
OWASP MOBILE SECURITY TESTING
GUIDE 101

Jeroen Willemsen – Open
Security Summit

About me

Jeroen Willemsen
@commjoenie
jeroen.willemsen@owasp.org
“Security architect”
“Full-stack developer”
“Mobile security”

@OWASP_MSTG

mailto:jeroen.willemsen@owasp.org

Agenda

• Introduction into the MASVS

• Introduction into the MSTG

• Some examples

Mobile security

1. Can you do a Cross Site Scripting (XSS) attack in a native app?
1. What if there is no webview?

2. Can you do a Cross-Site Request Forgery (CSRF) attack in a
native app without a webview?

Mobile security?

• So CSRF and XSS do not easily apply.

• But path-traversals do…

Mobile security?

• So CSRF and XSS do not easily apply.
• But path-traversals do…
• And then there is… Data leakage
– through logging,
– through insecure storage,
– Through IPC.

• What about weak authentication
mechanisms?

• What about reverse engineering?

How do we fix this?
Mobile Application
Security
Verification Standard
https://github.com/O
WASP/owasp-masvs

Mobile Security
Testing Guide
https://github.com/O
WASP/owasp-mstg

Mobile Appsec
Checklist

https://github.com/OWASP/owasp-masvs/releases
https://github.com/OWASP/owasp-mstg

OWASP Mobile AppSec Verification Standard

• Started as a fork of the OWASP ASVS
• Formalizes best practices and other security

requirements
• Mobile-specific, high-level, OS-agnostic

• Why?
• Shift left: give security requirements a-priori.
• Give a clear goal during implementation
• Give a clear goal during penetration testing

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project

OWASP Mobile AppSec Verification Standard

• Architecture & design
• Data storage & privacy
• Cryptography
• Authentication & Session management

• Network Communication
• Platform Interaction
• Code quality & build settings
• Resilience requirements

OWASP Mobile AppSec Verification Standard
V2: Data Storage and Privacy Requirements

Current status MASVS
Project Lead Lead Author Contributors and Reviewers

Sven Schleier &
Jeroen Willemsen Bernhard Mueller

Alexander Antukh, Mesheryakov Aleksey,
Bachevsky Artem, Jeroen Beckers, Vladislav
Chelnokov, Ben Cheney, Stephen Corbiaux, Manuel
Delgado, Ratchenko Denis, Ryan Dewhurst,
Tereshin Dmitry, Christian Dong, Oprya Egor, Ben
Gardiner, Rocco Gränitz, Henry Hu, Sjoerd
Langkemper, Vinícius Henrique Marangoni, Martin
Marsicano, Roberto Martelloni, Gall Maxim, Rio
Okada, Abhinav Sejpal, Stefaan Seys, Yogesh
Shamrma, Prabhant Singh, Nikhil Soni, Anant
Shrivastava, Francesco Stillavato, Romuald
SZKUDLAREK, Abdessamad Temmar, Koki
Takeyama, Chelnokov Vladislav

Your turn!

• https://github.com/OWASP/owasp-masvs
• https://mobile-security.gitbook.io/masvs/

üDownload it

ü Read it

üUse it

üGive Feedback! Create an issue or a PR

ü Tweet about it (@OWASP_MSTG)

https://github.com/OWASP/owasp-masvs
https://mobile-security.gitbook.io/masvs/

Agenda

• Introduction into the MASVS

• Introduction into the MSTG

• Some examples

OWASP Mobile Security Testing Guide (MSTG)

• Manual for testing security maturity of iOS
and Android (mostly) native apps.

• Maps on MASVS requirements.

• Why?
• Educate developers and penetration testers.
• Provide a baseline for automated checks

OWASP Mobile Security Testing Guide (MSTG)

• General testing guide
• Android Testing guide
• iOS Testing guide

OWASP Mobile Security Testing Guide (MSTG)

• General testing guide
• Android Testing guide
• iOS Testing guide
• Crackme’s & Challenges

Kudos to Bernhard Mueller @bernhardm for his hard work!

