
A	talk	by	

13-06-2014,	

http://en.wikipedia.org/wiki/Monkey_test

A	researcher	in	 uhr	 niversity	 ochum,	
A	student	of	XSS	who	is	working	towards	his	PhD	in	XSS
An	XSSer	/		An	XSS	Enthusiast																														

Listed	in	top	sites'	hall	of	fame	
A	proud	father	of	two	
Speaker	@HITBKUL	2013,	@DeepSec	2013	&	OWASP
Seminar@RSA	Europe	2013
A	Twitter	lover	

http://www.tubechop.com/watch/2670518

@soaj1664ashar

	http://slides.com/mscasharjaved/cross-site-scripting-
my-love

https://twitter.com/soaj1664ashar/status/466945529059221504

50$	per-context	bypass	(output	reflects	in	5	contexts)

http://demo.chm-
software.com/7fc785c6bd26b49d7a7698a7518a73ed/

http://xssplaygroundforfunandlearn.netai.net/final.html

http://xssplayground.net23.net/final.html

1.	 PHP
2.	 XSS
3.	 Testing	Methodology
4.	 Per-Context	XSS	Attack	Methodology
5.	 Summarize	PHP's	findings	(includes	built-in	functions,

customized	XSS	solutions	and	top	PHP-based	web
frameworks)

6.	 Results	of	Alexa	Survey	of	Top	100	sites
7.	 Conclusion

http://w3techs.com/technologies/overview/programming_language/all

http://www.php.net/usage.php

http://www.php.net/usage.php

http://w3techs.com/blog/entry/web_technologies_of_the_year_2013

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

https://www.brighttalk.com/webcast/288/97255

http://www.osvdb.org/osvdb/show_graph/1

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-

%202013%20-%20RC1.pdf

https://twitter.com/soaj1664ashar/status/362493382645383168

http://www.incapsula.com/blog/world-largest-site-xss-ddos-
zombies.html

	is	the	term	coined	here:#tweetbleed
https://twitter.com/pdp/status/476796934062370816

https://twitter.com/soaj1664ashar/status/476773831928209408

https://twitter.com/derGeruhn/status/476764918763749376

https://twitter.com/TweetDeck/status/476770732987252736

Simulate	Real	Web	Applications
Testing	conducted	in	five	common	contexts	(HTML,	Script,
Attribute,	Style	&	URL)

https://twitter.com/soaj1664ashar/status/463960615157915648

	===	general	termfilter_function

Double	Quotes	Case

Single	Quotes	Case

Systematic	in	nature
Easy	to	understand
Context-Specific
Attack	methodology	is	` `	and	one	can	guarantee
that	there	is	an	XSS	or	no	XSS	in	a	particular	injection
point.
With	the	help	of	attack	methodology,		one	can	make	a
secure	per-context	XSS	sanitizer
Can	be	applied	to	other	server-side	languages	e.g.,	ASP,
Ruby	etc

Only	for	attendees	...	:)

";	confirm(1);	//

OR

';	confirm(1);	//

http://www.dailymail.co.uk/home/search.html

http://de.eonline.com

It	simply	does	not	work.	Encoding	will	not	help	you	in
breaking	the	script	context	unless	developers	are	doing

some	sort	of	explicit	decoding.

http://issuu.com/mscasharjaved/docs/urlwriteup

http://jsfiddle.net/4eqK4/2/

http://xssplaygroundforfunandlearn.netai.net/series7.html

https://twitter.com/soaj1664ashar/status/469442421148119040

Only	for	attendees	:)

http://www.ea.com/

http://www.drudgereportarchives.com/dsp/search.htm

http://www.biblegateway.com

``onmouseover=alert(1)

``	===	back	tick

https://twitter.com/hasegawayosuke

Very	useful	in	breaking	attribute	context	if	site	is	properly
filtering	single	and	double	quotes

Mario	Heiderich
https://twitter.com/0x6D6172696F

Another	useful	tool	by	him	is
http://html5sec.org/innerhtml/

and
must	read	research	paper	by	him	if	you	are	interested	in

innerHTML	and	mutation	XSS
http://www.nds.rub.de/media/emma/veroeffentlichungen/2013/12/10/mXSS-

