| Presentation of Authentication

.. Concepts of Open Authorization 2

Flows in OAuth 2 .
Timo Pagel
OWASP

;I;thwvgv)v\gxae%rP Foundation

About Me

e DevSecOps Consultant

e |ecturer for Security in Web Applications at
University of Applied Sciences Kiel/Wedel

e Open Source / Open Knowledge Enthusiast

Timo Pagel

About Me

e DevSecOps Consultant
e |ecturer for Security in Web Applications at
University of Applied Sciences Kiel/Wedel

e Open Source / Open Knowledge Enthusiast
e OWASP Juice Shop

DevSecOps Maturity Model

OWASP Security Pins Project

Full University Module Security in Web App.

OWASP Software Assurance Maturity Model

@

Timo Pagel

Agenda
e Introduction

e Flows
e Conclusion

owasr @ 4

Timo Pagel

Agenda

| e Introduction]
e Flows
e Conclusion

owasp @

Timo Pagel

Classic Username/Password

Username / Password

> Blog A

Login Successful / Unsuccessful

owasr @

Timo Pagel

Classic Username/Password

Username / Password

> Blog A

Login Successful / Unsuccessful

Classic Username/Password

Username / Password

Login Successful / Unsuccessful Blog A

Username / Password
Login Successful /
Unsuccessful

Blog B

owasr @ 3

Timo Pagel

Classic Username/Password

Username / Password
> Blog A
Login Successful / Unsuccessful
2
O S~
2| S5|—
AR
- - (U
Role_Permission & § §
Role Permission GEJ a %
| c|c
Publisher Write c 8"3
Q1 o
. D
Username_Role Publisher Read
Username | Role Publisher Publish
Tux Publisher Writer Read Blog B
Tuxine Writer Writer Write OWASP e 9

Timo Pagel

Classic Username/Password

Username / Password .
Blog A
Login Successful / Unsuccessful 9
2
O S~
2| Sl=
. AR
Role_Permission § §
Role Permission 218
(7]
[
Publisher Write -
Username_Role Publisher Read
Username | Role Publisher Publish
Tux Publisher Writer Read Blog B
Tuxine Writer Writer Write OWASP e 10

Timo Pagel

Classic Username/Password

Username / Password . Blog A
Login Successful / Unsuccessful
2
Role_Permission §
Q
Role Permission %
Publisher Write =
Username_Role Publisher Read
Username | Role Publisher Publish
Tux Publisher Writer Read Blog B
Tuxine Writer Writer Write OWASP e 11

Timo Pagel

Username / Password

Login Successful / Unsuccessful

Role_Permission

Role

Permission

Publisher

Write

Unsuccessful

Blog A

(Usage of the UID/Password-Anti Pattern J

Tuxine

Writer

Writer

Write

AL

owasr @ 1>

Timo Pagel

How do we solve the UID-Password-Anti-Pattern?
-> Tokens

Timo Pagel

OAuth Idea

Client_Permission

Client Permission
X... Read
Y... Write

Blog A
(Client)

Blog B
(Provider)

owasP @ 14

Timo Pagel

OAuth Idea

Token Blog A
> (Client)
©
5| &
<
Client_Permission
Client Permission
X... Read Blog B
(Provider)
Y.. Write OWASP e 15

Timo Pagel

Agenda

e Introduction

' Flows

e Conclusion

owasp @

Timo Pa

16
gel

Client Credentials Flow

Client App

Q (Server)

Authorization
Server

Resource
Server

owasP @ 17

Timo Pagel

Client Credentials Flow

Client App

‘? (Server)

Client Credentials (client_id/client_secret) g

Resource
Server

Authorization
Server

Authenticate Client

——
Access token
-
Access protected resource with access token g
4 Protected resource response

owasP @ s

Timo Pagel

Overview Client Credentials Flow

e No user-based Authentication
Scope/Permissions: Bound to clients
e Usage: Intranet

