
OWASP Top 10 - 2010 rc1

The OWASP Top 10 is dead,
long live the OWASP Top 10 !

Sebastien Deleersnyder
OWASP Foundation
Board Member

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP
BeNeLux
Day 2009

http://www.owasp.org/

Board Member

seba@owasp.org

What’s Changed?

• New title is: “The Top 10 Most Critical Web Application Security Risks”

It’s About Risks, Not Just Vulnerabilities

• Based on the OWASP Risk Rating Methodology, used to prioritize Top 10

OWASP Top 10 Risk Rating Methodology

2 Risks Added, 2 Dropped

OWASP BeNeLux Day 2009

• Added: A6 – Security Misconfiguration
• Was A10 in 2004 Top 10: Insecure Configuration Management

• Added: A8 – Unvalidated Redirects and Forwards
• Relatively common and VERY dangerous flaw that is not well known

• Removed: A3 – Malicious File Execution
• Primarily a PHP flaw that is dropping in prevalence

• Removed: A6 – Information Leakage and Improper Error Handling
• A very prevalent flaw, that does not introduce much risk (normally)

2 Risks Added, 2 Dropped

Mapping from 2007 to 2010 Top 10

OWASP Top 10 – 2007 (Previous) OWASP Top 10 – 2010 (New)

A2 – Injection Flaws A1 – Injection

A1 – Cross Site Scripting (XSS) A2 – Cross Site Scripting (XSS)

A7 – Broken Authentication and Session Management A3 – Broken Authentication and Session Management

A4 – Insecure Direct Object Reference A4 – Insecure Direct Object References

A5 – Cross Site Request Forgery (CSRF) A5 – Cross Site Request Forgery (CSRF)

<was T10 2004 A10 – Insecure Configuration

=

=

OWASP BeNeLux Day 2009

<was T10 2004 A10 – Insecure Configuration
Management>

A6 – Security Misconfiguration (NEW)

A10 – Failure to Restrict URL Access A7 – Failure to Restrict URL Access

<not in T10 2007> A8 – Unvalidated Redirects and Forwards (NEW)

A8 – Insecure Cryptographic Storage A9 – Insecure Cryptographic Storage

A9 – Insecure Communications A10 – Insufficient Transport Layer Protection

A3 – Malicious File Execution <dropped from T10 2010>

A6 – Information Leakage and Improper Error Handling <dropped from T10 2010>

+

+

-
-

OWASP Top 10 Risk Rating Methodology

OWASP BeNeLux Day 2009

Threat
Agent

Attack
Vector

Weakness
Prevalence

Weakness
Detectability

Technical Impact
Business
Impact

?
Easy Widespread Easy Severe

?Average Common Average Moderate

Difficult Uncommon Difficult Minor

2 1 1 2

1.3 * 2

2.6 weighted risk rating

XSS Example

1

2

3

The ‘new’ OWASP Top Ten (2010 rc1)

OWASP BeNeLux Day 2009

http://www.owasp.org/index.php/Top_10

A1 – Injection

• Tricking an application into including unintended commands in the data
sent to an interpreter

Injection means…

• Take strings and interpret them as commands

• SQL, OS Shell, LDAP, XPath, Hibernate, etc…

Interpreters…

OWASP BeNeLux Day 2009

• Many applications still susceptible (really don’t know why)

• Even though it’s usually very simple to avoid

SQL injection is still quite common

• Usually severe. Entire database can usually be read or modified

• May also allow full database schema, or account access, or even OS level
access

Typical Impact

SQL Injection – Illustrated

D
at

ab
as

es

L
eg

ac
y
 S

y
st

em
s

W
eb

 S
er

v
ic

es

D
ir

ec
to

ri
es

H
u
m

an
 R

es
rc

s

B
il

li
n
g

Custom Code

APPLICATION

ATTACKA
p

p
li

ca
ti

o
n
 L

ay
er

A
cc

o
u
n
ts

F
in

an
ce

A
d

m
in

is
tr

at
io

n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n
ic

at
io

n

K
n
o

w
le

d
g
e

M
g
m

t

E
-C

o
m

m
er

c
e

B
u
s.

