

# **Promoting Application Security**within Federal Government



Dr. Sarbari Gupta, CISSP, CISA Founder/President Electrosoft sarbari@electrosoft-inc.com 703-437-9451 ext 12

The OWASP Foundation

http://www.owasp.org

## **Agenda**

- Federal IT Security Landscape
- FISMA and NIST Security Controls
- Mapping of AppSec Best Practices to Federal Specs
- Observations
- Wrap-Up

## **Are Federal Government Web Apps Secure?**

- Well ..... Not really!
- Why? Weaknesses in one/more of the following:
  - ▶ Training Developers/Managers on secure development
  - Documented secure coding standards
  - ▶ Formalized SDLC processes that are actually followed
  - ▶ Effective application threat modeling
  - Security review of design/architecture
  - Security focus during code review
  - ▶ Comprehensive security testing
  - Vulnerability and Penetration Analyses
  - Active security monitoring



## **Information Security – Federal Compliance Landscape**

- Title III of E-Government Act of 2002
  - ► Federal Information Security Management Act (FISMA)
- Homeland Security Presidential Directives
  - ▶ HSPD-7, HSPD-12, etc.
- OMB Memos
  - ▶ FISMA Reporting
  - Privacy
  - Data Encryption
  - ▶ FDCC, etc.)



#### **FISMA - Security Assessment and Authorization**

#### ■ NIST Standards and Guidelines

- ► FIPS 199 Security Categorization of Information Systems
- ► SP 800-37 Guidelines for Security Authorization of Information Systems
- ▶ SP 800-53 Rev 3 Recommended Security Controls for Federal Information Systems and Organizations



### NIST Special Pub 800-53 Revision 3 (Aug '09)

- **Title**: Recommended Security Controls for Federal Information Systems and Organizations
- **Approach**: Risk Management Framework
  - Categorize Information System
  - Select Security Controls
  - ► Implement Security Controls
  - Assess Security Controls
  - Authorize Information System
  - Monitor Security Controls
- **18 families** of Security Controls
- Families that impact Application Security:
  - ▶ AC, AU, IA, SA, SC and SI
  - CA, PL, RA

| <u>ID</u> | <u>FAMILY</u>                         | <u>CLASS</u> |
|-----------|---------------------------------------|--------------|
| AC        | Access Control                        | Technical    |
| AT        | Awareness and Training                | Operational  |
| AU        | Audit and Accountability              | Technical    |
| CA        | Security Assessment and Authorization | Management   |
| СМ        | Configuration Management              | Operational  |
| СР        | Contingency Planning                  | Operational  |
| IA        | Identification and Authentication     | Technical    |
| IR        | Incident Response                     | Operational  |
| MA        | Maintenance                           | Operational  |
| MP        | Media Protection                      | Operational  |
| PE        | Physical and Environmental Protection | Operational  |
| PL        | Planning                              | Management   |
| PS        | Personnel Security                    | Operational  |
| RA        | Risk Assessment                       | Management   |
| SA        | System and Services Acquisition       | Management   |
| SC        | System and Communications Protection  | Technical    |
| SI        | System and Information Integrity      | Operational  |
| PM        | Program Management                    | Management   |



#### **Application Security - Related Federal Efforts**

#### ■ DISA

- ▶ Application Security and Development STIG July 2008
- ▶ Application Security and Development Checklist Version 2 Release 1.5 - June 2009

#### ■ NIST

- ▶ SP 800-64 Rev 2 Security Considerations in the System Development Life Cycle Oct 2008
- ▶ SP 800-115 (draft) Technical Guide to Information Security Testing Nov 2007
- ▶ Security Content Automation Protocol (SCAP)