OWASP Mobile Security Testing Guide (MSTG)

• General testing guide
• Android Testing guide
• iOS Testing guide
• Crackme’s & Challenges
• MSTG playground (External)

Current status MSTG
Authors Co-Authors Top Contributors Reviewers Editors

Bernhard Mueller

Jeroen Willemsen
(@jeroenwillemsen)

Sven Schleier
(@sushi2k)

Carlos Holguera
Romuald Szkudlarek

Jeroen Beckers
Pawel Rzepa
Francesco Stillavato
Andreas Happe
Alexander Anthuk
Henry Hoggard
Wen Bin Kong
Abdessamad Temmar
Bolot Kerimbaev
Cláudio André
Slawomir Kosowski

Sjoerd Langkemper
Anant Shrivastava
Jeroen Beckers

Heaven Hodges
Caitlin Andrews
Nick Epson
Anita Diamond
Anna Szkudlarek

The full list of contributors is available on GitHub:
https://github.com/OWASP/owasp-mstg/graphs/contributors

https://github.com/OWASP/owasp-mstg/graphs/contributors

MSTG Project status

MSTG Project status – allways more work

• Update to iOS 12/13 & Android Pie/Q
• Restructure MSTG
• Add missing testcases
• Automate MSTG playground & merge with crackmes

Your turn!

• https://github.com/OWASP/owasp-mstg
https://mobile-security.gitbook.io/mstg/

üDownload it

ü Read it

üUse it

üGive Feedback (file an issue)

ü Fix issues: send in your Pull Requests!

ü Tweet about it (@OWASP_MSTG)

https://github.com/OWASP/owasp-mstg
https://mobile-security.gitbook.io/mstg/

Agenda

• Introduction into the MASVS

• Introduction into the MSTG

• Some examples

Network Communication Requirements

OWASP Mobile Application Security Verification Standard v1.1 21

V5: Network Communication Requirements

Control Objective
The purpose of the controls listed in this section is to ensure the confidentiality and integrity of
information exchanged between the mobile app and remote service endpoints. At the very least,
a mobile app must set up a secure, encrypted channel for network communication using the
TLS protocol with appropriate settings. Level 2 lists additional defense-in-depth measure such
as SSL pinning.

Security Verification Requirements
Description L1 L2
5.1 Data is encrypted on the network using TLS. The secure channel is used

consistently throughout the app.
� �

5.2 The TLS settings are in line with current best practices, or as close as possible
if the mobile operating system does not support the recommended standards.

� �

5.3 The app verifies the X.509 certificate of the remote endpoint when the secure
channel is established. Only certificates signed by a trusted CA are accepted.

� �

5.4 The app either uses its own certificate store, or pins the endpoint certificate or
public key, and subsequently does not establish connections with endpoints
that offer a different certificate or key, even if signed by a trusted CA.

 �

5.5 The app doesn't rely on a single insecure communication channel (email or
SMS) for critical operations, such as enrollments and account recovery.

 �

5.6 The app only depends on up-to-date connectivity and security libraries. �

References
The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the
requirements listed in this section.

• Android - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05g-Testing-
Network-Communication.md

• iOS - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06g-Testing-
Network-Communication.md

For more information, see also:

• OWASP Mobile Top 10: M3 - Insecure Communication:
https://www.owasp.org/index.php/Mobile_Top_10_2016-M3-Insecure_Communication

• CWE: https://cwe.mitre.org/data/definitions/319.html
• CWE: https://cwe.mitre.org/data/definitions/295.html

Network Communication Requirements

• The MSTG will guide you on how to review the code & do dynamic
analysis of
– The usage of TLS in general
– The settings of the TLS connection in general
– Certificate validation (general, iOS and Android specific)

OWASP Mobile Application Security Verification Standard v1.1 21

V5: Network Communication Requirements

Control Objective
The purpose of the controls listed in this section is to ensure the confidentiality and integrity of
information exchanged between the mobile app and remote service endpoints. At the very least,
a mobile app must set up a secure, encrypted channel for network communication using the
TLS protocol with appropriate settings. Level 2 lists additional defense-in-depth measure such
as SSL pinning.

Security Verification Requirements
Description L1 L2
5.1 Data is encrypted on the network using TLS. The secure channel is used

consistently throughout the app.
� �

5.2 The TLS settings are in line with current best practices, or as close as possible
if the mobile operating system does not support the recommended standards.

� �

5.3 The app verifies the X.509 certificate of the remote endpoint when the secure
channel is established. Only certificates signed by a trusted CA are accepted.

� �

5.4 The app either uses its own certificate store, or pins the endpoint certificate or
public key, and subsequently does not establish connections with endpoints
that offer a different certificate or key, even if signed by a trusted CA.

 �

5.5 The app doesn't rely on a single insecure communication channel (email or
SMS) for critical operations, such as enrollments and account recovery.

