c

=i
2 .
© ¢
P :
Q TH g c
N 8 g

oS = =
L b 3 |
m = - T ”

g 0O 585 S
Q a3 o% 2 Uk
O S50 98-) £5s I
 FQ 928 d ¥

m...m Q3¢ a SE 2
P At nF Q W _.mmm OW
) W nV.. .nl..PM o ©<28 EW

2 4 £6¢
S o= h"us © - -
> 22 238 & 'O
Q

O 2 woanm 7]

7
7

BeNelux
Day 2009

What's Changed?

It's About Risks, Not Just Vulnerabilities

o New title is: "The Top 10 Most Critical Web Application Security Risks”

OWASP Top 10 Risk Rating Methodology

e Based on the OWASP Risk Rating Methodology, used to prioritize Top 10

2 Risks Added, 2 Dropped

e Added: A6 — Security Misconfiguration
e Was A10 in 2004 Top 10: Insecure Configuration Management

e Added: A8 — Unvalidated Redirects and Forwards
* Relatively common and VERY dangerous flaw that is not well known

* Removed: A3 — Malicious File Execution
e Primarily a PHP flaw that is dropping in prevalence

e Removed: A6 — Information Leakage and Improper Error Handling
e A very prevalent flaw, that does not introduce much risk (normally)

OWASP BeNelLux Day 2009 e

Mapping from 2007 to 2010 Top 10

A2 — Injection Flaws A1l — Injection

A1l — Cross Site Scripting (XSS) A2 — Cross Site Scripting (XSS)

— | —|—>

A7 — Broken Authentication and Session Management A3 — Broken Authentication and Session Management

A4 — Insecure Direct Object Reference — A4 —Insecure Direct Object References

A5 — Cross Site Request Forgery (CSRF) — A5 — Cross Site Request Forgery (CSRF)

<was T10 2004 A10 — Insecure Configuration L A6 — Security Misconfiguration (NEW)

Management>

A10 — Failure to Restrict URL Access 'T A7 — Failure to Restrict URL Access

<not in T10 2007> + A8 — Unvalidated Redirects and Forwards (NEW)
A8 — Insecure Cryptographic Storage ¢ A9 — Insecure Cryptographic Storage

A9 — Insecure Communications i A10 - Insufficient Transport Layer Protection
A3 — Malicious File Execution — <dropped from T10 2010>

A6 — Information Leakage and Improper Error Handling _ <dropped from T10 2010>

OWASP BeNelLux Day 2009 e

OWASP Top 10 Risk Rating Methodology

Threat Attack Security Security Technical Business
Agents Vectors Weaknesses Controls Impacts Impacts

Weakness + u -+Contro+ mm
Weakness + u >+Contro+ mm

V' EELGESS V' EELGESS
Prevalence Detectability

Average Common Average Moderate

Difficult Uncommon Difficult Minor

2 1 1 2

W
XSS Example 1.3 * 2

W

2.6 weighted risk rating
OWASP BeNelLux Day 2009

The ‘new’ OWASP Top Ten (2010 rcl)

A3: Broken
A2: Cross Site Authentication
Scripting (XSS) and Session

Management

A4: Insecure
Direct Object
References

Al: Injection

A5: Cross Site
Request Forgery

A7: Failure to A8: Unvalidated
Restrict URL Redirects and
Access Forwards

AG6: Security

(CSRF) Misconfiguration

A9: Insecure A10: Insufficient
Cryptographic Transport Layer
Storage Protection

OWASP http://www.owasp.org/index.php/Top_10

The Open Web Application Security Project

lurp;l’.n'u.runv.uwasp_nrg

OWASP BeNelLux Day 2009 e

Al — Injection

Injection means...

e Tricking an application into including unintended commands in the data
sent to an interpreter

Interpreters...

o Take strings and interpret them as commands
e SQL, OS Shell, LDAP, XPath, Hibernate, etc...

