
Hacking The IoT (Internet of Things) -
PenTesting RF Operated Devices

Erez Metula

Application Security Expert

Founder, AppSec Labs

ErezMetula@AppSec-Labs.com

About Me

Founder of AppSec Labs

OWASP IL Board

Application security expert

Book author
Managed Code Rootkits (Syngress)

Speaker & trainer

Presented at BlackHat, Defcon, RSA, OWASP USA,
OWASP IL, etc..

Secure coding/hacking trainer

Agenda

Intro

Basic RF terminology & Intro to SDR (Software Defined Radio)

Capturing & replaying RF transmissions

Reverse engineering unknown RF protocol: step-by-step

Playing with an IoT wireless alarm system

Breaking car key FOB (and RF operated devices in general)

Replay, transmission and message tampering

Jamming

Why Focus on RF?

Common IoT Architecture
..and the target system for today..

Common RF Protocols
Used in IoT

Bluetooth/BLE (2.4GHz)

Zigbee (2.4GHz)

Z-wave (900MHz)

Wifi (2.4GHz)

Cellular (900/1800/1900/2100MHz)

Custom RF (?)

The focus of this talk will be custom RF as it doesn’t
have any generic tool but rather a set of
tools/techniques

Common Unlicensed Bands

Common ISM bands used in IoT systems
315 MHz

433 MHz

902-928 MHz

863 – 870 MHz

2.4 GHz

5.8 GHz

Reverse Engineering Unknown
RF Transmissions

Some basic questions we’ll need to answer
Frequency

Channel width

Modulation

Bit rate

Preamble

Sync word

CRC?

Whitening

WARNING

WARNING

The spectrum is a limited public resource

Playing with illegal radio might get you arrested..
It can interfere with critical systems, homeland security,
army, etc

It is advised to use a Faraday cage (“RF cage”)

The spectrum is a limited public resource

Playing with illegal radio might get you arrested...
It can interfere with critical systems, homeland security,
army, etc.

It is advised to use a Faraday cage (“RF cage”)

Software Defined Radio (SDR)

a radio communication system where components
that have been typically implemented in hardware (
mixers, filters, amplifiers,modulators, etc.) are
instead implemented by means of software

Drag and drop components and create a flowgraph!

Software Defined Radio (SDR)

gnuradio

HackRF One

A Software Defined Radio peripheral capable of
transmission or reception of radio signals from 1
MHz to 6 GHz.

One of the best peripherals that are out there

Can receive and transmit

Cost: 300$

RTL-SDR

RTL-SDR is a very cheap software defined radio that
uses a DVB-T TV tuner dongle based on the
RTL2832U chipset.

Essentially, this means that a cheap $20 TV tuner
USB dongle with the RTL2832U chip can be used as a
computer based SDR.

Drawback – receive only. But still great for analysis!

DEMO – Disarming an Alarm
System Using Replay Attack

Zero knowledge replay attack

Record
hackrf_transfer -r 433780000.raw -f 433780000

Transmit
hackrf_transfer -t 433780000.raw -f 433780000 -x 20

Replay Advantage/Disadvantage

Advantage
Zero knowledge

Effective even if the message is encrypted

Disadvantage
Cannot create a valid message from scratch

Cannot “play” with messages - many times you’d like to modify
a message based on the original one

Tamper with ID

Tamper with command

Perform input validation attacks

Etc.

We must be able to analyze the signal so we can recreate
it manually “from scratch”

Planning

1. Information gathering

2. Frequency

3. Modulation

4. Deviation

5. Preamble/syncword

6. Symbol rate

7. Transmission!

Step 1 – Information Gathering

A good starting point – if you have some luck –
search for the FCC ID

https://www.fcc.gov/general/fcc-id-search-page

https://fccid.io/ demo: https://fccid.io/Y8PFJ17-1

Step 1 – Information Gathering

Information extracted from the FCC site

Step 1 – Information Gathering

Do some hardware research (optional)

Open the device, and look at the PCB

Identify major electric components,
mainly the microcontroller and the RF
module

Look for UART/serial/etc.

Use a logical analyzer

Etc.

Step 2 - Frequency

Use a spectrum analyzer

Gqrx:

You can then dump the signal to a file:

rtl_sdr -f 433950000 -s 2000000 -g 20 captured.cu8

Step 3 - Modulation

Representing digital data as variations in the carrier
wave

Step 4 - Deviation

Often relevant for FSK

Step 5 - Preamble/Sync Word

Preamble = start of message

Sync word = start of data

Step 6 - Symbol Rate

Symbol = 0 or 1

Symbol rate = symbols per second

DEMO – Analyzing the Signal

Capture a signal (“disarming”)

Analyze the signal

Extract all the required info

Checklist - What We
Know So Far..