 F
u
n
ct

io
n
s

HTTP

request

�

SQL

query

�

DB Table
�

�

HTTP

response
�

�

"SELECT * FROM

accounts WHERE

acct=‘’ OR 1=1--

’"

1. Application presents a form to

the attacker

2. Attacker sends an attack in the

Account Summary

Acct:5424-6066-2134-4334

Acct:4128-7574-3921-0192

Acct:5424-9383-2039-4029

Acct:4128-0004-1234-0293

Account:

SKU:

Account:

SKU:

OWASP BeNeLux Day 2009

F
ir

ew
al

l

Hardened OS

Web Server

App Server

F
ir

ew
al

l

N
et

w
o

rk
 L

ay
er

2. Attacker sends an attack in the

form data

3. Application forwards attack to

the database in a SQL query

4. Database runs query containing

attack and sends encrypted results

back to application

5. Application decrypts data as

normal and sends results to the user

A1 – Avoid Injection Flaws

�Recommendations

1. Avoid the interpreter entirely, or

2. Use an interface that supports bind variables (e.g., prepared
statements, or stored procedures),

� Bind variables allow the interpreter to distinguish between code and
data

3. Encode all user input before passing it to the interpreter

OWASP BeNeLux Day 2009

3. Encode all user input before passing it to the interpreter

� Always perform ‘white list’ input validation on all user supplied
input

� Always minimize database privileges to reduce the impact of a
flaw

�References

�For more details, read the new
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

A2 – Cross-Site Scripting (XSS)

• Raw data from attacker is sent to an innocent user’s browser

Occurs any time…

• Stored in database

• Reflected from web input (form field, hidden field, URL, etc…)

• Sent directly into rich JavaScript client

Raw data…

OWASP BeNeLux Day 2009

• Try this in your browser – javascript:alert(document.cookie)

Virtually every web application has this problem

• Steal user’s session, steal sensitive data, rewrite web page, redirect user to
phishing or malware site

• Most Severe: Install XSS proxy which allows attacker to observe and direct
all user’s behavior on vulnerable site and force user to other sites

Typical Impact

Cross-Site Scripting Illustrated

Application with

stored XSS

vulnerability

Attacker sets the trap – update my profile

Attacker enters a

malicious script into a

web page that stores the

data on the server

1

A
d

m
in

is
tr

at
io

n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n
ic

at
io

n

K
n
o

w
le

d
g
e

M
g
m

t

C
o

m
m

er
c
e

B
u
s.

 F
u
n
ct

io
n
s

OWASP BeNeLux Day 2009

3

2 Victim views page – sees attacker profile

Script silently sends attacker Victim’s session cookie

Script runs inside

victim’s browser with full

access to the DOM and

cookies

Custom Code

A
cc

o
u
n
ts

F
in

an
ce

A
d

m
in

is
tr

at
io

n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n
ic

at
io

n

K
n
o

w
le

d
g
e

M
g
m

t

E
-C

o
m

m
er

c
e

B
u
s.

 F
u
n
ct

io
n
s

A2 – Avoiding XSS Flaws

�Recommendations

�Eliminate Flaw

� Don’t include user supplied input in the output page

�Defend Against the Flaw

� Primary Recommendation: Output encode all user supplied

OWASP BeNeLux Day 2009

(AntiSamy)

� Primary Recommendation: Output encode all user supplied
input

(Use OWASP’s ESAPI to output encode:

http://www.owasp.org/index.php/ESAPI

� Perform ‘white list’ input validation on all user input to be
included in page

� For large chunks of user supplied HTML, use OWASP’s
AntiSamy to sanitize this HTML to make it safe

See: http://www.owasp.org/index.php/AntiSamy

Safe Escaping Schemes in Various HTML Execution
Contexts

JavaScript Data

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>)