SQL injection is still quite common

e Many applications still susceptible (really dont know why)
e Even though it's usually very simple to avoid

Typical Impact

e Usually severe. Entire database can usually be read or modified

e May also allow full database schema, or account access, or even OS level
access

OWASP BeNelLux Day 2009 e

Application Layer

Network Layer

SQL Injection — Illustrated

{141},

HTTP

1]

DB Table
[*)
)

request

N1/
é

= =
2 53
5} (]

Yt
= 5
6%, o)

Account: | OR1=1-
SKU:

A

1. Application presents a form to
the attacker

2. Attacker sends an attack in the
form data

3. Application forwards attack to
the database in a SQL query

4. Database runs query containing
attack and sends encrypted results
back to application

5. Application decrypts data as
normal and sends results to the user

OWASP BeNelLux Day 2009 e

|
Al — Avoid Injection Flaws

B Recommendations

1.
2.

Avoid the interpreter entirely, or
Use an interface that supports bind variables (e.g., prepared
statements, or stored procedures),

= Bind variables allow the interpreter to distinguish between code and
data

Encode all user input before passing it to the interpreter
Always perform ‘white list” input validation on all user supplied
input

Always minimize database privileges to reduce the impact of a
flaw

B References

» For more details, read the new

http://www.owasp.org/index.php/SOL Injection Prevention Cheat Sheet
OWASP BeNelLux Day 2009 e

A2 — Cross-Site Scripting (XSS)

Occurs any time...

e Raw data from attacker is sent to an innocent user’s browser

Raw data...

e Stored in database
e Reflected from web input (form field, hidden field, URL, etc...)
¢ Sent directly into rich JavaScript client

Virtually every web application has this problem

e Try this in your browser — javascript:alert(document.cookie)

Typical Impact

¢ Steal user’s session, steal sensitive data, rewrite web page, redirect user to
phishing or malware site

e Most Severe: Install XSS proxy which allows attacker to observe and direct
all user’s behavior on vulnerable site and force user to other sites

OWASP BeNelLux Day 2009 e

Cross-Site Scripting Illustrated

@ Attacker sets the trap — update

Favorites Tool

n=6&menu=51 v

Logou

How to Exploit Hidden Fields

Restart this Lesson

Attacker enters a
malicious script into a
web page that stores the
data on the server

— sees attacker profile

my profile
IZHE\\
B Application with
J stored XSS
vulnerability

@ Victim views page

File Ec Vi
Agdress] hiep:

n=6&menu=51

Custom Code

>

How to Exploit Hidden Fields

:::::

nnnnnn

Restart this Lesson

Script runs inside
victim’s browser with full
access to the DOM and
cookies

@ Script silently sends attacker Victim’s session cookie

OWASP BeNelLux Day 2009 e

A2 — Avoiding XSS Flaws

B Recommendations

» Eliminate Flaw
= Don't include user supplied input in the output page

» Defend Against the Flaw
= Primary Recommendation: Output encode all user supplied
input
(Use OWASP’s ESAPI to output encode:
http://www.owasp.org/index.php/ESAPI

= Perform 'white list’ input validation on all user input to be F=%
included in page A

= For large chunks of user supplied HTML, use OWASP’s
AntiSamy to sanitize this HTML to make it safe

See: http://www.owasp.org/index.php/AntiSamy

(AntiSamy)

OWASP BeNelLux Day 2009 e

|
Safe Escaping Schemes in Various HTML Execution

Contexts

€ Blank Page - Windows Internet Explorer [E=R IR

() @ sboutbank -][Googe ” - #1: (& <, >,") > &entity: (',/) > &#xHH;
| Y 4 |@Biankpage B - B - W - yeae~ Gton~ ESAPI: encodeForHTML()

HTML Element Content i ‘

(e.g., <div> some text to display </div>)

#2: All non-alphanumeric < 256 > &#xHH
ESAPI: encodeForHTMLAttribute()

HTML Attribute Values

(e.g., <input name="person' type="TEXT"
value='defaultValue>)