Frequency = 433.92 MHz

Modulation = ASK/OOK

Bit rate = 3000 bits per second

Sync word = no

Preamble = no

Message structure = System ID, Command

Step 7 – Transmission!

Now it’s time to generate the message from scratch

Option 1 – use a flow graph
Too complicated, not interactive

Option 2 - use a commandline RF tool
Simple to use

Interactive!

Yardstick One and RFCat

Yardstick one - a sub-1 GHz wireless test tool
(developed by Michael Ossmann)

Rfcat – Python-based firmware for transmitting and

receiving RF (Developed by atlas)

DEMO – Disarming an Alarm System
by Rebuilding the Transmission From
Scratch

Setup rfcat with all required info

Send our own transmissions!

So we know..

What is the actual message

The message structure
20 bit system ID, 4 bit command ID

We can brute force ANY system in about 2 hours

Demo – if time permits
Brute force calculation

Command ID fuzzing

Jamming

A device that deliberately interferes

with authorized wireless communications

Resembles DoS

JAMMING IS ILLEGAL

Disable any commands that are sent to the system
Example: prevent the alarm system from arming

Disrupt any information that is sent between the
components

Example: disrupt the PIR movement sensor

Attack is against the receiver (though logically it is
against the sender)

Demo – Simple “Jamming”

No more motion detection..

Crypto Challenges

Encryption is less used (compared to traditional
“modern” applications)

Hardware challenges
CPU

Memory

Flash space (example: 2k RSA key)

Battery power

Lack of receiving ability (i.e. transmitter only hardware)

We’ll often encounter
No encryption at all

Lack of challenge response

Weak crypto algorithms

Rolling Code ("Hopping Code“)

Prevents replay attacks – attacker might record a
fixed code transmission and replays it at a later time
to cause the receiver to 'unlock‘

Useful in 1-way only communications systems

Common implementation
Common PRNG — in both transmitter and receiver

Transmitter sends 'next' code in sequence

Receiver compares 'next' to its calculated 'next' code. A
tolerance of next 256 codes is accepted in case receiver
missed some transmitted keypresses.

Rolling Code Attacks

It was demonstrated in 2015 by Samy Kamkar how a simple
but clever attack can break rolling codes

Steps
The device transmits a jamming signal to block the vehicle's reception
of rolling code signals sent by the victim
The victim tries again, sending the 2nd code
The device records these signals from both 1st and 2nd attempts
needed to unlock the vehicle.
The recorded 1st code is forwarded to the vehicle only when the
owner makes the 2nd attempt
The recorded 2nd code is retained for future use

Shift-Registers

It is common for bits that are read from the air to be
stored in a shift-register

A portion of the stream (“window”) is examined
each time

Each output is connected to the next input

A circuit that shifts the 'bit array' stored in it by one
position

The Meaning

If there are some extra bits before/after the real
value, it will be accepted by the receiver!

We can sent 13 bits to test two 12-bit

codes instead of sending a full 24 bits

De-Bruijn Sequences

a cyclic sequence in which every possible length-n
string on A occurs exactly once as a substring

Such a sequence is denoted by B(k, n) and has length
kn, which is also the number of distinct substrings of
length n on A; De Bruijn sequences are therefore
optimally short

De-Bruijn Sequences

There are distinct De Bruijn sequences B(k, n)

Example –
The pin code is composed of 0-9 digits, length = 4

Trying all codes separately would require 4 (byte) × 10000
(possibilities) = 40000 byte.

Using De-Bruijn we have B(10, 4) solutions, with length
10000. Therefore, only at most 10000 + 3 = 10003 (as the
solutions are cyclic) bytes are needed to open the lock.

Demo – if Time Permits

Summary

IoT security requires you to look beyond the server
side and mobile app security

For simple a replay, a good SDR device will just do

It is advised to analyze the transmissions and reverse
engineer them

“security by obscurity” is often encountered

Now go hack the RF world.. ☺

QUESTIONS ?

Thank You!

Erez Metula

Chairman & Founder, AppSec Labs

ErezMetula@AppSec-Labs.com

…now go to see Tal’s talk..