#3: All non-alphanumeric < 256 � \xHH

ESAPI: encodeForJavaScript()

#1: (&, <, >, ") � &entity; (', /) � &#xHH;

ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256 � &#xHH

ESAPI: encodeForHTMLAttribute()

OWASP BeNeLux Day 2009

HTML Style Property Values
(e.g., .pdiv a:hover {color: red; text-decoration:

underline})

JavaScript Data
(e.g., <script> some javascript </script>)

URI Attribute Values
(e.g., <a href="javascript:toggle('lesson')")

#4: All non-alphanumeric < 256 � \HH

ESAPI: encodeForCSS()

#5: All non-alphanumeric < 256 � %HH

ESAPI: encodeForURL()

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

See: www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet for more

details

A3 – Broken Authentication and Session
Management

• Means credentials have to go with every request

• Should use SSL for everything requiring authentication

HTTP is a “stateless” protocol

• SESSION ID used to track state since HTTP doesn’t

• and it is just as good as credentials to an attacker

Session management flaws

OWASP BeNeLux Day 2009

• SESSION ID is typically exposed on the network, in browser, in logs, …

• Change my password, remember my password, forgot my password, secret
question, logout, email address, etc…

Beware the side-doors

• User accounts compromised or user sessions hijacked

Typical Impact

Broken Authentication Illustrated

Custom Code

A
cc

o
u

n
ts

F
in

a
n

ce

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n

ic
a

ti
o

n
K

n
o

w
le

d
g

e

M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s.
 F

u
n

ct
io

n
s1 User sends credentials

2
Site uses URL rewriting

(i.e., put session in URL)

www.boi.com?JSESSIONID=9FA1DB9EA...

OWASP BeNeLux Day 2009

3 User clicks on a link to http://www.hacker.com

in a forum

4

Hacker checks referer logs on www.hacker.com

and finds user’s JSESSIONID

5 Hacker uses JSESSIONID

and takes over victim’s

account

A3 – Avoiding Broken Authentication and
Session Management

�Verify your architecture

�Authentication should be simple, centralized, and standardized

�Use the standard session id provided by your container

�Be sure SSL protects both credentials and session id at all times

�Verify the implementation

OWASP BeNeLux Day 2009

�Verify the implementation

�Forget automated analysis approaches

�Check your SSL certificate

�Examine all the authentication-related functions

�Verify that logoff actually destroys the session

�Use OWASP’s WebScarab to test the implementation

A4 – Insecure Direct Object References

• This is part of enforcing proper “Authorization”, along with
A7 – Failure to Restrict URL Access

How do you protect access to your data?

• Only listing the ‘authorized’ objects for the current user, or

A common mistake …

OWASP BeNeLux Day 2009

• Only listing the ‘authorized’ objects for the current user, or

• Hiding the object references in hidden fields

• … and then not enforcing these restrictions on the server side

• This is called presentation layer access control, and doesn’t work

• Attacker simply tampers with parameter value

• Users are able to access unauthorized files or data

Typical Impact

Insecure Direct Object References
Illustrated

�Attacker notices his acct
parameter is 6065

?acct=6065

�He modifies it to a
nearby number

https://www.onlinebank.com/user?acct=6065

OWASP BeNeLux Day 2009

nearby number

?acct=6066

�Attacker views the
victim’s account
information

A4 – Avoiding Insecure Direct Object
References

�Eliminate the direct object reference
� Replace them with a temporary mapping value (e.g. 1, 2, 3)

� ESAPI provides support for numeric & random mappings
� IntegerAccessReferenceMap & RandomAccessReferenceMap

http://app?file=1

Report123.xlshttp://app?file=Report123.xls
Access

Reference

OWASP BeNeLux Day 2009

�Validate the direct object reference
�Verify the parameter value is properly formatted

�Verify the user is allowed to access the target object
� Query constraints work great!