#3: All non-alphanumeric < 256 - \xHH
ESAPI: encodeForJavaScript()

JavaScript Data i

(e.g., <script> some javascript </script>)

#4: All non-alphanumeric < 256 - \HH
HTML Style Property Values ESAPI: encodeForCSS()

(e.g., .pdiv a:hover {color: red; text-decoration
underline})

| #5: All non-alphanumeric < 256 - %HH

URI Attribute Values ESAPI: encodeForURL()

(e.g., <a href="javascript:toggle('lesson')") '

&P Intemet | Protected Mode: On ®100% -
ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

See: www.owasp.org/index.php/XSS (Cross_Site_Scripting) Prevention_Cheat_Sheet for more
details OWASP BeNeLux Day 2009 é

A3 — Broken Authentication and Session
Management

HTTP is a “stateless” protocol

e Means credentials have to go with every request
e Should use SSL for everything requiring authentication

Session management flaws

e SESSION ID used to track state since HTTP doesn't
e and it is just as good as credentials to an attacker
e SESSION ID is typically exposed on the network, in browser, in logs, ...

Beware the side-doors

e Change my password, remember my password, forgot my password, secret
question, logout, email address, etc...

Typical Impact

e User accounts compromised or user sessions hijacked

OWASP BeNelLux Day 2009 e

Broken Authentication Illustrated

@ User sends credentials

www.boi.com?JSESSIONID=9FA1DBYEA...

OWAS? chﬁaat'f! Site uses URL rewriting @
E i.e., put session in URL)

Ho
&6
=
=D
3
S
=
S

Custom Code

in a forum

Hacker checks referer logs on www.hacker.com
and finds user’s JSESSIONID

@ Hacker uses JSESSIONID

and takes over victim’s
account

@ User clicks on a link to http:/www.hacker.com

OWASP BeNelLux Day 2009 e

|
A3 — Avoiding Broken Authentication and

Session Management

m Verify your architecture
» Authentication should be simple, centralized, and standardized
» Use the standard session id provided by your container
» Be sure SSL protects both credentials and session id at all times

m Verify the implementation
» Forget automated analysis approaches
» Check your SSL certificate
» Examine all the authentication-related functions
» Verify that logoff actually destroys the session
» Use OWASP’s WebScarab to test the implementation

A4 — Insecure Direct Object References

How do you protect access to your data?

e This is part of enforcing proper “Authorization”, along with
A7 — Failure to Restrict URL Access

A common mistake ...

* Only listing the ‘authorized’ objects for the current user, or

e Hiding the object references in hidden fields

e ... and then not enforcing these restrictions on the server side

e This is called presentation layer access control, and doesn’t work
e Attacker simply tampers with parameter value

Typical Impact

e Users are able to access unauthorized files or data

OWASP BeNelLux Day 2009 e

Insecure Direct Object References
Illustrated

| Online Banking | Account Summary | Checking - Microsoft Internet Explorer

: File Edit View Favorites Tools Help

i @Back - © - WA G JOsearch ¢ Faverites €9 (v

B Attacker notices his acct
parameter is 6065

2acct=6065

Le

& & 4 @06

Income and Expenses from Sep 26, 2004 (o Jan 16, 2005

Total Costs
Recurting Costs [
Yarishle Costs | sT0i404 |
Fined Costs
Total Dapasits

Welcome Teadora ﬂm

What can our
Cash Maximizer
account do

for you?

Checking 6534

A7 |

125331 |

Mext fip

m He modifies it to a

¥ F000 FA000 FOL00 FI000 FI0OO0 12,000 F14000 $10,000 §12,000 FI0.000 J2I000 H24000

]la'\‘.'f > R i

et e

Cheaking 6513
Currant Balance

Aviilible Balsnce

Transfer Funds

Yaur Bills

$9999,99 dye in next:

Pay Bills

LuUstomer Service

girivolal

4251208
$2200.00

0

|Lday | »
»

