiiiiiiciiiiieee ettt eeetee e e eiarae e e e e 40

INTRODUCTION \

The concept of AppSensor is to detect malicious activity within an application before a user is able to identify and
exploit a vulnerability. This objective is possible because many vulnerabilities will only be discovered as a result of
trial and error by the attacker. If AppSensor can identify an attacker probing for potential vulnerabilities and take
responsive action quickly, it may be possible to prevent the attacker from identifying an exploitable vulnerability.

The AppSensor document is a conceptual framework and not a tool or library. This document offers prescriptive
guidance to implement intrusion detection capabilities into existing application utilizing standard security controls
and recommendations for automated response policies based upon detected behavior.

OWASP AppSensor v1.1

ARCHITECTURE \

AppSensor contains two modules, a detection unit and a response unit. The detection unit is responsible for
identifying malicious behavior based upon defined polices. Detection points can be integrated into presentation,
business and data layers of the application. The detection unit reports activity to the response unit. The response
unit will take an action against the user. The action taken will depend upon the whether the event is an evident
attack or a suspicious event, the user’s history of malicious actions and the defined policy of response actions.

4 N [N\ [)

Presentation Business Data

\ AppSensor / \ AppSensor / \ AppSensor /
Detection Detection Detection

AppSensor Response

AppSensor will be integrated into the application such that a specific exception will be thrown whenever the
application detects a suspicious or attack event. AppSensor will be aware of the thrown exception and catalog this
event and applicable details. Per the response policy, AppSensor will take action against the responsible user
which can include security warnings, account lockout, admin notification etc. AppSensor must have appropriate
rights and hooks within the application to perform such response actions.

DETECTION \

When detecting malicious activity the system must distinguish between two possible scenarios. First, the detected
activity may have been caused by an unintentional user error or by a crafty attacker seeking to hide their attack
attempts. However, since the detected activity could result in an undesirable system response, it is important to
not disregard this activity entirely. This type of activity will be referred to as “Suspect”. This classification is used
since it is not clear from the single event if the user is intentionally performing malicious actions against the system.

Second, the action could be clearly an intentional malicious activity. These types of actions are highly unlikely to
have been generated by a user mistake and are highly likely to be an attack attempt against the application. This
type of activity will be referred to as “Attack” since it is evident that the user is malicious and attempting to
perform an illegal operation on the system.

Detected Activity Possibilities

Suspect Example: The user submits a username which contains the
Suspicious Activity characters ‘; at the end.
Analysis: This could be the result of the user accidently
hitting these two keys when attempting to press enter.
Also, this could be a user attempting to discover a SQL
injection vulnerability in the login page.

Attack Example: The user submits a URL with a parameter
Clear Malicious Activity containing the value ‘1=1—".

Analysis: This is a clear attack using SQL injection and
would not be caused by any sort of user error.

In order to determine which category the malicious activity belongs to it is important to consider the following
questions:

e Could this activity result from a typo or inadvertent key press by the user?

e Does the user have to leave the normal flow of the application to perform this activity?

e Are additional tools or software needed to perform the identified activity?

It is important to accurately classify detected activities as Suspect or Attack so that responsive action is not
unjustly performed against a non-malicious user.

OWASP AppSensor v1.1

DETECTION: ATTACK TYPE

The following Exception Types are used within AppSensor. The left column “Exception” is the type of exception

which is thrown. The right column “# of Detection Points” is the total number of detection points defined for the

exception type. The number and types of detection points defined in this document represent detection for

common attacks which could be performed on most applications. When implementing AppSensor, it is

recommended to enhance or modify the detection points to aptly suit the application.

Exception # Detection
Points
Request 4
Authentication 11
Access Control 6
Session 4
Input 2
Encoding 2
Command Injection 4
File 1O 2
User Trend 4
System Trend 3

Each detection point will contain the following information:

ID: A unique identifier for the detection point

Event: The title of the event detected

Exception Type: The exception category of the detected event

Description: Text to describe the malicious activity

Considerations: Any items that should be considered when implementing the detection point
Example: An example of a user action which would trigger this event

DETECTION: INFORMATION CAPTURED

It is vital that when an event is detected that sufficient information is recorded. The following information is

recommended to record whenever an event is detected.

Time of attack e Malicious Activity Detected

URI/ URL e Entire HTTP Request
Logged in user

DETECTION POINTS

The following table provides an overview of the recommended detection points within the application. See
Appendix A: Detailed Event Description for a description of each event.

SIGNATURE BASED EVENTS

ID Event Exception
RE1 Unexpected HTTP Commands RequestException

g RE2 Attempts To Invoke Unsupported HTTP RequestException

> Methods

&
RE3 GET When Expecting POST RequestException
RE4 POST When Expecting GET RequestException
AE1 Use Of Multiple Usernames AuthenticationException
AE2 Multiple Failed Passwords AuthenticationException
AE3 High Rate Of Login Attempts AuthenticationException
AE4 Unexpected Quantity Of Characters In AuthenticationException

c Username

0

=)

S AE5 Unexpected Quantity Of Characters In Password AuthenticationException

2

c

2 AE6 Unexpected Types Of Characters In Username AuthenticationException

e}

=

< AE7 Unexpected Types Of Characters In Password AuthenticationException
AE8 Providing Only The Username AuthenticationException
AE9 Providing Only The Password AuthenticationException
AE10 Adding Additional POST Variables AuthenticationException
AE11 Removing POST Variables AuthenticationException