�Verify the requested mode of access is allowed to the target
object (e.g., read, write, delete)

http://app?id=7d3J93
Acct:9182374http://app?id=9182374

Reference

Map

A5 – Cross Site Request Forgery (CSRF)

• An attack where the victim’s browser is tricked into issuing a command to
a vulnerable web application

• Vulnerability is caused by browsers automatically including user
authentication data (session ID, IP address, Windows domain credentials,
…) with each request

Cross Site Request Forgery

Imagine…

OWASP BeNeLux Day 2009

• What if a hacker could steer your mouse and get you to click on links in
your online banking application?

• What could they make you do?

• Initiate transactions (transfer funds, logout user, close account)

• Access sensitive data

• Change account details

Typical Impact

CSRF Vulnerability Pattern

�The Problem
� Web browsers automatically include most credentials with each

request

� Even for requests caused by a form, script, or image on another site

�All sites relying solely on automatic
credentials are vulnerable!

OWASP BeNeLux Day 2009

credentials are vulnerable!
� (almost all sites are this way)

�Automatically Provided Credentials
� Session cookie

� Basic authentication header

� IP address

� Client side SSL certificates

� Windows domain authentication

CSRF Illustrated
Attacker sets the trap on some website on the internet

(or simply via an e-mail)1

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n

ic
a

ti
o

n
K

n
o

w
le

d
g

e

C
o

m
m

e
rc

e

B
u

s.
 F

u
n

ct
io

n
s

Hidden tag

contains attack against

vulnerable site

Application with CSRF

vulnerability

OWASP BeNeLux Day 2009

3

2
While logged into vulnerable site,

victim views attacker site

Vulnerable site sees

legitimate request from

victim and performs the

action requested

 tag loaded by

browser – sends GET

request (including

credentials) to vulnerable

site

Custom Code

A
cc

o
u

n
ts

F
in

a
n

ce

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n

ic
a

ti
o

n
K

n
o

w
le

d
g

e

M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s.
 F

u
n

ct
io

n
s

A5 – Avoiding CSRF Flaws

� Add a secret, not automatically submitted, token to ALL sensitive requests
� This makes it impossible for the attacker to spoof the request

� (unless there’s an XSS hole in your application)
� Tokens should be cryptographically strong or random

� Options
� Store a single token in the session and add it to all forms and links

� Hidden Field: <input name="token" value="687965fdfaew87agrde"
type="hidden"/>

� Single use URL: /accounts/687965fdfaew87agrde

� Form Token: /accounts?auth=687965fdfaew87agrde …

OWASP BeNeLux Day 2009

� Form Token: /accounts?auth=687965fdfaew87agrde …
� Beware exposing the token in a referer header

� Hidden fields are recommended
� Can have a unique token for each function

� Use a hash of function name, session id, and a secret
� Can require secondary authentication for sensitive functions (e.g., eTrade)

� Don’t allow attackers to store attacks on your site
� Properly encode all input on the way out
� This renders all links/requests inert in most interpreters

See the new: www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet for more details

A6 – Security Misconfiguration

• All through the network and platform

• Don’t forget the development environment

Web applications rely on a secure foundation

• Think of all the places your source code goes

• Security should not require secret source code

Is your source code a secret?

OWASP BeNeLux Day 2009

• All credentials should change in production

CM must extend to all parts of the application

• Install backdoor through missing network or server patch

• XSS flaw exploits due to missing application framework patches

• Unauthorized access to default accounts, application functionality or data,
or unused but accessible functionality due to poor server configuration

Typical Impact

Security Misconfiguration Illustrated

App Configuration

Custom Code

A
cc

o
u
n
ts

F
in

an
ce

A
d

m
in

is
tr

at
io

n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n
ic

at
io

n

K
n
o

w
le

d
g
e

M
g
m

t

E
-C

o
m

m
er

c
e

B
u
s.