Privacy & Securty

Date

Now 22, 2004
How 22, 2004
Mow 19, 2004
Nov 16, 2004
Nov 16, 2004
Maw 13, 2004
Mow 15, 2004
Now 10, 2004
Now 4, 2004
How 3, 2004
Mow I, 2004
Moy 1, 2004
How I, 2004
Qer 29, 2004

Free 3000

Description

Tntard i Payrient

ATH Withdraw al, myBank; San Rafiel, CA
ATH Withdrawal, myBank, San Franciscs, CA
SBC Phone 2| Payrvent

myBank Credit Card Bill Payment

ATH Withdrawal, myBank, Sin Rafael, CA
myBank Payrall

ATH Withdrawsl myBank, Sin Franciscs, CA
ATH Withdrawal, myBank, San Francisce, CA
g Btk Cradm Card Bill Payemant

Werking Azaets Bill Paymant

Prudential Insurance Bill Payment

Chass Manhattan Momgage Corp Blll Paymant
ATM Withdrawal, myBank, San Francisco, 4

muboank Baerall

[N)

Category
Tetaraie
Cagh
Cash
£ Phang
Cradit Card
Cash
Payrall
Cash
Cash
Cradit Card
3 Phens
B Insurance
£ Marmgags
Cash

Bawrall

Amsunt
$25
$100.00
$100,00
$94.23
$295257
§100.00
FITHTE
§1o0.00
§100.00
$10.00
$13.57
$435.00
$2184.42

$100.00 |
tuaznsa ™)
Wit Cash Flow: 5435.20

@ O Internet

nearby number
?acct=6066

m Attacker views the
victim’s account
information

OWASP BeNelLux Day 2009 e

A4 — Avoiding Insecure Direct Object
References

B Eliminate the direct object reference

» Replace them with a temporary mapping value (e.g. 1, 2, 3)

» ESAPI provides support for numeric & random mappings
= IntegerAccessReferenceMap & RandomAccessReferenceMap

http://app?file=Reportl23.xls Report123.xls
http://app?file=1 Access

Reference
http://app?id=9182374 Map Acct:9182374

http://app?id=7d3J93

m Validate the direct object reference

» Verify the parameter value is properly formatted
» Verify the user is allowed to access the target object
= Query constraints work great!

» Verify the requested mode of access is allowed to the target
object (e.qg., read, write, delete)
OWASP BeNelLux Day 2009 e

A5 — Cross Site Request Forgery (CSRF)

Cross Site Request Forgery

¢ An attack where the victim’s browser is tricked into issuing a command to
a vulnerable web application

 Vulnerability is caused by browsers automatically including user
authentication data (session ID, IP address, Windows domain credentials,
...) with each request

Imagine...

e What if a hacker could steer your mouse and get you to click on links in
your online banking application?

e What could they make you do?

Typical Impact

e Initiate transactions (transfer funds, logout user, close account)
e Access sensitive data
e Change account details

OWASP BeNelLux Day 2009 e

CSRF Vulnerability Pattern

B The Problem

» Web browsers automatically include most credentials with each
request

» Even for requests caused by a form, script, or image on another site

m All sites relying solely on automatic

credentials are vulnerable!
» (almost all sites are this way)

m Automatically Provided Credentials
» Session cookie)
» Basic authentication header
» IP address
» Client side SSL certificates __ iy
» Windows domain authentication tr et &
OWASP BeNelLux Day 2009 e

CSRF Illustrated

Attacker sets the trap on some website on the internet
(or simply via an e-mail)

file Edt Vew Favortes Iook Help &
—

E| Help Center | Costact L | ATWS Banking Stones
View Your Accounts
1. Usemame, 2 Pasvword
' ghot Youliow O sl Buieess | Commarcial | . . .
e s e — Application with CSRF
;xcf:l‘uls‘.nr-'narr Bl - sian on | I . . | LA K
Weoed to sot up enline access? Hldden <lmg> tag Vlllnel'ablllty

Sign Up How or Learn More
Swowit (i)