 �

5.6 The app only depends on up-to-date connectivity and security libraries. �

References
The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the
requirements listed in this section.

• Android - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05g-Testing-
Network-Communication.md

• iOS - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06g-Testing-
Network-Communication.md

For more information, see also:

• OWASP Mobile Top 10: M3 - Insecure Communication:
https://www.owasp.org/index.php/Mobile_Top_10_2016-M3-Insecure_Communication

• CWE: https://cwe.mitre.org/data/definitions/319.html
• CWE: https://cwe.mitre.org/data/definitions/295.html

Network Communication Requirements

OWASP Mobile Application Security Verification Standard v1.1 21

V5: Network Communication Requirements

Control Objective
The purpose of the controls listed in this section is to ensure the confidentiality and integrity of
information exchanged between the mobile app and remote service endpoints. At the very least,
a mobile app must set up a secure, encrypted channel for network communication using the
TLS protocol with appropriate settings. Level 2 lists additional defense-in-depth measure such
as SSL pinning.

Security Verification Requirements
Description L1 L2
5.1 Data is encrypted on the network using TLS. The secure channel is used

consistently throughout the app.
� �

5.2 The TLS settings are in line with current best practices, or as close as possible
if the mobile operating system does not support the recommended standards.

� �

5.3 The app verifies the X.509 certificate of the remote endpoint when the secure
channel is established. Only certificates signed by a trusted CA are accepted.

� �

5.4 The app either uses its own certificate store, or pins the endpoint certificate or
public key, and subsequently does not establish connections with endpoints
that offer a different certificate or key, even if signed by a trusted CA.

 �

5.5 The app doesn't rely on a single insecure communication channel (email or
SMS) for critical operations, such as enrollments and account recovery.

 �

5.6 The app only depends on up-to-date connectivity and security libraries. �

References
The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the
requirements listed in this section.

• Android - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05g-Testing-
Network-Communication.md

• iOS - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06g-Testing-
Network-Communication.md

For more information, see also:

• OWASP Mobile Top 10: M3 - Insecure Communication:
https://www.owasp.org/index.php/Mobile_Top_10_2016-M3-Insecure_Communication

• CWE: https://cwe.mitre.org/data/definitions/319.html
• CWE: https://cwe.mitre.org/data/definitions/295.html

SSL pinning
Version

Certificate Serial Number

Certificate Algorithm
Identifier for
Certificate Issuer’s Signature

Issuer

Validity Period

Subject

Subject
Public-Key
Information

Issuer Unique Identifier

Subject Unique Identifier

Extensions

Algorithm Identifier

Public-key Value

Certification Authority’s Digital
Signature

Root
CA

Intermediate

Leaf cert

TLS

Network Communication Requirements
• The MSTG helps in finding ways to do pinning
– In Android (OKHttp, WebView, networkSecurityConfig, using

TrustManagers,
– In iOS (NSURLConnection, TrustKit, AFNetworking, Alamofire)
– Hybrid/multiplatform: Apache Cordova, Xamarin, Phonegap.

• But what about verifying it? Or bypassing it?

SSL Pinning – verify whether it is on
• Android:
– Below Android 7: install your Burp/mitmproxy/Zap CA on the device,
– Android 7 and above: rework networksecurityconfig.xml
– Try to MiTM the application.

• iOS:
– Install install your Burp/mitmproxy/Zap CA on the device
– Try to MiTM the application.

SSL Pinning – bypassing it

• iOS: SSL Killswitch V2

• iOS: Frida & Objection

• Android: Xposed

• Android: Frida & Objection

SSL Pinning – SSL killswitch V2

Two easy ways to break most pinners:

1. Jailbreak à use Cydia & SSL Killswitch V2

2. Do dynamic instrumentation on a non-
jailbroken device

See https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04f-
Testing-Network-Communication.md
and https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06g-
Testing-Network-Communication.md

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04f-Testing-Network-Communication.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06g-Testing-Network-Communication.md

SSL Pinning – SSL killswitch V2

SSL killswitch

Mobile substrate

Mobile app @ iOS 10 / 11

tls_helper_create_peer_trust

Mobile app @ iOS 10 / 11

tls_helper_create_peer_trust

Mobile app @ iOS 10 / 11
tls_helper_create_peer

_trust

Patch underlying SSL
handshake implementation
Used by NSURLConnection
For all apps…

MSHookFunction

Mobile app @ iOS 9

SSLHandshake,
SSLSetSessionOption,

SSLCreateContext

Mobile app @ iOS 9

SSLHandshake,
SSLSetSessionOption,

SSLCreateContext

Mobile app @ iOS 9

SSLHandshake,
SSLSetSessionOption,

SSLCreateContext

What if you don’t want to jailbreak?