OWASP AppSensor v1.1

SE1 Modifying Existing Cookies SessionException
SE2 Adding New Cookies SessionException
s SE3 Deleting Existing Cookies SessionException
‘»
(7]
3 SE4 Substituting Another User's Valid Session ID Or SessionException
Cookie
SE5 Source IP Address Changes During Session SessionException
SE6 Change Of User Agent Mid Session SessionException
ACE1 Modifying URL Arguments Within A GET For AccessControlException
— Direct Object Access Attempts
<)
Y
e
g ACE2 Modifying Parameters Within A POST For Direct AccessControlException
bt Object Access Attempts
(7]
]
g ACE3 Force Browsing Attempts AccessControlException
ACE4 Evading Presentation Access Control Through AccessControlException
Custom Posts
:5:'_ IE1 Cross Site Scripting Attempt InputException
c
IE2 Violations Of Implemented White Lists InputException
® EE1 Double Encoded Characters EncodingException
B
§ EE2 Unexpected Encoding Used EncodingException
w
5 CIE1 Blacklist Inspection For Common SQL Injection CommandinjectionException
= Values
(8]
2
_ﬁ CIE2 Detect Abnormal Quantity Of Returned Records. CommandInjectionException
c
g CIE3 Null Byte Character In File Request CommandInjectionException
£
8 CIE4 Carriage Return Or Line Feed Character In File CommandInjectionException
Request
% FIO1 Detect Large Individual Files FilelOException
= FI02 Detect Large Number Of File Uploads FilelOException

| BEHAVIOR BASED EVENTS

Site

- uTl1 Irregular Use Of Application UserTrendException
E uT2 Speed Of Application Use UserTrendException
g uT3 Frequency Of Site Use UserTrendException
uT4 Frequency Of Feature Use UserTrendException
g STE1 High Number Of Logouts Across The Site SystemTrendException
'2 STE2 High Number Of Logins Across The Site SystemTrendException
[
§>,- STE3 High Number Of Same Transaction Across The SystemTrendException

10

OWASP AppSensor v1.1

RESPONSE

The power of AppSensor is its placement within the application for detection and its ability to respond to malicious
activity in real time. The most common response activities will be user warning messages, logout, account lockout
and admin notification. However, since AppSensor is connected into the application, the possibilities of response
actions are limited only by the capabilities of the application.

When developing the response policy it is vital to determine the appropriate thresholds for response actions. The
objective is to appropriately deter malicious activity and prevent determined attackers from successfully
identifying vulnerabilities, while minimizing the impact when false positives are recorded from non-malicious user
activity.

DETERMINING MALICIOUS INTENT

When responding to detected malicious activity the system must distinguish between three possible scenarios.
First, the activity may have been unintentional and caused by user error. Second, the activity could be suspicious
activity that is difficult to conclusively determine if malicious and intentional. Third, the action could be clearly an
intentional malicious activity.

Malicious Intent
® Possible User Error
e Possible Attack
e Clear Malicious Activity

In order to determine which category the malicious activity belongs to it is important to consider the following
questions:

e Could this activity result from a typo or inadvertent key press by the user?

e Does the user have to leave the normal flow of the application to perform this activity?

e Are additional tools or software needed to perform the identified activity?

e Could a common application error be responsible for this activity?

Suspicious Event:
e Could occur during user experience with site or browser
e Could occur as result of non-malicious user error

Attack Event:
e Qutside of the normal application flow
e Requires Specials Tools
e Requires Special Knowledge

11

CATEGORIZING MALICOUS INTENT

Some events detected by AppSensor could be the result of user error and not a malicious attack. AppSensor must
work to achieve two goals. First, ensure that non-malicious users that have made inadvertent mistakes are not
unjustly punished. Second, detect and respond to malicious attack actions. To achieve these goals the detection
events have been categorized into two classes, Suspect and Attack. Suspicious events are those actions which
could be the result of a user error or an intentional, but non-malicious, user action. For example, a non-malicious
user may inadvertently press the less than character “<” when attempting to press the letter “m” and submit this
field. This inadvertent action should not be interpreted as a potential XSS or injection attack.

Attack events are those activities which are highly unlikely to be the actions of a non-malicious user. These events
include modifying posts and injecting well formed SQL attack strings. Due to the necessity of specialized tools,
security specific knowledge or customized attacks, these events are treated as intentional malicious actions. More
generally, any action performed by a user which is not presented in the user interface may be classified as a
malicious and intentional attack.

Establishing two categories of events allows AppSensor to immediately react to the clearly malicious actions while
still monitoring the suspicious events. It is quite possible that a large number of suspicious events are actually a
determined attacker attempting to keep a low profile while performing tests.

See Appendix B: Response — Suspect vs. Attack Events for a breakdown of events by the categories of Suspect or
Attack.

RESPONSE ACTIONS

Detection of events is not useful without an automated response to deter and prevent a successful compromise. A
response policy should be established which sets specific thresholds and response actions based on the detection
actions of a user. In each case, the event and response action taken should be logged.

Example Response Actions

Security Violation Message Provide a visual warning message to the user to deter further
attack activity.
Examples:

“A Security Event Has Been Detected And Logged”
“A Security Error Has Occurred And Has Been Logged”

Pros: This may deter the casual attacker by alerting them that
their activities are being logged.

Cons: This will not deter a determined attacker and will

provide the attacker with some knowledge of what events are

12

Account Logout

Account Lockout

Administrator Notification

OWASP AppSensor v1.1

being detected as malicious
Log the account out.

Pros: This action will cause difficulty with most automated
tools since the attack or scanning sequence will be interrupted
after a small number of attacks. Logging out the user account
will also provide a clear indication to a user that the
performed actions are being logged and the application is
responding to the attacks.