&5 . . o contains attack agaigst
', vulnerable site é L

@
o0
5
s
=]
=

While logged into vulnerable site,
victim views attacker site

Custom Code

How to Exploit Hidden Fields

WebGoat V4 [>

Vulnerable site sees

 tag loaded by
browser — sends GET
request (including
credentials) to vulnerable
site

legitimate request from
victim and performs the
action requested

OWASP BeNelLux Day 2009 e

A5 — Avoiding CSRF Flaws

B Add a secret, not automatically submitted, token to ALL sensitive requests
» This makes it impossible for the attacker to spoof the request
» (unless there’s an XSS hole in your application)
» Tokens should be cryptographically strong or random

m Options
» Store a single token in the session and add it to all forms and links
» Hidden Field: <input name="token" value="687965fdfaew87agrde"

type="hidden" />
= Single use URL: /accounts/687965fdfaew87agrde
= Form Token: /accounts?auth=687965fdfaew87agrde sas
» Beware exposing the token in a referer header
» Hidden fields are recommended
» Can have a unique token for each function
» Use a hash of function name, session id, and a secret
» Can require secondary authentication for sensitive functions (e.g

m Don't allow attackers to store attacks on your site

» Properly encode all input on the way out
» This renders all links/requests inert in most interpreters

See the new: www.owasp.org/index.php/CSRF Prevention Cheat Sheet for more

OWASP BeNelLux Day 2009 e

A6 — Security Misconfiguration

Web applications rely on a secure foundation

e All through the network and platform
e Don't forget the development environment

Is your source code a secret?

e Think of all the places your source code goes
¢ Security should not require secret source code

CM must extend to all parts of the application

e All credentials should change in production

Typical Impact

e Install backdoor through missing network or server patch
e XSS flaw exploits due to missing application framework patches

e Unauthorized access to default accounts, application functionality or data,
or unused but accessible functionality due to poor server configuration

OWASP BeNelLux Day 2009 e

Security Misconfiguration Illustrated

Custom Code

App Configuration

-

Development ‘
Framewcik

App Server
frﬁ‘-_l!\hn \ Web Server

Hardened OS |
v

QA Servers ‘

Insider

Test Servers ‘

o

Source Control ‘

OWASP BeNelLux Day 2009 e

A6 — Avoiding Security Misconfiguration

m Verify your system’s configuration management

» Secure configuration “hardening” guideline
= Automation is REALLY USEFUL here

» Must cover entire platform and application

» Keep up with patches for ALL components
= This includes software libraries, not just OS and Server applications
» Analyze security effects of changes

m Can you “dump” the application configuration
» Build reporting into your process
» If you can't verify it, it isn't secure

m Verify the implementation
» Scanning finds generic configuration and missing patch problems

OWASP BeNelLux Day 2009 e

A7 — Failure to Restrict URL Access

How do you protect access to URLs (pages)?

e This is part of enforcing proper “authorization”, along with
A4 — Insecure Direct Object References

A common mistake ...

e Displaying only authorized links and menu choices
e This is called presentation layer access control, and doesn’t work
e Attacker simply forges direct access to ‘unauthorized’ pages

Typical Impact

e Attackers invoke functions and services they’re not authorized for
e Access other user’s accounts and data
e Perform privileged actions

OWASP BeNelLux Day 2009 e

Failure to Restrict URL Access Illustrated

| Online Banking | Account Summary | Checking - Microsoft Internet Explorer J
. Eile Edit View Favorites Tools Help

ot 6 @ @6LPms w08 88 Do m Attacker notices the URL
https://www.onlinebank.com/user/getAccounts . . .
indicates his role

wecore oo & [l | C @ 0o

What can our Ineome and Expenses from Sep 26, 2004 o Jan 16, 2005 Checking 6534 / u Se r/g etACCO u n ts

Cash Maximizer Tokal Costs i s
account da Recurving Custs [0
for you?