CCS13.pdf

http://xssplaygroundforfunandlearn.netai.net/innerHTMLtesting.html

http://view.officeapps.live.com/op/view.aspx?
src=%20http%3a%2f%2fvideo.ch9.ms%2fsessions%2fbuild%2f2014%2f2-

559.pptx

see	demo	http://jsfiddle.net/9t8UM/2/

Only	for	attendees	:)

http://www.scribd.com/doc/226925089/Stylish-XSS-in-
Magento-When-Style-helps-you

Only	for	attendees	:)

http://www.scribd.com/doc/211362856/Stored-XSS-in-
Twitter-Translation

A	quick	search	on	GitHub	reveals	...

http://xssplayground.net23.net/clean6.html

A	quick	search	on	GitHub	reveals	...	(false	positives	are	also
there	but	still	give	you	an	idea	of	popularity)

http://xssplayground.net23.net/clean20.html

A	quick	search	on	GitHub	shows	...

http://xssplayground.net23.net/clean21.html

Only	for	attendees	:)

Developers	are	also	calling	it	with	names	like	 and
	

A	quick	search	on	GitHub	reveals	

http://xssplayground.net23.net/clean.html

Two	arrays	of	black-listed	keywords	:)

http://xssplayground.net23.net/clean.html

All	event	handlers	that	are	not	part	of	black-listed	array	will
bypass	this	protection	e.g.,	

https://twitter.com/soaj1664ashar/status/470843406521237504

A	very	popular	but	sorry	to	say	BAD	XSS	protection	...

A	quick	search	on	GitHub	reveals	...

http://xssplayground.net23.net/clean1.html

http://xssplayground.net23.net/clean1.html

The	goal	of	this	function	is	to	stop	JavaScript	execution	via
style.

http://xssplayground.net23.net/clean2.html

Another	popular	customized	XSS	protection	solution.

http://xssplayground.net23.net/clean3.html

A	popular	XSLT-powered	open	source	content	management
system	is	using	 	function.

A	Fully	Baked	PHP	Framework
http://ellislab.com/codeigniter

https://github.com/EllisLab/CodeIgniter/issues/2667

	(Snapshot
from	the	latest	CodeIgniter	version	available	at	GitHub)

https://github.com/EllisLab/CodeIgniter/blob/develop/system/core/Security.php#L438

http://xssplayground.net23.net/clean11.html

	(old	test-bed)http://xssplayground.net23.net/clean11.html
	(new	test-

bed)
http://xssplayground.net23.net/clean100.html

Sanitize	Naughty	HTML	elements

Old	list	of	naughty	elements	before	I	started	bypassing	...

<math><a/xlink:href=javascript:confirm(1)>click

	(old	test-bed)http://xssplayground.net23.net/clean11.html

(new	test-
bed)

http://xssplayground.net23.net/clean100.html	

https://github.com/EllisLab/CodeIgniter/blob/develop/system/core/Security.php#L592

Removes	Invisible	characters	e.g.,	%00	i.e.,	NULL

	
https://twitter.com/kinugawamasato

https://zdresearch.com/zdresearch-xss1-challenge-
writeup/

http://websec.ca/kb/sql_injection#MySQL_Fuzzing_Obfuscation

demo:	http://jsfiddle.net/GTxVt/5/

HxD	http://mh-nexus.de/en/hxd/

https://twitter.com/soaj1664ashar/status/358574268386246656

https://github.com/EllisLab/CodeIgniter/issues/2667

https://github.com/EllisLab/CodeIgniter/issues/2667

Only	for	attendees	:)

I	surveyed	top	10	sites	from	the	following	10	categories	...

http://www.scribd.com/doc/210121412/XSS-is-not-going-
anywhere

Our	large	scale	survey	of	PHP-based	sanitisation	routines
shows	SAD	state	of	web	security	as	far	as	XSS	is
concerned.
The	proposed	attack	and	testing	methodology	is	general
and	may	be	applied	to	other	server-side	languages.
What	if	we	automate	this	context-specific	attack
methodology	and	unleash	automation	tool	on	a	large
scale	survey	of	deep	web	...	:)

@padraicb													

@enygma														

@metromoxie			