Cons: Automated tools can be modified to automatically re-
authenticate to bypass this response action.

Lock the user account. The user account could be permanently
locked, unlocked after a pre-set amount of time (such as 30
minutes), or unlocked after the user has contacted the help
desk.

Pros: Locking the account will cease the attack activity.

Cons: If the site does not control the creation of accounts,
then an attacker could generate numerous accounts and use
each one until it is locked.

Notify the administrator via email or other methods of the
malicious activity.

Pros: An administrator could take additional actions or enable
additional logging capabilities in real-time. Notification is
especially effective for the system trend events which require
human analysis.

Cons: If used too often, this notification could become
another type of log which is mostly ignored.

13

RECOMMENDED THRESHOLDS

All security events generated by a user should be stored in a centralized location. Centralization of event data
allows the system to detect a user performing multiple attacks with a single area of the application and also
detects a user that is performing attacks across multiple areas of the application.

It is recommended that the response threshold consider the total number of security events generated from all
categories. The following table describes a recommended set of response thresholds.

e 3 Suspicious Events = 1 Security Event
e 1 Attack Event = 1 Security Event
e User events totals cleared on rolling 24 hrs basis

The following table illustrates a sample threshold for AppSensor. These values should be customized to meet the
specific needs of the application. For example, a highly sensitive application operating within a restricted
environment may consider even the most subtle suspicious activity to be a security event where account lockout
and administration notification is appropriate.

Security Events Response Action

2 Security Violation Message

3 Security Violation Message + Account Logout

5 Security Violation Message + Account Lockout 5 minutes
7 Security Violation Message + Account Lockout 30 minutes
10 Administration Notification + Account Lockout Indefinite

14

OWASP AppSensor v1.1

MONITORING SYSTEM TREND EVENTS

Normal activity such as logging in or out of the application or performing a particular action such as updating an
address or password can be monitored to detect attacks. If these events are monitored on a regular basis to
determine expected activity levels, then a dramatic increase in a particular type of activity can be detected and
brought to the attention of an administrator.

It is difficult to implement an automated response to trend events since a sudden influx in activity could be the
result of a variety of non-attack items. However, there is a point where a spike in activity becomes so dramatic that
the spike should be investigated to determine the cause.

For example, advanced XSS worms and CSRF attacks on popular websites can cause significant damage the
application and users. XSS worms often spread by planting the payload of the worm within some portion of the
user’s profile. The ability to detect a dramatic spike in the use an update user profile method would enable the
application to detect the presence of the XSS worm.

Similarly, CSRF attacks may attempt to perform an operation on behalf of the user and then logout the account. A
sharp increase in the use of a particular method or the logout feature may enable the application to detect an
attack in progress.

RECOMMENDED SYSTEM TREND THRESHOLDS

Thresholds should be established for automated response due to a sudden shift in system trends. System trend
monitoring will not be useful without an automated response, since the value of this monitoring is proactively
identifying and stopping an attack.

For the first few weeks it will be necessary to simply capture system trend statistics. It is recommended to monitor
hourly usage rates and perform comparisons considering the day of the week and time of day. After sufficient
statistics are available, the automated response can be enabled.

TREND EXAMPLE

The following policy has been implemented to notify administrators of suspicious activity related to a spike in
added friends for a social networking site.

System Trend % Response Action
Delta
+200% Administration Notification
+500% Administration Notification
+1000% Temporarily Disable Add Friend Feature

15

In order to implement this policy, AppSensor recorded trend data for 1 month and determined the average
number of friends added per 1000 users. The results are displayed in the blue line in the chart below. The graph
also displays response thresholds for 200%, 500% and 1000% increases in observed activity. Using this data,
AppSensor can detect an abnormal level of activity and immediately alert administrators of the suspicious situation.
In an extreme cause where use of the friend feature spikes to 1000% of normal activity levels, the policy instructs
AppSensor to temporarily disable the add friend feature until the situation can be investigated. By disabling the

site feature, a potential worm can be contained and the site may remain operational. Without such automated

controls, a worm could bring down the entire social network site before administrators or able to even identify the
suspicious activity.

1400
1200 n f "l h\
1000 1 ’ I ‘ {
800 } l
o / / . | hJ //\;-\ A e
. ’./ | lﬂ,,..\ .
200 - A =~V \ 500
0 TTTTTTTITITTTTT TTTITTTITTTTTTT TTTTTTTITTTTTTT TTTTTTTTT TTTTTTTTTTTT T

[I o T o T s Y e T o R s [s I e T o TR o Y e N o Y o S s O o Y o T s S o s [s [s Y o Y s Y s Y s Y o [|

coeegeeeogoeegogeeooeeeo oo

O W N0 oW MNO0 O WwWMNODOWM™NN O WwWwMNHNO W NODOWNN o

T e B T B I I i B I I,

T @ > > T © > > @ M > > © W > >0 @ > > 0 T > > ® T > >

T T ®© U T T ®© © O U © © T T ©w oo O O © © 0T T o oo T T © @©

C C T T v w o T Y WY o T Www o o DD O8O T s =TT C cCc T O

O 0o c c U U o »w ¥ UV e o5 S 0 LT 2 2 £ S S S € €

oo 3 S U WS C U U233 = = L m m 2 3A® S S
= = FF~ > >T T L £ 33 E Rz A A
E E 4 @ o T H+FRF £ & Lo Iy
=22 - o

16

OWASP AppSensor v1.1

IMPLEMENTATION

AppSensor detection points can be implemented into an application using one of two methods depending upon
the type of detection. They can be implemented by using a cross connecting aspect oriented method (i.e. Java
Filters) or by custom code within the business layer of the application. It is recommended to integrate AppSensor
using a secure programming approach, such as that provided by ESAPI, for maximum benefit and easy integration
in to the program.