 F
u
n
ct

io
n
s

Database

OWASP BeNeLux Day 2009

Hardened OS

Web Server

App Server

Framework

App Configuration

Test Servers

QA Servers

Source Control

Development

Insider

A6 – Avoiding Security Misconfiguration

� Verify your system’s configuration management

� Secure configuration “hardening” guideline

� Automation is REALLY USEFUL here

� Must cover entire platform and application

� Keep up with patches for ALL components

� This includes software libraries, not just OS and Server applications

� Analyze security effects of changes

OWASP BeNeLux Day 2009

� Analyze security effects of changes

� Can you “dump” the application configuration

� Build reporting into your process

� If you can’t verify it, it isn’t secure

� Verify the implementation

� Scanning finds generic configuration and missing patch problems

A7 – Failure to Restrict URL Access

• This is part of enforcing proper “authorization”, along with
A4 – Insecure Direct Object References

How do you protect access to URLs (pages)?

• Displaying only authorized links and menu choices

A common mistake …

OWASP BeNeLux Day 2009

• Displaying only authorized links and menu choices

• This is called presentation layer access control, and doesn’t work

• Attacker simply forges direct access to ‘unauthorized’ pages

• Attackers invoke functions and services they’re not authorized for

• Access other user’s accounts and data

• Perform privileged actions

Typical Impact

Failure to Restrict URL Access Illustrated

�Attacker notices the URL
indicates his role

/user/getAccounts

�He modifies it to another
directory (role)

https://www.onlinebank.com/user/getAccountshttps://www.onlinebank.com/user/getAccounts

OWASP BeNeLux Day 2009

directory (role)

/admin/getAccounts, or

/manager/getAccounts

�Attacker views more
accounts than just their
own

A7 – Avoiding URL Access Control Flaws

� For each URL, a site needs to do 3 things
� Restrict access to authenticated users (if not public)

� Enforce any user or role based permissions (if private)

� Completely disallow requests to unauthorized page types (e.g., config files, log
files, source files, etc.)

� Verify your architecture

� Use a simple, positive model at every layer

OWASP BeNeLux Day 2009

� Use a simple, positive model at every layer

� Be sure you actually have a mechanism at every layer

� Verify the implementation

� Forget automated analysis approaches

� Verify that each URL in your application is protected by either

� An external filter, like Java EE web.xml or a commercial product

� Or internal checks in YOUR code – Use ESAPI’s isAuthorizedForURL() method

� Verify the server configuration disallows requests to unauthorized file types

� Use WebScarab or your browser to forge unauthorized requests

A8 – Unvalidated Redirects and Forwards

• And frequently include user supplied parameters in the destination URL

• If they aren’t validated, attacker can send victim to a site of their
choice

Web application redirects are very common

• They internally send the request to a new page in the same application

Forwards (aka Transfer in .NET) are common too

OWASP BeNeLux Day 2009

• They internally send the request to a new page in the same application

• Sometimes parameters define the target page

• If not validated, attacker may be able to use unvalidated forward to
bypass authentication or authorization checks

• Redirect victim to phishing or malware site

• Attacker’s request is forwarded past security checks, allowing
unauthorized function or data access

Typical Impact

Unvalidated Redirect Illustrated

3

Attacker sends attack to victim via email or webpage

From: Internal Revenue Service

Subject: Your Unclaimed Tax Refund

Our records show you have an

unclaimed federal tax refund. Please

click here to initiate your claim.

1

Application redirects
victim to attacker’s site

A
cc

o
u

n
ts

F
in

a
n

ce

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e

M
g

m
t

C
o

m
m

er
ce

B
u

s.
 F

u
n

ct
io

n
s

Victim clicks link containing unvalidated

OWASP BeNeLux Day 2009

2

Request sent to vulnerable

site, including attacker’s

destination site as parameter.