• Jailbroken devices require maintenance
• Jailbreaks are getting harder to find
• What about jailbreak protection of the app?
• Let’s patch the app itself!

SSL pinning – non-jailbroken device

SSL Pinning – Objection

Patch underlying SSL
handshake implementation
Used by NSURLConnection
For one app.

Mobile app

1. Frida server in Gadget waits
2. Objection connects to server with explore REPL
3. Objection calls script that patches underlying SSL handshake implementation

SSL Pinning in Android - Objection

Let’s do similar runtime patching in Android…

SSL Pinning in Android - Xposed

Let’s pick it up from the rooted device again…

Authentication requirements

OWASP Mobile Application Security Verification Standard v1.1 19

V4: Authentication and Session Management Requirements

Control Objective
In most cases, users logging into a remote service is an integral part of the overall mobile app
architecture. Even though most of the logic happens at the endpoint, MASVS defines some
basic requirements regarding how user accounts and sessions are to be managed.

Security Verification Requirements
Description L1 L2

4.1 If the app provides users access to a remote service, some form of
authentication, such as username/password authentication, is performed at
the remote endpoint.

� �

4.2 If stateful session management is used, the remote endpoint uses randomly
generated session identifiers to authenticate client requests without sending
the user's credentials.

� �

4.3 If stateless token-based authentication is used, the server provides a token
that has been signed using a secure algorithm.

� �

4.4 The remote endpoint terminates the existing session when the user logs out. � �

4.5 A password policy exists and is enforced at the remote endpoint. � �

4.6 The remote endpoint implements a mechanism to protect against the
submission of credentials an excessive number of times.

� �

4.7 Biometric authentication, if any, is not event-bound (i.e. using an API that
simply returns "true" or "false"). Instead, it is based on unlocking the
keychain/keystore.

 �

4.8 Sessions are invalidated at the remote endpoint after a predefined period of
inactivity and access tokens expire.

 �

4.9 A second factor of authentication exists at the remote endpoint and the 2FA
requirement is consistently enforced.

 �

4.10 Sensitive transactions require step-up authentication. �

4.11 The app informs the user of all login activities with their account. Users are
able view a list of devices used to access the account, and to block specific
devices.

 �

References
The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the
requirements listed in this section.

• For Android - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05f-
Testing-Authentication.md

• For iOS - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06f-Testing-
Authentication-and-Session-Management.md

TouchID the wrong way: using LAContext
There are 2 ways to use TouchID:

1. Protect an entry in the keychain and unlock it via TouchID

2. Use the LocalAuthenticationContext :
LocalAuthenticationContext.evaluatePolicy(.deviceOwnerAut
henticationWithBiometrics, localizedReason: reasonString) {
success, evaluateError in {
If success {

successmethods()
} else {

….
}

What if we call the
successmethods() directly?

Bypassing Touch-ID

• With

• With

• Both cases: use Frida to hook onto
`evaluatePolicy:localizedReason:reply`
– Ensures that when evaluatePolicy is calls that the reply its success is

set to true (E.g.: call success methods)
See https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06f-
Testing-Local- Authentication.md

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06f-Testing-Local-%20Authentication.md

Data storage & privacy requirements

OWASP Mobile Application Security Verification Standard v1.1 16

V2: Data Storage and Privacy Requirements

Control Objective
The protection of sensitive data, such as user credentials and private information, is a key focus
in mobile security. Firstly, sensitive data can be unintentionally exposed to other apps running
on the same device if operating system mechanisms like IPC are used improperly. Data may
also unintentionally leak to cloud storage, backups, or the keyboard cache. Additionally, mobile
devices can be lost or stolen more easily compared to other types of devices, so an adversary
gaining physical access is a more likely scenario. In that case, additional protections can be
implemented to make retrieving the sensitive data more difficult.

Note that, as the MASVS is app-centric, it does not cover device-level policies such as those
enforced by MDM solutions. We encourage the use of such policies in an Enterprise context to
further enhance data security.