See Appendix C: Implementation — Aspect Oriented vs. Business Layer for a recommended implementation of the
detection points using Aspect Oriented and Business Layer methods.

ASPECT ORIENTED IMPLEMENTATION

Java filters or similar aspect oriented programming methods can be used to easily integrate the following detection
points into the application. The benefit of using an aspect oriented approach is that the addition of AppSensor
functionality does not require any modifications to the existing program.

An example of a detection point which can be implemented with aspect oriented programming is CIE1: Blacklist
Inspection for Common SQL Injection Values. All GET requests can be inspected by the cross cutting filter for SQL
injection keywords such as ‘UNION’, ‘1=1—" etc. If a match were found, then CIE1 exception would be thrown.

BUSINESS LAYER IMPLEMENTATION

Some detection points should be implemented within the business layer of the application. It is recommended to
use a secure programming methodology, such as that provided by ESAPI, and integrate the detection points with
the ESAPI exceptions.

An example of a detection points that should be implemented in the business layer is direct object reference
manipulation attempts. In this case the business layer would be designed to create a list of acceptable object
references for the user and session. When the user response is received by the application the application will
compare the object reference sent by the user to the authorized list. If the item is not present in the authorized list
than an exception is thrown and ACE1: Modifying URL Arguments within a GET For Direct Object Access Attempts
is thrown. Note: This particular detection point is easily accomplished using ESAPI’s object referencing code.

17

CONCLUSION \

The threat of attacks against critical business applications continue to rise. AppSensor can provide tremendous

value by identifying malicious users and restricting or eliminating application access before a compromise is
possible.

The benefits of AppSensor do not come without some effort. For maximum benefits, AppSensor needs to be
integrated into the program and, at times, tightly coupled with the application itself. However, after the proper

integration is achieved, AppSensor will provide the intended benefits with minimal interaction from developers or
system administrators.

For those looking to implement AppSensor into a critical application, it is important to achieve appropriate support
from all involved parties (management, architecture, developers, etc). It is recommended to utilize this guide as a

blueprint for the design of AppSensor and to make modifications or enhancements as required for the specific
application.

18

OWASP AppSensor v1.1

REFERENCES \

OWASP Development Guide Project: http://www.owasp.org/index.php/Category:OWASP_Guide Project

OWASP Risk Rating Methodology: http://www.owasp.org/index.php/How to value the real risk

OWASP Top Ten Project: http://www.owasp.org/index.php/Category:OWASP_Top Ten Project

OWASP Enterprise Security APl (ESAPI) Project:
http://www.owasp.org/index.php/Category:OWASP_Enterprise Security API

19

APPENDIX A: DETAILED EVENT DESCRIPTION

| SIGNATURE BASED EVENTS DETAILED DESCRIPTION

REQUEST EXCEPTION DETAILED DESCRIPTION

RE1 Unexpected HTTP Commands
RE2 Attempts To Invoke Unsupported HTTP Methods
RE3 GET When Expecting POST
RE4 POST When Expecting GET
{1 Unexpected HTTP Commands

Exception Type RequestException

Description An HTTP request is received which contains unexpected commands. A list of accepted
commands should be generated (i.e. GET and POST) and all other HTTP commands should
generate an event.

Considerations

Example(s) Instead of a GET or POST request, the user sends a TRACE request to the application.

RE2 Attempts To Invoke Unsupported HTTP Methods
Exception Type RequestException
Description An http request is received which contains a non-existent HTTP command
Considerations

Example(s) Instead of a GET or POST request, the user sends a TEST request to the application (TEST is
not a valid http request)

RE3 GET When Expecting POST

Exception Type RequestException

20

Description
Considerations

Example(s)

RE4
Exception Type
Description
Considerations

Example(s)

A page which is expecting only GET requests, receives a POST.

POST When Expecting GET

RequestException

A page which is expecting only POST requests, receives a GET

OWASP AppSensor v1.1

The user sends a GET request to a page which has only been used for POSTs

The user uses a proxy tool to build a custom POST request and sends it to a page which has
been accessed by GET requests.

AUTHENTICATION EXCEPTION DETAILED DESCRIPTION

AE1l Use Of Multiple Usernames

AE2 Multiple Failed Passwords

AE3 High Rate Of Login Attempts

AE4 Unexpected Quantity Of Characters In Username
AE5 Unexpected Quantity Of Characters In Password
AEb6 Unexpected Types Of Characters In Username
AE7 Unexpected Types Of Characters In Password
AE8 Providing Only The Username

AE9 Providing Only The Password

AE10 Adding Additional POST Variables

AE11 Removing POST Variables

21

AE1l Use Of Multiple Usernames
Exception Type AuthenticationException

Description Multiple usernames are attempted when logging into the application. The assignment of
login attempts to a user can be based off of a sessionID given to the user when they visit
the website. Correlating based on IP address is difficult since multiple users could be using
the site from the same IP address (e.g. corporate NAT)

Considerations An attacker could bypass this detection by intercepting the post requests and removing the
sessionID.

Example(s) User first tries username bob, then username sue, then steve etc

AE2 Multiple Failed Passwords

Exception Type AuthenticationException
Description For a single username, multiple bad passwords are entered
Considerations

Example(s) User tries username:password combination of user:pass1, user:pass2, user:pass3, etc

AE3 High Rate Of Login Attempts
Exception Type AuthenticationException

Description The number of logins sent per minute becomes too high indicating an automated login
attack

Considerations An attacker could bypass this detection by intercepting the post requests and removing the
sessionID.