Timo Pagel

Resource Owner Password Credentials Flow

AN\

£3

Resource
Owner

Client App

Authorization
Server

(0

WASP

Resource
Server

e 20

Timo Pagel

4)
Resource

Ow

/ner

Resource
owner
credentials

Client App

Resource owner credentials

Authenticate resource owner

Authenticate client

Access token

Authorization
Server

(0

Resource Owner Password Credentials Flglv

WASP

Resource
Server

®

Timo Pagel

£ Joomlal’

Please enter your Google
Username and Google Password

® | anguage - Default

rsP @ 2

Timo Pagel

Resource Owner Password Credentials Flow

/AN

ﬁ ! Client App

Resource
Owner
.
Resource Resource owner credentials
owner .

: Authenticate resource owner
credentials «——

Authenticate client
-

Access token

Access protected resou

rce with access token

Protected resot

Irce response

<

Resource
Server

Usage of the UID/Password-Anti Pattern

11mo ragel

Resource Owner Password Credentials Flow

/E\
ﬁ Client App Resource
Q Server
Resource
Owner
.
Resource Resource owner credentials
owner

: Authenticate resource owner
credentials «——

Authenticate client

Access token

Access protected resource with access token
Protected resolrce response

<

What happens after the access token has expired?

Resource Owner Password Credentials Flglv

Client App Authorization Resource
~ g Q Server Server
Resource
Owner
.
Resource Resource owner credentials
owner

i Authenticate resource owner
credentials «——

Authenticate client

<—
Access token (optional refresh token)
-
Access protected resource with access token g
- Protected resolrce response
Refresh token >

- Access token (refresh token) OWASP Q 25

Timo Pagel

OAuth2 ROPC-Specification

[...] The resource owner password credentials grant type is
suitable in cases where the

resource owner has a trust relationship with the client,

such as the device operating system [...]
Source: RFC 6749 The OAuth 2.0 Authorization Framework - Section 4.3

owasp @ 6

Timo Pagel

https://tools.ietf.org/html/rfc6749#section-4.3

Interpretation of OAuth ROPC-Specification

e The client and the device are completely under
your control
e All other flows are not supported by the client

Timo Pagel

Interpretation of OAuth ROPC-Specification

e Use Case: To move legacy application into the

OAuth2-Universe

e Scope
e Expiration of tokens
o ...

Timo Pagel

ROPC Main Risks Overview

e UID/password anti-pattern

-> client, eavesdroppers, or endpoints could
eavesdrop the user id and password

e Validation of the client's identity not possible
e Client app might issue a not needed scope

e Token revocation nearly useless

Timo Pagel

Scopes

Action
View own email
Modify own email

Delete own email

Scope

profile.email:view

profile.email:update

profile.email:delete

owasr @ 3o

Timo Pagel

Authorization
Server

< .
Single factor required

Credentials
>

<€
Token (scope: profile.email:view)
View profile with Token (profile.email:view)

=

Sy
E-Mail

owasp @

Resource
erver

Timo Pagel

< .
Single factor required

Credentials

>

<€
Token (scope: profile.email:view)
View profile with Token (profile.email:

view)

Resource
erver

-
E-Mail

Update profile with Token (profile.email:view)

<€
Error: Insufficient scope

Request profile.email:upd;te

-
Multiple factors required

owasr @ s,

Timo Pagel

Implicit Flow

e Use Case: Browser
e Client Secret: Confidentiality can not be
guaranteed

Timo Pagel

== Authorization Frontend Resource
I m pl IClt . FI.OW Server Server Server

: Client/Browser

[2
Resource

Owner R . s s E E E oE R oE N EOE OE R EEEEEREEEEEE

owasr @ 34

Timo Pagel

Authorization Frontend Resource

*

I mpl iCit . FI.OW Server Server Server

Client/Browser

[J
Resource
Owner C L . i s s E m = = = E E S EEEEEEEEEEEESE
Enter URL
-
<
(Performs Redirect) |__Open redirect URL |

Present Authorization Ul

Present Ul_ [:
<—> A
Present Present credentials .