Definition of Sensitive Data
Sensitive data in the context of the MASVS pertains to both user credentials and any other data
considered sensitive in the particular context, such as:

• Personally identifiable information (PII) that can be abused for identity theft: Social security
numbers, credit card numbers, bank account numbers, health information;

• Highly sensitive data that would lead to reputational harm and/or financial costs if
compromised: Contractual information, information covered by non-disclosure agreements,
management information;

• Any data that must be protected by law or for compliance reasons.

Security Verification Requirements
The vast majority of data disclosure issues can be prevented by following simple rules. Most of
the controls listed in this chapter are mandatory for all verification levels.

Description L1 L2
2.1 System credential storage facilities are used appropriately to store sensitive

data, such as PII, user credentials or cryptographic keys.
� �

2.2 No sensitive data should be stored outside of the app container or system
credential storage facilities.

� �

2.3 No sensitive data is written to application logs. � �

2.4 No sensitive data is shared with third parties unless it is a necessary part of
the architecture.

� �

2.5 The keyboard cache is disabled on text inputs that process sensitive data. � �

2.6 No sensitive data is exposed via IPC mechanisms. � �

2.7 No sensitive data, such as passwords or pins, is exposed through the user
interface.

� �

2.8 No sensitive data is included in backups generated by the mobile operating
system.

 �

OWASP Mobile Application Security Verification Standard v1.1 17

2.9 The app removes sensitive data from views when backgrounded. �
2.10 The app does not hold sensitive data in memory longer than necessary, and

memory is cleared explicitly after use.
 �

2.11 The app enforces a minimum device-access-security policy, such as requiring
the user to set a device passcode.

 �

2.12 The app educates the user about the types of personally identifiable
information processed, as well as security best practices the user should
follow in using the app.

 �

References
The OWASP Mobile Security Testing Guide provides detailed instructions for verifying the
requirements listed in this section.

• For Android - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-
Testing-Data-Storage.md

• For iOS - https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06d-Testing-
Data-Storage.md

For more information, see also:

• OWASP Mobile Top 10: M2 - Insecure Data Storage:
https://www.owasp.org/index.php/Mobile_Top_10_2016-M2-Insecure_Data_Storage

• CWE: https://cwe.mitre.org/data/definitions/922.html

There is much more!

ü Root / Jailbreak Detection
ü Anti-Debugging
ü Detecting Reverse Engineering Tools
ü Emulator Detection / Anti-Emulation
ü File and Memory Integrity Checks
ü Device Binding
ü Obfuscation

• Reverse Engineering

There is much more!

• Reverse Engineering
• Analysis & best practices for
– Storage
– Cryptography
– Local Authentication
– Network Communication
– Platform interaction
– Code quality & build settings

QUESTIONS?
@OWASP_MSTG
jeroen.willemsen@owasp.org

THANK YOU!

@OWASP_MSTG
jeroen.willemsen@owasp.org

MOBILE SECURITY TESTING GUIDE
ONBOARDING

Jeroen Willemsen – Open
Security Summit

Agenda

• Introduction into the current state of the MSTG.
– Issues
– Milestones
– Project Page

• Release process.
• Contribution guidelines.
• Outline of the activities planned for this week.
• How to get started
• Notes for contributors & reviewers

https://github.com/OWASP/owasp-mstg/issues
https://github.com/OWASP/owasp-mstg/milestones
https://github.com/OWASP/owasp-mstg/projects

How to get started

1. Fork the repo you want to work on:
– https://github.com/OWASP/owasp-mstg
– https://github.com/OWASP/owasp-masvs

2. Setup local git at your system (preferrably with ssh keys)
3. Clone the repo to your system
4. Add the upstream repo (MASVS/MSTG) to your repo configuration
5. Create a branch, start your work, commit and push when ready
6. Pull request and ask our attention to speed it up J .
7. Review feedback? Parse it as soon as you can, so you can move

forward and add your stuff.

https://github.com/OWASP/owasp-mstg
https://github.com/OWASP/owasp-masvs

Notes for contributors

• For any tool: focus on the installation, basics and guide
towards it's own (online) help

• For every feature of a platform: focus on its working, best
practices, pitfalls and insecurities

Notes for reviewers

• Really bad PR? Ask to get in touch and work together
• Ok-ish PR with big errors: comments
• Small issues: try to comment
• In parallel: PR for your own fixes, but keep it to a ### level per

PR to cause less conflicts

FINAL NOTES:

• ALL EVENING sessions are in villa 708!