Example(s) User sends the following login attempts within 1 second. userl:passl, userl:pass2,
user2:pass3, user2:passé4

AE4 Unexpected Quantity Of Characters In Username

Exception Type AuthenticationException
Description The user provides a username with a large number of characters

Considerations

22

Example(s)

AE5
Exception Type
Description
Considerations

Example(s)

AE6

Exception Type

Description

Considerations

Example(s)

AE7

OWASP AppSensor v1.1

The user sends a username that is 200 characters long

Unexpected Quantity Of Characters In Password
AuthenticationException

The user provides a password with a large number of characters

The user sends a password that is 200 characters long

Unexpected Types Of Characters In Username
AuthenticationException

The user provides non-printable characters such as the null byte. Any characters below hex
value 20 or above 7E are considered illegal (decimal values of below 32 or above 126)

The range will need to be adjusted for international characters.

The user sends a username that contains ascii characters below 20 or above 7E

Unexpected Types Of Characters In Password

Exception Type

Description

Considerations

Example(s)

AE8

Exception Type

Description

AuthenticationException

The user provides characters such as the null byte, alt-characters, (WHAT IS THE NAME FOR
THOSE)

The range will need to be adjusted for international characters.

The user sends a password that contains ascii characters below 20 or above 7E

Providing Only The Username
AuthenticationException

The user submits a post request which only contains the username variable. The password
variable has been removed. This is different from only providing the username in the login
form since in that case the password variable would be present and empty.

23

Considerations

Example(s) The user uses a proxy tool to remove the password variable from the submitted post
request.
AE9 Providing Only The Password

Exception Type AuthenticationException

Description The user submits a post request which only contains the password variable. The username
variable has been removed. This is different from only providing the password in the login
form since in that case the username variable would be present and empty.

Considerations

Example(s) The user uses a proxy tool to remove the username variable from the submitted post
request.

AE10 Adding Additional POST Variables
Exception Type AuthenticationException
Description Additional, unexpected post variables are received during an authentication request.
Considerations

Example(s) The user uses a proxy tool to add the additional post variable of admin=true to the post
request

AE11 Removing POST Variables

Exception Type AuthenticationException
Description Expected post variables are not present within the submitted authentication requests
Considerations

Example(s) The user uses a proxy tool to remove an additional post variable, such as guest=true, from
the post request

OWASP AppSensor v1.1

SESSION EXCEPTION DETAILED DESCRIPTION

SE1 Modifying Existing Cookies
SE2 Adding New Cookies
SE3 Deleting Existing Cookies
SE4 Substituting Another User's Valid Session ID Or Cookie
SE5 Source IP Address Changes During Session
SE6 Change Of User Agent Mid Session
SE1 Modifying Existing Cookies

Exception Type SessionException

Description A request is received containing a cookie with a modified value. This could be determined if
the cookie is modified to an illegal value.

Considerations

Example(s) The user uses a proxy tool to change the encrypted cookie to an alternative value which
does not properly decode within the application. Or, the user modifies an unencrypted
cookie and sets an illegal value for a particular variable.

SE2 Adding New Cookies

Exception Type SessionException

Description A request is received which contains additional cookies that are not expected by the
application.

Considerations

Example(s) The user uses a proxy tool to add additional cookies to the request.

SE3 Deleting Existing Cookies
Exception Type SessionException

Description A request is received which does not contain the expected cookies.

25

€

Considerations

Example(s) The user uses a proxy tool to remove cookies or portions of cookies from a request.

Substituting Another User's Valid Session ID Or Cookie

Exception Type SessionException

Description A request is received which contains cookie data that is clearly from another user or
another session.

Considerations This may only be possible to detect in unique situations where the cookie value is clearly
not valid for this user.

Example(s) The user uses a proxy tool to substitute valid data from another user or session into the
cookie. An example would be changing some sort of identification number within the
cookie.

SE5 Source IP Address Changes During Session

Exception Type SessionException

Description Valid requests, containing valid session credentials, are received from multiple source IP
addresses.

Considerations Detection of a different IP address may be difficult since some network providers change
source IP address between requests. However, it may be safe to flag events if the IP address
changes to one which is located in a different country than the previous request.

Example(s) User A's session is compromised and User B begins using the account. The requests
originating from User B will possibly contain a different source IP address the User A. The
source IP addresses could be the same if both users where behind the same NAT.

SE6 Change Of User Agent Mid Session

Exception Type SessionException

Description The User-Agent value of the header changes during an authenticated session. This indicates
a different browser is now being used. Although this value is under the control of the
sender, a change in this may indicates that the session has been compromised and is being
used another individual. This will likely not be the case that the user has simply copied and
pasted the URL from one browser to another on the same system because this action would
not copy over the appropriate session identifiers.

OWASP AppSensor v1.1
Considerations This detection point may inhibit the ability for an authorized penetration test. However,
that is a good thing in all other situations.
Example(s) Midsession, the User-Agent changes from Firefox to Internet Explorer

Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.8.1.14) Gecko/20080404
Firefox/2.0.0.14

to

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1; .NET CLR 2.0.50727; Media
Center PC 5.0; .NET CLR 3.0.04506; InfoPath.2)

ACCESS CONTROL DETAILED DESCRIPTION

ACE1 Modifying URL Arguments Within A GET For Direct Object Access Attempts
ACE2 Modifying Parameters Within A POST For Direct Object Access Attempts
ACE3 Force Browsing Attempts

ACE4 Evading Presentation Access Control Through Custom Posts

Modifying URL Arguments Within a GET For Direct Object Access Attempts

Exception Type AccessControlException

Description The application is designed to use an identifier for a particular object, such as using
categorylD=4 or user=guest within the URL. A user modifies this value in an attempt to
access unauthorized information. This exception should be thrown anytime the identifier
received from the user is not authorized due to the identifier being nonexistent or the
identifier not authorized for that user.