Credentials

owasr @ sd

Timo Pagel

Client/Browser JavaScript -

= = Authorizati Frontend Resource
AImphcnt.F.low senver | Server

Resource
Ovvner --------------------------------------
Enter URL
> Page wjith JS

¢ P
(Performs Redirect) |__Open redirect URL |

Present UL | Present Authoriza.tlon Ul

D Present credentials
Present >
Credentials Verify credentials and create access token
<—

Redirect to frontend server (access ftoken in # fragment)

owasr @ s

Timo Pagel

Client/Browser JavaScript -

= = Authorization Frontend Resource
AI m pl IClt . FI.OW Server Server

Resource
Ovvner --------------------------------------
Enter URL .
> Page wjith JS

¢ P>
(Performs Redirect) |__Open redirect URL |

Present UL | Present Authoriza.tflon Ul

- Present credentials
Present >
Credentials Verify credentials and create access token
<—

Redirect to frontend server (access token in # fragment)

owasr @ s

Timo Pagel

Client/Browser JavaScript -

= = Authorization Frontend Resource
AI m pl IClt . FI.OW Server Server

Resource :
Owner C Y., L . s s omomoEoEoEoEoEOEOEEEEEEEEEEEE[EEEEEEEEEEE®
Enter URL
> Page wjith JS
< >
(Performs Redirect) |__Open redirect URL |

Present Authorization Ul

Present Ul_ [:
<—> A
Present Present credentials .

Credentials Verify credentials and create access token

<—
Redirect to frontend server (access ftoken in # fragment)

: Follow redirect URL (without access token) and get page with JS >

Extract and temp. store access token

-—

, [l pr
» Return protected resourc

OWA4P @

Timo Pagel

Threats Implicit Flow

e Resource owners might issue a token to a
malicious client (e.g. via phishing)
e Attackers might steal token via other

mechanisms
Source: RFC 6749 The OAuth 2.0 Authorization Framework - Section 10.16

e Main Risk: Whom is a token issued to?

@ 39

Timo Pagel

https://tools.ietf.org/html/rfc6749#section-10.16

Further Risks/Info

e Use Case: Browser-Applications
e Silent Refresh

e Disadvantages: Man-in-the-Middle can fetch
tokens

-> No refresh tokens

Timo Pagel

Authorization Code Grant

[...] the Authorization Code flow should only be used [...] where
the Client Secret can be safely stored. |[...]

https://auth0.com/docs/api-auth/tutorials/authorization-code-grant

owasr @ 11

Timo Pagel

https://auth0.com/docs/api-auth/tutorials/authorization-code-grant

Uutnoriz

Resource -
Owner

Open Client (A|:3p>

Present auf

Open redirect URL
with client identifier

horization Ul

Present ¢

credentials

10n. Lode. aran

Client : User-Agent

Open redirect URL with >

client identifier

<Present authorization Ul

Authorization Resource

Server

Validate request <

Present submitted
credentials

Server

owasp @

42

Timo Pagel

uthoriz

Resource
Owner

Open Client (A|:3p>

Present auf

Open redirect URL
with client identifier

horization Ul

Present ¢

credentials

< Authorization code

1on. Loae.uran

Client - User-Agent

Open redirect URL with

client identifier

Authorization Resource

Server

<Present authorization Ul

Present submitted
credentials
Authorization code

Validate request <

Redirection URI &

nd Authorization code |

Server

owasr @

43

Timo Pagel

Uutnoriz

Resource -
Owner

Open Client (A|:3p>

Present auf

Open redirect URL
with client identifier

horization Ul

Present ¢

credentials

< Authorization code

1on. Loae.uran

Client - User-Agent

Open redirect URL with

client identifier

Authorization Resource

Server

<Present authorization Ul

Present submitted
credentials
Authorization code

Validate request <

Redirection URI &

nd Authorization code |

Why isn’t the access token directly issued?]