R iAol

Fined Costs |
Tetal Dapasits

ST |

Foira s

o s s ||l He modifies it to another

- |
Date Description Category Amsunt

Mow 22, 2004 IWMeresE Payrmant Ll s —I d i reCtO ry (ro I e)

Mlllilijilll o $3568.991 W 1oy 22, 2004 ATH Withdraval myBak, Sin Rafaal, A Cath $100.00
Checking 6515 Mow 19, 2004 ATM Withdeawal, myBank, San Franciscs, CA Cash $100.00 = | .
Currant Balance $z.m18.08 Moy 16, 2004 SBC Phone Bill Paymant €I Phene $94.23 a d m I n/ etACCO u n ts O r
Availible Bilance Fa20000 Mow 16, 2009 myBank Credit Card Blll Payment Credit Sard $245287 | / g ,

Transfir Funds D Mow 15, 2004 ATH Withdrawal, myBank, San Rafael, €4 Cash $100.00 |

|

—mmm ~= Mow 1%, 2004 mybank Payrall Payrall $4,372,79 |

Open New Account o |

Mow 10, 2004 ATH Withdrawsl, myBank, Sin Francizcs, CA Cash §£100,00 |
YourBils Mo d, 2004 ATH Withdraval, syBank, San Francises, CA Cash ;wu.go;
How 3, 2004 fyBank Cradit Card Bill Payenant Cradit Card $10,00 |
$9999.99 due in newt: Lduy |» 3 f |
| Mow I, 2004 Werking Azzecs Bill Payment 3 Phene

Mow I, 2004 Prudential Ingurancs Bill Paymant B Insurance $435.00

Pay Bills » |
Mow §, 2004 Chase Manhaman Momgage Corp Blll Paymant 10 Margags $2,184.42 |

| =
Customer Sarvice Privacy & Secunty Oer 7%, 2004 ATHM Withdrawal, myBank, San Francisco, S Cash $100.00 | . Atta C ke r VI eWS m O re
rren. 35 a0 mubank Bawrall Pasrall teaa9a ")

Nt Cash Flow: B435.20

R —————) accoUNts than just their

own
OWASP BeNelLux Day 2009 e

A7 — Avoiding URL Access Control Flaws

m For each URL, a site needs to do 3 things
» Restrict access to authenticated users (if not public)
» Enforce any user or role based permissions (if private)

» Completely disallow requests to unauthorized page types (e.g., config files, log
files, source files, etc.)

m Verify your architecture
» Use a simple, positive model at every layer
» Be sure you actually have a mechanism at every layer

m Verify the implementation
» Forget automated analysis approaches

» Verify that each URL in your application is protected by either
= An external filter, like Java EE web.xml or a commercial product
= QOr internal checks in YOUR code — Use ESAPI's isAuthorizedForURL() method

» Verify the server configuration disallows requests to unauthorized file types
» Use WebScarab or your browser to forge unauthorized requests

OWASP BeNelLux Day 2009 e

A8 — Unvalidated Redirects and Forwards

Web application redirects are very common

e And frequently include user supplied parameters in the destination URL
o If they aren’t validated, attacker can send victim to a site of their
choice

Forwards (aka Transfer in .NET) are common too

e They internally send the request to a new page in the same application
e Sometimes parameters define the target page

o If not validated, attacker may be able to use unvalidated forward to
bypass authentication or authorization checks

Typical Impact

e Redirect victim to phishing or malware site

o Attacker’s request is forwarded past security checks, allowing
unauthorized function or data access

OWASP BeNeLux Day 2009 e

Unvalidated Redirect Illustrated

@ Attacker sends attack to victim via email or webpage

From: Internal Revenue Service

Subject: Your Unclaimed Tax Refund

Our records show you have an @
unclaimed federal tax refund. Please

Application redirects
victim to attacker’s site

click here to initiate your claim.