Considerations

Example(s) The user modifies the following URL from site.com/viewpage?page=1&user=guest to
site.com/viewpage?page=22&user=admin

ACE2 Modifying Parameters Within A POST For Direct Object Access Attempts

Exception Type AccessControlException

27

Description The value of a non-free text html form element (i.e. drop down box, radio button) is
modified to an illegal value. The value either does not exist or is not authorized for the user.

Considerations

Example(s) The user uses a proxy tool to intercept a post request and changes the posted value to a
value that was not available through the normal display. For example, the user encounters
a dropdown box containing the numbers 1 through 10. The user selects 5 and then
intercepts the post to change the submitted value to 100.

ACE3 Force Browsing Attempts

Exception Type AccessControlException

Description An authenticated user sends a request for a non-existent page or a page that is not
authorized for the user.

Considerations

Example(s) The user is authenticated and requests site.com/PageThatDoesNotExist

Evading Presentation Access Control Through Custom Posts

Exception Type AccessControlException

Description A post request is received which is not authorized for the current user and the user could
not have performed this action without crafting a custom POST request. This situation is
most likely to occur when presentation layer access controls are in place and have removed
the user’s ability to initiate the action through the presentation of the application. An
attacker may be aware of the functionality and attempt to bypass this presentation layer
access control by crafting their own custom message and sending this in an attempt to
execute the functionality.

Considerations Detecting this event requires the application to be aware of which controls/functionality or
hidden at the presentation layer due to access controls. If an access control violation occurs
for any of these items, then this event should be fired.

Example(s) The application contains the ability for an administrator to delete a user. This method is
normally invoked by entering the username and posting to https://oursite/deleteuser

Presentation layer access controls ensure the delete user form is not displayed to non-
administrator users. A malicious user has access to a non-administrator account and is
aware of the delete user functionality. The malicious user sends a custom crafted post
message to https://oursite/deleteuser in an attempt to execute the delete user method.

28

OWASP AppSensor v1.1

INPUT EXCPTION DETAILED DESCRIPTION

IE1 Cross Site Scripting Attempt
IE2 Violations Of Implemented White Lists
IE1 Cross Site Scripting Attempt

Exception Type InputException

Description The HTTP request contains common XSS attacks which are often used by attackers probing
for XSS vulnerabilities. Detection should be configured to test all GET and POST values as
well as all header names and values for the following values.

Considerations

Example(s) The user uses a proxy tool to add an XSS attack to the header value and the

""displayname"" post variable. The header value could be displayed to an admin viewing log

files and the ""displayname"" post variable may be stored in the application and displayed

to other users. Note, the following xss attacks would be used by an attacker to probe for
vulnerability. An actual XSS attack would be customized by the attacker.

<script>alert(document.cookie);</script>
<script>alert();</script>
alert(String.fromCharCode(88,83,83))

<BODY ONLOAD-=alert('XSS')>

29

| Violations Of Implemented White Lists
Exception Type InputException
Description The application receives user-supplied data that violates an established white list validation.
Considerations

Example(s) The user submits data that is not correct for the particular field. This may not be attack data
necessarily, but repeated violations could be an attempt by the attacker to determine how
an application works or to discover a flaw.

ENCODING EXCEPTION DETAILED DESCRIPTION

EE1 Double Encoded Characters
EE2 Unexpected Encoding Used
EE1 Double Encoded Characters

Exception Type EncodingException
Description An HTTP request is received which contains values that have been double encoded.
Considerations

Example(s) The user sends encodes the % symbol to %25 and appends 3C. The user is sending %253C
which may be interpreted by the application as %3C which is actually <.

EE2 Unexpected Encoding Used

Exception Type EncodingException

Description An HTTP request is received which contains values that have encoded in an unexpected
format.

Considerations

Example(s) The user encodes an attack such as alert(document.cookie) into the UTF-7 format and
sends this data the application. This could bypass validation filters and be rendered to a

OWASP AppSensor v1.1

user in certain situations.

COMMAND INJECTION DETAILED DESCRIPTION

CIE1 Blacklist Inspection For Common SQL Injection Values
CIE2 Detect Abnormal Quantity Of Returned Records.

CIE3 Null Byte Character In File Request

CIE4 Carriage Return Or Line Feed Character In File Request

CIE1 Blacklist Inspection For Common SQL Injection Values

Exception Type CommandInjectionException

Description A request is received which contains common SQL injection attack attempts. The point of
this detection is not to detect all variations of a SQL injection attack, but to detect the
common probes which an attacker or tool might use to determine if a SQL injection
vulnerability is present.

Considerations Unless the site contains some sort of message board for discussing SQL injection, there is
little reason that the SQL injection examples should ever be received from a user request.

Use caution when adding SQL statements such as UNION or JOIN. These may create false
positives depending on valid information passed through parameters which may contain
these words.

Example(s) The user sends a request and modifies a URL parameter from category=5 to category =5' OR
'1'="1 in an attempt to perform an SQL injection attack. The user could perform similar
attacks by modifying post variables or even the request headers to contain SQL injection

attacks.
e 'OR'1'="1
e 'OR'a'="a
e 'OR1=1—

e xp_cmdshell
e UNION

e JOIN

31

CIE2 Detect Abnormal Quantity Of Returned Records

Exception Type CommandInjectionException

Description A database query is executed which returns more records than expected. For example, if
the query should only return 1 record and 100 records are returned, then something has
likely gone wrong.