Server

owasr @

44

Timo Pagel

Uutnoriz

Resource -
Owner

Open Client (A;Sp>

Present auf

1on. Loae.uran

Client e User-Agent

Open redirect URL
with client identifier

horization Ul

Present ¢

credentials

< Authorization code

client identifier

<Present authorization Ul

Open redirect URL with

Authorization Resource
Server Server

Validate request <

Present submitted
credentials
Authorization code

Redirection URI &

nd Authorization code

>

Why isn’t the access token directly issued?]

Threats to URIs:
e Referrer headers

e Requestlogs
e Browser history

Timo Pagel

Uutnoriz

Resource -
Owner

“Open Client (A;Sp>

Present auf

1I0N.CO

e.Grant Flo
Client - User-Agent. :

Open redirect URL,
with client identifier

horization Ul

Present ¢

credentials

< Authorization code

Redirection URI &

Open redirect URL with

client identifier

Validate request <

Present authorization Ul

Why isn’t the access token directly issued?

N 77—
Authorization Resource |E
Server ot
I

Authorization code has a very
short lifetime (seconds) to
make replay attacks hard

owasr @

46

Timo Pagel

uthoriz

Resource
Owner

1on. Loae.uran

Client - User-Agent

Open redirect URL
with client identifier

Open Client (A|:3p>

Present authorization Ul

Present credentials

< Authorization code

Open redirect URL with

client identifier

Authorization Resource

Validate request <
<Present authorization Ul

Present submitted
credentials
Authorization code

Redirection URI &

nd Authorization code |

Access token (optional refresh token)

Call protected resource with

Return protected res

Refresh token >

Access Token

ptional refresh token

access token

wasp @

Native App Flow

Mainly: Proof Key for Code Exchange - PKCE (RFC
7636)

Timo Pagel

Resource

Open Client (Abp

Present auf

- Ogen redirect URL,

with client identifier

horization Ul

Present ¢

credentials

Open redirect URL with

client identifier
Validate request

<Present authorization Ul

lﬂOle&On Resource

Present submitted

credentials
Authorization code

Server

owasr @

Resource

Open Client (Aép

Present auf

- Ogen redirect URL,

with client identifier

horization Ul

Present ¢

credentials

Authorization | ¢

Open redirect URL with

client identifier

Resource

Validate request
<Present authorization Ul

Present submitted
credentials
Authorization code

code

Redirection U

Rl and Authorization code

Access token (optional refresh token)

<

Refresh token >

Access Token (optional refresh token

Call protected resource|with access token
Return protected resource

wasr @

RFC 8252: OAuth 2.0 for Native Apps

e External User Agent:
e External browser/app
e In-App browser tab

Timo Pagel

Generate random code_verifyer

code_challange=sha256(code_verifyer)

Open redirect URL with client identifier

& code_challange

Validate reque

utharization Code Gr

User:Agent’.

Open redirect URL with

client identifier & chall.
st & store code challenge

dNC.riow.

A)J{r%riza |B1p Resource

<Present authorization Ul

Present submitted

credentials
Authorization code

Authorization

code
Authorization
Verify sha256(code vé

code & code_verifyer? >

rifyer) == code_challenge
Deny access

<

Server

owasr @

Further Security Considerations

e URI-Schema:
e Domain-Related, e.g. com.fhunii.eventmarketing

e Prevent DNS-Spoofing: Use 127.0.0.1 instead of
localhost by performing redirection on localhost
(Desktop)

e Defence against cross-app request forgery:

e Usage of the state parameter with a random

e Embedded User Agent (Web-View):

e Must open an external browser as the embedded
user agent has full access to authorization grant: @ --

Timo Pagel

Agenda

e Introduction
e Flows

| e Conclusion

owasp @

54

Timo Pagel

Conclusion

e Choose the flow based on the use case
e App: Auth. Code Grant + Native Apps
e Web: Implicit Flow

owasP @ s

Timo Pagel

Questions?

oauth2019@pagel.pro

Timo Pagel

Implementation Flaws

Store username and generate password in the
client after authentication

Timo Pagel

Implementation Flaws

Storing the username/password locally

Timo Pagel

L OWASP Juice Shop X

“— C | @ localhost

Password

&, Log in G Log in with Google

B Remember me

Forgot your password? Not yet a customer?