Transactions

Finance
E-Commerce

2
=
=
=
3]
>

<

Administration
Communication
Bus. Functions

n=6&menu=:

Custom Code

Evil Site |

How to Exploit Hidden Fields

OWASP WebGoat v+

Request sent to vulnerable
site, including attacker’s
destination site as parameter.
Redirect sends victim to
attacker site

Evil site installs malware on
http://www.irs.gov/taxrefund/claim.jsp?vear=2006 victim, or phish’s for private
& ... &dest=www.evilsite.com information

OWASP BeNelLux Day 2009

Unvalidated Forward Illustrated

@ Attacker sends attack to vulnerable page they have access to

File Edit !law Fwn st de\D -
Address http = enu=51 E o
Request sent to
SP WebGoat V
N d

vulnerable page which

user does have access to.
Redirect sends user

directly to private page,
& bypassing access control. _|

Application authorizes
request, which continues
to vulnerable page

public void doPost (HttpServletRequest reques
HttpServletResponse response) |
try f
String target = request.getParametey

"dest"));
request.getRequestDispatcher (target
) . forward(request, response);

}

catch (

public void sensitiveMethod (
HttpServletRequest request,
HttpServletResponse response) |
try {
// Do sensitive stuff here.

Forwarding page fails to validate
parameter, sending attacker to
unauthorized page, bypassing access
control

OWASP BeNelLux Day 2009 e

A8 — Avoiding Unvalidated Redirects and
Forwards

B There are a number of options

1. Avoid using redirects and forwards as much as you can

2. If used, don't involve user parameters in defining the target URL

3. If you ‘must’ involve user parameters, then either
a) Validate each parameter to ensure its valid and authorized for the current user, or
b) (preferred) — Use server side mapping to translate choice provided to user with actual

target page

» Defense in depth: For redirects, validate the target URL after it is calculated to
make sure it goes to an authorized external site

» ESAPI can do this for you!!
= See: SecurityWrapperResponse.sendRedirect(URL)

http://owasp-esapi-java.googlecode.com/svn/trunk doc/org/owasp/esapi/filters/
SecurityWrapperResponse.html#sendRedirect(java.lang.String)

m Some thoughts about protecting Forwards

» Ideally, you'd call the access controller to make sure the user is authorized
before you perform the forward (with ESAPI, this is easy)

» With an external filter, like Siteminder, this is not very practical

» Next best is to make sure that users who can access the original page are ALL
authorized to access the target page.
OWASP BeNelLux Day 2009 e

A9 — Insecure Cryptographic Storage

Storing sensitive data insecurely

e Failure to identify all sensitive data

e Failure to identify all the places that this sensitive data gets stored
e Databases, files, directories, log files, backups, etc.

e Failure to properly protect this data in every location

Typical Impact

o Attackers access or modify confidential or private information

e e.g, credit cards, health care records, financial data (yours or your
customers)

o Attackers extract secrets to use in additional attacks
e Company embarrassment, customer dissatisfaction, and loss of trust

e Expense of cleaning up the incident, such as forensics, sending apology
letters, reissuing thousands of credit cards, providing identity theft
insurance

¢ Business gets sued and/or fined

OWASP BeNelLux Day 2009 e

Insecure Cryptographic Storage Illustrated

Victim enters credit
card number in form

om

)
o0
)
3
=]
=

Custom Code

Malicious insider

steals 4 million credit Error handler logs CC @
card numbers details because merchant

gateway is unavailable
t Logs are accessible to all @

members of IT staff for
debugging purposes

OWASP BeNelLux Day 2009 e

A9 — Avoiding Insecure Cryptographic
Storage

m Verify your architecture
» Identify all sensitive data
» Identify all the places that data is stored
» Ensure threat model accounts for possible attacks
» Use encryption to counter the threats, don't just ‘encrypt’ the data

m Protect with appropriate mechanisms
» File encryption, database encryption, data element encryption

m Use the mechanisms correctly
» Use standard strong algorithms
» Generate, distribute, and protect keys properly
» Be prepared for key change

m Verify the implementation
» A standard strong algorithm is used, and it's the proper algorithm for this situation
» All keys, certificates, and passwords are properly stored and protected
» Safe key distribution and an effective plan for key change are in place
» Analyze encryption code for common flaws