Considerations Detection of this event will not likely indicate what malicious action the attacker has taken,
but it will indicate that the attacker has successfully bypasses the intended actions of the
application and accessed more data than intended.

Example(s) The application is designed to allow a user to maintain 5 profiles. A user makes a request to
view all of their profiles. The database query, which is expected to always return 5 or less
results, returns 10,000 records. Something in the application, or user’s actions, has caused
unauthorized data to be returned.

CIE3 Null Byte Character In File Request
Exception Type CommandInjectionException

Description A request is received to download a file from the server. The filename requested contains
the null byte the file name. This is an attempted OS injection attack.

Considerations

Example(s) The user modifies the filename of the requested file to download to contain the null byte.
The null byte can be added by inserting the hex value %00.

CIE4 Carriage Return Or Line Feed Character In File Request
Exception Type CommandInjectionException

Description A request is received which contains the carriage return or line feed characters within the
posted data or the URL parameters. This is an attempted HTTP split response attack.

Considerations

Example(s) The user includes the hex value %0D or %0A in the http request post data or URL
parameters.

OWASP AppSensor v1.1

FILE 1O DETAILED DESCRIPTION

FIO1 Detect Large Individual Files

FI02 Detect Large Number Of File Uploads

FIO1 Detect Large Individual Files

Exception Type FilelOException

Description A file upload feature detects that a large file has been submitted for upload which exceeds
the maximum upload size

Considerations

Example(s) The user attempts to upload a large file to occupy resources or fill up disk space

FI02 Detect Large Number Of File Uploads

Exception Type FilelOException
Description A user uploads an excessively large number of files.

Considerations

Example(s) A single user attempts to upload multiple small files to occupy resources or fill up disk space

33

BEHAVIOR BASED EVENTS DETAILED DESCRIPTION

USER TREND DETAILED DESCRIPTION

UT1 Irregular Use Of Application

uT2 Speed Of Application Use

uT3 Frequency Of Site Use

UT4 Frequency Of Feature Use
uUT1 Irregular Use Of Application

Exception Type UserTrendException

Description The application receives numerous requests for the same page or feature from a user. The
user may be sending different data combinations or trying to detect errors in the page.

Considerations This detection point is appropriate to add to pages which perform operations or respond to
user supplied data versus pages which display static information.

Example(s) The user requests a particular page, such as the address update page, numerous times.

uT2 Speed Of Application Use

Exception Type UserTrendException

Description The speed of requests from a user indicates that an automated tool is being used to access
the site. The use of a tool may indicate reconnaissance for an attack or attempts to identify
vulnerabilities in the site.

Considerations Search spiders may request large quantities of pages from the unauthenticated portion of
the website. However, any scripted tool requesting large quantities of pages within the
authenticated portion of the site would be suspicious.

Example(s) The user utilizes an automated tool to request hundreds of pages per minute.

Frequency Of Site Use

34

OWASP AppSensor v1.1

Exception Type UserTrendException
Description Does the user normally access the site 1 per week, and this is now many times per day
Considerations

Example(s)

uT4 Frequency Of Feature Use
Exception Type UserTrendException
Description The rate of a user utilizing a particular application feature changes dramatically.
Considerations

Example(s)

SYSTEM TREND DETAILED DESCRIPTION

STE1 High Number Of Logouts Across The Site
STE2 High Number Of Logins Across The Site
STE3 High Number Of Same Transaction Across The Site

STE1 High Number Of Logouts Across The Site

Exception Type SystemTrendException

Description A sudden spike in logouts across the application could indicate a XSS and CSRF attack placed
within the application which is automatically logging off users.

Considerations This requires the application to maintain normal usage levels of the application feature
usage.

Example(s) The hourly usage of the logoff feature of the application suddenly spikes by 500%.

STE2 High Number Of Logins Across The Site

35

€

Exception Type SystemTrendException

Description A sudden spike in logins across the application could indicate users being redirected to the
site from a phishing email looking to exploit a XSS vulnerability in the site.

Considerations This requires the application to maintain normal usage levels of the application feature
usage.

Example(s) The hourly usage of the logon feature of the application suddenly spikes by 500%.

High Number Of Same Transaction Across The Site

Exception Type SystemTrendException

Description A sudden spike in similar activity across numerous users of the application may indicate a
phishing attack or CSRF attack against the users.

Considerations This requires the application to maintain normal usage levels of the application feature
usage.

Example(s) The hourly usage of the update email address feature of the application suddenly spikes by
500%.

36

APPENDIX B: RESPONSE — SUSPECT VS. ATTACK EVENTS

OWASP AppSensor v1.1

ID Title Exception Suspect Attack
RE1 Unexpected HTTP RequestException X
Commands
RE2 Attempts To Invoke RequestException X
‘5 Unsupported HTTP
=] Methods
S
(-3 RE3 GET When Expecting RequestException X
POST
RE4 POST When Expecting RequestException X
GET
AE1 | Use Of Multiple AuthenticationException X
Usernames
AE2 | Multiple Failed AuthenticationException X
Passwords
AE3 | High Rate Of Login AuthenticationException X
Attempts
AE4 | Unexpected Quantity AuthenticationException X
Of Characters In
Username
AE5 Unexpected Quantity AuthenticationException X
c
o Of Characters In
'5 Password
-E AE6 | Unexpected Types Of AuthenticationException X
Q2 Characters In
5 Username
< AE7 | Unexpected Types Of AuthenticationException X
Characters In Password
AE8 Providing Only The AuthenticationException X
Username
AE9 | Providing Only The AuthenticationException X
Password
AE10 | Adding Additional AuthenticationException X
POST Variables
AE11 | Removing POST AuthenticationException X
Variables
SE1 Modifying Existing SessionException X
Cookies
c SE2 Adding New Cookies SessionException X
-g SE3 Deleting Existing SessionException X
§ Cookies
SE4 Substituting Another SessionException X
User's Valid Session ID
Or Cookie

