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How do we solve the UID-Password-Anti-Pattern?
-> Tokens
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OAuth Idea
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Client Credentials Flow
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Overview Client Credentials Flow

e No user-based Authentication
Scope/Permissions: Bound to clients
e Usage: Intranet
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Resource Owner Password Credentials Flow
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Resource Owner Password Credentials Flow
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OAuth2 ROPC-Specification

[...] The resource owner password credentials grant type is
suitable in cases where the

resource owner has a trust relationship with the client,

such as the device operating system [...]
Source: RFC 6749 The OAuth 2.0 Authorization Framework - Section 4.3
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https://tools.ietf.org/html/rfc6749#section-4.3

Interpretation of OAuth ROPC-Specification

e The client and the device are completely under
your control
e All other flows are not supported by the client
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Interpretation of OAuth ROPC-Specification

e Use Case: To move legacy application into the

OAuth2-Universe

e Scope
e Expiration of tokens
o ...
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ROPC Main Risks Overview

e UID/password anti-pattern

-> client, eavesdroppers, or endpoints could
eavesdrop the user id and password

e Validation of the client's identity not possible
e Client app might issue a not needed scope

e Token revocation nearly useless

Timo Pagel



Scopes

Action
View own email
Modify own email

Delete own email

Scope

profile.email:view

profile.email:update

profile.email:delete
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Implicit Flow

e Use Case: Browser
e Client Secret: Confidentiality can not be
guaranteed
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Client/Browser JavaScript -
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Threats Implicit Flow

e Resource owners might issue a token to a
malicious client (e.g. via phishing)
e Attackers might steal token via other

mechanisms
Source: RFC 6749 The OAuth 2.0 Authorization Framework - Section 10.16

e Main Risk: Whom is a token issued to?

@ 39

Timo Pagel



https://tools.ietf.org/html/rfc6749#section-10.16

Further Risks/Info

e Use Case: Browser-Applications
e Silent Refresh

e Disadvantages: Man-in-the-Middle can fetch
tokens

-> No refresh tokens

Timo Pagel



Authorization Code Grant

[...] the Authorization Code flow should only be used [...] where
the Client Secret can be safely stored. |[...]

https://auth0.com/docs/api-auth/tutorials/authorization-code-grant
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https://auth0.com/docs/api-auth/tutorials/authorization-code-grant
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Native App Flow

Mainly: Proof Key for Code Exchange - PKCE (RFC
7636)
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RFC 8252: OAuth 2.0 for Native Apps

e External User Agent:
e External browser/app
e In-App browser tab
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Generate random code_verifyer
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Further Security Considerations

e URI-Schema:
e Domain-Related, e.g. com.fhunii.eventmarketing

e Prevent DNS-Spoofing: Use 127.0.0.1 instead of
localhost by performing redirection on localhost
(Desktop)

e Defence against cross-app request forgery:

e Usage of the state parameter with a random

e Embedded User Agent (Web-View):

e Must open an external browser as the embedded
user agent has full access to authorization grant: @ --
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Conclusion

e Choose the flow based on the use case
e App: Auth. Code Grant + Native Apps
e Web: Implicit Flow
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Questions?

oauth2019@pagel.pro
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Implementation Flaws

Store username and generate password in the
client after authentication
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Implementation Flaws

Storing the username/password locally
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L OWASP Juice Shop X

“— C | @ localhost

Password

&, Log in G Log in with Google

B Remember me

Forgot your password? Not yet a customer?
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' G Signin-Google Ac x ! _

< C | & Secure https:v,f\’accounts.google.com,w*: anin/oauth/oauthch... v | @ & @

Google

Choose an account
to continue to OWASP Juice Shop

o Timo Pagel

timo.pagel@owasp.org

o Timo Pagel
google@timo-pagel.de

e Use another account
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L OWASP Juice Shop X

“— C | @ localhost::
)

cle
lain?

Us

th Results
d')) UNION SELECT NULL,email,password,id,NULL,NULL,NULL,NULL FROM

Product Description

admin@juice-sh.op 0192023a7bbd73250516f069df18b500 1
bender@juice-sh.op 0c36e517e3fa95aabflbbffc6744adef 3
bjoern.kimminich@googlemail.com 448af65cf28e8adeab7ebblecff66f15 4
ciso@juice-sh.op 861917d5fa5f1172f931dc700d81a8fb 5
google@timo-pagel.de 421a487b68e3a4f057d84996968c5e2a 7
jim@juice-sh.op e541ca7ecf72b8d1286474fc613e5e45 2

support@juice-sh.op d57386e76107100a7d6¢c2782978b2e7b 6
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Implications

e Endless Refresh?

e No Caching for shared proxies with
Authentication-Header

e Logout -> Invalidation of
Refresh/Access-Tokens

e Monitoring of unauthorized invalid Tokens
usage attempts

e No-Algo Attack

Timo Pagel
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Conclusion

e OAuth2 is used to delegate access

e Choose the right flow for your use case

e OAuth2 does not prevent from thinking on your
own! -> harden endpoints/processes
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Risk Overview K

https://auth0.com/docs/api-auth/whi

ch-oauth-flow-to-use

Flow

Client (Application)

Overall Risk

Resource Owner Password
Credentials Flow

Browser / Mobile App

Critical (with public clients)

Authorization Code Flow Confidential Client Medium-High
Implicit Flow Browser (JavaScript) Medium-High
Authorization Code Flow (PKCE) | Mobile App Medium

Disclaimer: This is an overview of the first impression
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http://wiki.oauth.net/w/page/27249271/OAuth%202%20for%20Native%20Apps
https://auth0.com/docs/api-auth/which-oauth-flow-to-use
https://auth0.com/docs/api-auth/which-oauth-flow-to-use

OAuth ROPC-Specification

It is also used to migrate existing clients using direct
authentication schemes such as HTTP Basic or Digest
authentication to OAuth by converting the stored credentials to
an access token.

Source: RFC 6749 The OAuth 2.0 Authorization Framework - Section 4.3

owasP @ &6
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https://tools.ietf.org/html/rfc6749#section-4.3

Hardening Resource Owner Password
Credentials Flow (not recommended) 1/2

e Harden Token Endpoint:

e Do not allow cross-domain requests
Brute Force / “Token Brute Force”
Timing Attacks
Lack of security sensitive information
Throttling Policy

e Reduce Risk of Stolen Tokens:
e TLS
e Disable refresh tokens and use short lived access tokens
e Reconsider lifetime of tokens

® o
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Hardening Resource Owner Password
Credentials Flow (not recommended) 2/2

e Inform resource owners about password reuse

e Limit usage to org. where client/application and
authorizing service are from the same org.

e The authorization server may generally restrict
the scope of access tokens issued by this flow
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