## **OWASP Top Ten Vulnerabilities (2007)**

| OWASP Top Ten Vulnerabilities                      | NIST 800-53 Rev3 Controls           |  |
|----------------------------------------------------|-------------------------------------|--|
| A1 - Cross Site Scripting (XSS)                    | SI-10: Information Input Validation |  |
| A2 - Injection Flaws                               | SI-10: Information Input Validation |  |
| A3 - Malicious File Execution                      | Not specified                       |  |
| A4 - Insecure Direct Object Reference              | AC-3: Access Enforcement            |  |
| A5 - Cross Site Request Forgery (CSRF)             | Not specified                       |  |
| A6 - Information Leakage & Improper Error Handling | SI-11: Error Handling               |  |
| A7 - Broken Authentication and Session Mgmt        | SC-23: Session Authenticity         |  |
| A8 - Insecure Cryptographic Storage                | SC-13: Use of Cryptography          |  |
| A9 - Insecure Communications                       | SC-9: Transmission Confidentiality  |  |
| A10 - Failure to Restrict URL Access               | AC-3: Access Enforcement            |  |



## **SANS Top 25 (1 of 3) - Insecure Interaction Between Components**

| Top 25 Coding Vulnerabilities                             | NIST 800-53 Rev3 Controls           |
|-----------------------------------------------------------|-------------------------------------|
| CWE-20: Improper Input Validation                         | SI-10: Information Input Validation |
| CWE-116: Improper Encoding or Escaping of Output          | Not specified                       |
| CWE-89: SQL Injection                                     | SI-10: Information Input Validation |
| CWE-79: Cross-site Scripting                              | SI-10: Information Input Validation |
| CWE-78: OS Command Injection                              | SI-10: Information Input Validation |
| CWE-319: Clear-text Transmission of Sensitive Information | SC-9: Transmission Confidentiality  |
| CWE-352: Cross-Site Request Forgery (CSRF)                | Not specified                       |
| CWE-362: Race Condition                                   | Not specified                       |
| CWE-209: Error Message Information Leak                   | SI-11: Error Handling               |



## SANS Top 25 (2 of 3) – Porous Defenses

| Top 25 Coding Vulnerabilities                                 | NIST 800-53 Rev3 Controls      |  |
|---------------------------------------------------------------|--------------------------------|--|
| CWE-285: Improper Access Control (Authorization)              | AC-3: Access Enforcement       |  |
| CWE-327: Use of a Broken or Risky Cryptographic Algorithm     | SC-13: Use of Cryptography     |  |
| CWE-259: Hard-Coded Password                                  | IA-5: Authenticator Management |  |
| CWE-732: Insecure Permission Assignment for Critical Resource | AC-3: Access Enforcement       |  |
| CWE-330: Use of Insufficiently Random Values                  | Not specified                  |  |
| CWE-250: Execution with Unnecessary Privileges                | AC-6: Least Privilege          |  |
| CWE-602: Client-Side Enforcement of Server-<br>Side Security  | Not specified                  |  |



## SANS Top 25 (3 of 3) - Risky Resource Management

| Top 25 Coding Vulnerabilities                     | NIST 800-53 Rev3 Controls                          |
|---------------------------------------------------|----------------------------------------------------|
| CWE-119: Memory Buffer Overrun                    | SA-8: Security Engineering Principles <sup>1</sup> |
| CWE-642: External Control of Critical State Data  | SA-8: Security Engineering Principles <sup>1</sup> |
| CWE-73: External Control of File Name or Path     | SA-8: Security Engineering Principles <sup>1</sup> |
| CWE-426: Un-trusted Search Path                   | SA-8: Security Engineering Principles <sup>1</sup> |
| CWE-94: Code Injection                            | SA-8: Security Engineering Principles <sup>1</sup> |
| CWE-494: Download of Code Without Integrity Check | SI-7: Software and Information Integrity           |
| CWE-404: Improper Resource Shutdown or Release    | SA-8: Security Engineering Principles <sup>1</sup> |
| CWE-665: Improper Initialization                  | SA-8: Security Engineering Principles <sup>1</sup> |
| CWE-682: Incorrect Calculation                    | SA-8: Security Engineering Principles <sup>1</sup> |