37

SE5

Source IP Address
Changes During
Session

SessionException

SE6

Change Of User Agent
Mid Session

SessionException

Access Control

ACE1

Modifying URL
Arguments Within A
GET For Direct Object
Access Attempts

AccessControlException

ACE2

Modifying Parameters
Within A POST For
Direct Object Access
Attempts

AccessControlException

ACE3

Force Browsing
Attempts

AccessControlException

ACE4

Evading Presentation
Access Control
Through Custom Posts

AccessControlException

Input

IE1

Cross Site Scripting
Attempt

InputException

IE2

Violations Of
Implemented White
Lists

InputException

Encoding

EE1

Double Encoded
Characters

EncodingException

EE2

Unexpected Encoding
Used

EncodingException

Command Injection

CIE1

Blacklist Inspection For

Common SQL Injection
Values

CommandInjectionException

CIE2

Detect Abnormal
Quantity Of Returned
Records.

CommandInjectionException

CIE3

Null Byte Character In
File Request

CommandlnjectionException

CIE4

Carriage Return Or Line
Feed Character In File
Request

CommandInjectionException

FilelO

FlO1

Detect Large Individual
Files

FilelOException

Fl102

Detect Large Number
Of File Uploads

FilelOException

User Trend

UT1

Irregular Use Of
Application

UserTrendException

uT2

Speed Of Application
Use

UserTrendException

UT3

Frequency Of Site Use

UserTrendException

38

uT4

Frequency Of Feature
Use

UserTrendException

OWASP AppSensor v1.1

System Trend

STE1

High Number Of
Logouts Across The
Site

SystemTrendException

STE2

High Number Of Logins
Across The Site

SystemTrendException

STE3

High Number Of Same
Transaction Across The
Site

SystemTrendException

39

APPENDIX C: IMPLEMENTATION — ASPECT ORIENTED VS. BUSINESS LAYER

ID Title Exception Aspect Business
Oriented Layer
RE1 Unexpected HTTP RequestException X
Commands
RE2 Attempts To Invoke RequestException X
‘g Unsupported HTTP
] Methods
g
o RE3 GET When Expecting RequestException X
POST
RE4 POST When Expecting RequestException X
GET
AE1 Use Of Multiple AuthenticationException X
Usernames
AE2 | Multiple Failed AuthenticationException X
Passwords
AE3 High Rate Of Login AuthenticationException X
Attempts
AE4 | Unexpected Quantity AuthenticationException X
Of Characters In
Username
AE5 Unexpected Quantity AuthenticationException X
c Of Characters In
o
'.3 Password
= AE6 | Unexpected Types Of AuthenticationException X
S Characters In
'§ Username
< AE7 Unexpected Types Of AuthenticationException X
Characters In
Password
AE8 | Providing Only The AuthenticationException X
Username
AE9 Providing Only The AuthenticationException X
Password
AE10 | Adding Additional AuthenticationException X
POST Variables
AE11 | Removing POST AuthenticationException X
Variables
SE1 Modifying Existing SessionException X
g Cookies
@ SE2 Adding New Cookies SessionException X
]
v SE3 Deleting Existing SessionException X
Cookies

40

SE4

Substituting Another
User's Valid Session ID
Or Cookie

SessionException

OWASP AppSensor v1.1

SE5

Source IP Address
Changes During
Session

SessionException

SE6

Change Of User Agent
Mid Session

SessionException

Access Control

ACE1

Modifying URL
Arguments Within A
GET For Direct Object
Access Attempts

AccessControlException

ACE2

Modifying Parameters
Within A POST For
Direct Object Access
Attempts

AccessControlException

ACE3

Force Browsing
Attempts

AccessControlException

ACE4

Evading Presentation
Access Control
Through Custom Posts

AccessControlException

Input

IE1

Cross Site Scripting
Attempt

InputException

IE2

Violations Of
Implemented White
Lists

InputException

Encoding

EE1

Double Encoded
Characters

EncodingException

EE2

Unexpected Encoding
Used

EncodingException

Command Injection

CIE1

Blacklist Inspection For

CommandlnjectionException

Common SQL Injection
Values

CIE2

Detect Abnormal
Quantity Of Returned
Records.

CommandInjectionException

CIE3

Null Byte Character In
File Request

CommandInjectionException

CIE4

Carriage Return Or
Line Feed Character In
File Request

CommandInjectionException

FilelO

FIO1

Detect Large Individual
Files

FilelOException

F102

Detect Large Number
Of File Uploads

FilelOException

41

UT1 | Irregular Use Of UserTrendException
Application
xe]
S UT2 | Speed Of Application UserTrendException
= Use
)
9 UT3 | Frequency Of Site Use UserTrendException
o)
UT4 | Frequency Of Feature UserTrendException
Use
STE1 | High Number Of SystemTrendException
- Logouts Across The
S Site
= STE2 | High Number Of Logins SystemTrendException
g Across The Site
‘i STE3 | High Number Of Same SystemTrendException
e Transaction Across The
Site

42