OWASP BeNelLux Day 2009 e

|
A10 - Insufficient Transport Layer

Protection

Transmitting sensitive data insecurely

e Failure to identify all sensitive data

e Failure to identify all the places that this sensitive data is sent

* On the web, to backend databases, to business partners, internal
communications

e Failure to properly protect this data in every location

Typical Impact

e Attackers access or modify confidential or private information

e e.g, credit cards, health care records, financial data (yours or your
customers)

e Attackers extract secrets to use in additional attacks

e Company embarrassment, customer dissatisfaction, and loss of trust
e Expense of cleaning up the incident

e Business gets sued and/or fined

OWASP BeNelLux Day 2009 e

Insufficient Transport Layer Protection
Illustrated

.

External Victim
Custom Code | Backend Systems

¥ W |

Business Partners

¥ " | ok

|

@ Employees

Internal attacker
steals credentials

External attacker
steals credentials

and data off and data from
network internal network
External Attacker

Internal Attacker
OWASP BeNelLux Day 2009

A10 — Avoiding Insufficient Transport Layer
Protection

m Protect with appropriate mechanisms
» Use TLS on all connections with sensitive data
» Individually encrypt messages before transmission
= E.g., XML-Encryption
» Sign messages before transmission
» E.g., XML-Signature

m Use the mechanisms correctly
» Use standard strong algorithms (disable old SSL algorithms)
» Manage keys/certificates properly
» Verify SSL certificates before using them

» Use proven mechanisms when sufficient
= E.g., SSL vs. XML-Encryption

B See: http://www.owasp.org/index.php/Transport Layer Protection Cheat
Sheet for more details

OWASP BeNelLux Day 2009 e

|
Summary: How do you address these

problems?

m Develop Secure Code
» Follow the best practices in OWASP’s Guide to Building Secure Web
Applications
= http://www.owasp.org/index.php/Guide
» Use OWASP’s Application Security Verification Standard as a guide to
what an application needs to be secure
= http://www.owasp.org/index.php/ASVS
» Use standard security components that are a fit for your organization
» Use OWASP’s ESAPI as a basis for your standard components
= http://www.owasp.org/index.php/ESAPI

m Review Your Applications
» Have an expert team review your applications
» Review your applications yourselves following OWASP Guidelines

= OWASP Code Review Guide:
http://www.owasp.org/index.php/Code Review Guide

= OWASP Testing Guide:

http://www.owasp.org/index.php/Testing Guide
OWASP BeNelLux Day 2009 e

Request for Comments

m Public release OWASP Top 10 -2010

first quarter of 2010 I !

m final, public comment period ¥ ?#.’-
thru December 31, 2009

B OWASP-TopTen@lists.owasp.org

OWASP BeNeLux Day 2009 e 10

OWASP (ESAPI)

Custom Enterprise Web Application

OWASP Enterprise Security API

| owssemeriseseariy At

Authenticator
AccessController
AccessReferenceMap
Validator
HTTPUtilities
Encryptor
EncryptedProperties
Randomizer
Exception Handling
IntrusionDetector
SecurityConfiguration

Your Existing Enterprise Services or Libraries

ESAPI Homepage: http:/www.owasp.org/index.php/ESAPI
OWASP BeNelLux Day 2009

Acknowledgements ASPEG'I‘) i

Application Security Specialists

m We'd like to thank the Primary Project Contributors
» Aspect Security for sponsoring the project

» Jeff Williams (Author who conceived of and launched Top 10 in 2003)
» Dave Wichers (Author and current project lead)

m Organizations that contributed vulnerability statistics
» Aspect Security
» MITRE
» Softtek
» White Hat

m A host of reviewers and contributors, including:

» Mike Boberski, Juan Carlos Calderon, Michael Coates, Jeremiah
Grossman, Paul Petefish, Eric Sheridan, Andrew van der Stock

OWASP BeNelLux Day 2009 e