Timo Pagel

' G Signin-Google Ac x ! _

< C | & Secure https:v,f\’accounts.google.com,w*: anin/oauth/oauthch... v | @ & @

Google

Choose an account
to continue to OWASP Juice Shop

o Timo Pagel

timo.pagel@owasp.org

o Timo Pagel
google@timo-pagel.de

e Use another account

owase @ o

Timo Pagel

L OWASP Juice Shop X

“— C | @ localhost::
)

cle
lain?

Us

th Results
d')) UNION SELECT NULL,email,password,id,NULL,NULL,NULL,NULL FROM

Product Description

admin@juice-sh.op 0192023a7bbd73250516f069df18b500 1
bender@juice-sh.op 0c36e517e3fa95aabflbbffc6744adef 3
bjoern.kimminich@googlemail.com 448af65cf28e8adeab7ebblecff66f15 4
ciso@juice-sh.op 861917d5fa5f1172f931dc700d81a8fb 5
google@timo-pagel.de 421a487b68e3a4f057d84996968c5e2a 7
jim@juice-sh.op e541ca7ecf72b8d1286474fc613e5e45 2

support@juice-sh.op d57386e76107100a7d6¢c2782978b2e7b 6

61

Timo Pagel

Implications

e Endless Refresh?

e No Caching for shared proxies with
Authentication-Header

e Logout -> Invalidation of
Refresh/Access-Tokens

e Monitoring of unauthorized invalid Tokens
usage attempts

e No-Algo Attack

Timo Pagel

Agenda

e Introduction
e Flows
e Implementation Flaws

| e Conclusion

owasr @

63

Timo Pagel

Conclusion

e OAuth2 is used to delegate access

e Choose the right flow for your use case

e OAuth2 does not prevent from thinking on your
own! -> harden endpoints/processes

owasr @ ¢4

Timo Pagel

Risk Overview K

https://auth0.com/docs/api-auth/whi

ch-oauth-flow-to-use

Flow

Client (Application)

Overall Risk

Resource Owner Password
Credentials Flow

Browser / Mobile App

Critical (with public clients)

Authorization Code Flow Confidential Client Medium-High
Implicit Flow Browser (JavaScript) Medium-High
Authorization Code Flow (PKCE) | Mobile App Medium

Disclaimer: This is an overview of the first impression

Timo Pagel

http://wiki.oauth.net/w/page/27249271/OAuth%202%20for%20Native%20Apps
https://auth0.com/docs/api-auth/which-oauth-flow-to-use
https://auth0.com/docs/api-auth/which-oauth-flow-to-use

OAuth ROPC-Specification

It is also used to migrate existing clients using direct
authentication schemes such as HTTP Basic or Digest
authentication to OAuth by converting the stored credentials to
an access token.

Source: RFC 6749 The OAuth 2.0 Authorization Framework - Section 4.3

owasP @ &6

Timo Pagel

https://tools.ietf.org/html/rfc6749#section-4.3

Hardening Resource Owner Password
Credentials Flow (not recommended) 1/2

e Harden Token Endpoint:

e Do not allow cross-domain requests
Brute Force / “Token Brute Force”
Timing Attacks
Lack of security sensitive information
Throttling Policy

e Reduce Risk of Stolen Tokens:
e TLS
e Disable refresh tokens and use short lived access tokens
e Reconsider lifetime of tokens

® o

Timo Pagel

Hardening Resource Owner Password
Credentials Flow (not recommended) 2/2

e Inform resource owners about password reuse

e Limit usage to org. where client/application and
authorizing service are from the same org.

e The authorization server may generally restrict
the scope of access tokens issued by this flow

Timo Pagel