## **OWASP Application Security Verification Std 2009**

| ASVS Security Requirement  Areas             | NIST 800-53 Rev 3 Controls                                                | Cover<br>age |
|----------------------------------------------|---------------------------------------------------------------------------|--------------|
| V1 - Security Architecture Documentation     | RA-3                                                                      | 1 of 6       |
| V2 - Authentication Verification             | AC-2, AC-3, AC-5, AC-7, AC-11, AC-14, AU-2, IA-5, IA-6, IA-8, SC-24, SI-3 | 12 of 15     |
| V3 - Session Management Verification         | AC-11, SC-10, SC-23, SI-3                                                 | 9 of 13      |
| V4 - Access Control Verification             | AC-2, AC-3, AC-6, SI-3, AU-2                                              | 10 of 15     |
| V5 - Input Validation Verification           | SA-8, SI-3, SI-10, AU-2                                                   | 7 of 9       |
| V6 - Output Encoding/Escaping Verification   | SI-3, SI-10                                                               | 5 of 10      |
| V7 - Cryptography Verification               | IA-5, SC-12, SC-13, SI-3, AU-2                                            | 6 of 10      |
| V8 - Error Handling and Logging Verification | SI-3, SI-11, AU-3, AU-9                                                   | 7 of 12      |
| V9 - Data Protection Verification            |                                                                           | 0 of 6       |
| V10 - Communication Security Verification    | AC-4, AC-6, IA-3, IA-5, SC-8, SC-9, SC-24, AU-2                           | 7 of 9       |
| V11 - HTTP Security Verification             | SC-23                                                                     | 1 of 7       |
| V12 - Security Configuration Verification    | CM-5, SI-6, SI-7, AU-2                                                    | 3 of 4       |
| V13 - Malicious Code Search Verification     | SI-3, SI-7                                                                | 2 of 2       |
| V14 - Internal Security Verification         | SC-4, SC-28                                                               | 2 of 3       |



#### Fed AppSec - Weaknesses in SDLC Phases (SP 800-64)

- Phase: Initiation
  - Planning
  - System Categorization/Privacy Impact Assessment
  - ▶ Establish Secure Development Processes (Coding Stds/Config Mgmt) **WEAK!**
  - Security Training of Developer/Managers WEAK!
- Phase: Development
  - Risk Assessment/Threat Modeling WEAK!
  - Security Architecture and Documentation WEAK!
  - Security Testing (Design Review/Code Review/Functional & Security Testing)
    WEAK!
- Phase: Implementation/Assessment
  - ► Establish Secure Configuration/Environment
  - Assess System Security Posture WEAK!
  - Authorize System for Operation
- Phase: Operations and Maintenance
  - Perform Configuration Management of System
  - Continuous Monitoring
- Phase: Disposal
  - Planning
  - ▶ Sanitize Media/Dispose of HW & SW/Preserve Information
  - Close System



## Fed AppSec— Areas to be Strengthened

- Security Training of Application Developers and Managers
- Development of Secure Coding Practices
- Threat Modeling based on Application Vulnerabilities and Threats
- Security Architecture Documentation
  - ▶ Roles/Resources/Functions/Security Controls/Components/Interactions
- Sensitive Resource Identification and Protection
  - Data, URLs, Configuration Files, etc.
- Conditioning of Output Content/Data
- Server-Side Implementation of Security Services
  - Common Implementation
  - Non-circumventable
- Secure Degradation/Failure of Functions
- Security Testing of Software Applications
  - Static and Dynamic Testing of code
  - Penetration Testing of Deployed Application



## **Final Thoughts**

- Compliance drives federal government security
  - ▶ Current FISMA security controls and practices have greatly strengthened platform and network security
- It's time to focus on Application/Software Security
- Recommendations to promote AppSec in Federal Space:
  - ▶ Set of Security Controls for AppSec
  - ▶ Guidelines for Secure Coding Practices
  - Guidelines for Software Security Testing
  - ▶ OMB mandate to focus on AppSec