Redirect sends victim to

attacker site

Custom Code

A
cc

o
u

n
ts

F
in

a
n

ce

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
sa

ct
io

n
s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e

M
g

m
t

E
-C

o
m

m
er

ce

B
u

s.
 F

u
n

ct
io

n
s

4 Evil site installs malware on
victim, or phish’s for private
information

Victim clicks link containing unvalidated
parameter

Evil Site

http://www.irs.gov/taxrefund/claim.jsp?year=2006
& … &dest=www.evilsite.com

Unvalidated Forward Illustrated

Attacker sends attack to vulnerable page they have access to1

Request sent to

vulnerable page which

user does have access to.

Redirect sends user

directly to private page,

bypassing access control.

public void sensitiveMethod(
HttpServletRequest request,
HttpServletResponse response) {

try {
// Do sensitive stuff here.
...

}
catch (...

OWASP BeNeLux Day 2009

2 Application authorizes
request, which continues
to vulnerable page 3 Forwarding page fails to validate

parameter, sending attacker to
unauthorized page, bypassing access
controlpublic void doPost(HttpServletRequest request,

HttpServletResponse response) {
try {

String target = request.getParameter("dest"));
...
request.getRequestDispatcher(target
).forward(request, response);

}
catch (...

Filter

catch (...

A8 – Avoiding Unvalidated Redirects and
Forwards
� There are a number of options

1. Avoid using redirects and forwards as much as you can

2. If used, don’t involve user parameters in defining the target URL

3. If you ‘must’ involve user parameters, then either

a) Validate each parameter to ensure its valid and authorized for the current user, or

b) (preferred) – Use server side mapping to translate choice provided to user with actual
target page

� Defense in depth: For redirects, validate the target URL after it is calculated to
make sure it goes to an authorized external site

OWASP BeNeLux Day 2009

make sure it goes to an authorized external site

� ESAPI can do this for you!!

� See: SecurityWrapperResponse.sendRedirect(URL)
� http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/

SecurityWrapperResponse.html#sendRedirect(java.lang.String)

� Some thoughts about protecting Forwards

� Ideally, you’d call the access controller to make sure the user is authorized
before you perform the forward (with ESAPI, this is easy)

� With an external filter, like Siteminder, this is not very practical

� Next best is to make sure that users who can access the original page are ALL
authorized to access the target page.

A9 – Insecure Cryptographic Storage

• Failure to identify all sensitive data

• Failure to identify all the places that this sensitive data gets stored
• Databases, files, directories, log files, backups, etc.

• Failure to properly protect this data in every location

Storing sensitive data insecurely

Typical Impact

OWASP BeNeLux Day 2009

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your

customers)

• Attackers extract secrets to use in additional attacks

• Company embarrassment, customer dissatisfaction, and loss of trust

• Expense of cleaning up the incident, such as forensics, sending apology
letters, reissuing thousands of credit cards, providing identity theft
insurance

• Business gets sued and/or fined

Typical Impact

Insecure Cryptographic Storage Illustrated

A
cc

o
u

n
ts

F
in

a
n

ce

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
sa

ct
io

n
s

C
o
m

m
u

n
ic

a
ti

o
n

K
n

o
w

le
d

g
e

M
g
m

t
E

-C
o
m

m
er

ce

B
u

s.
 F

u
n

ct
io

n
s

1
Victim enters credit

card number in form

OWASP BeNeLux Day 2009

Custom Code

2Error handler logs CC

details because merchant

gateway is unavailable

4 Malicious insider

steals 4 million credit

card numbers

Log files

3Logs are accessible to all

members of IT staff for

debugging purposes

A9 – Avoiding Insecure Cryptographic
Storage

� Verify your architecture

� Identify all sensitive data

� Identify all the places that data is stored

� Ensure threat model accounts for possible attacks

� Use encryption to counter the threats, don’t just ‘encrypt’ the data

� Protect with appropriate mechanisms

� File encryption, database encryption, data element encryption

OWASP BeNeLux Day 2009

� Use the mechanisms correctly

� Use standard strong algorithms

� Generate, distribute, and protect keys properly

� Be prepared for key change

� Verify the implementation

� A standard strong algorithm is used, and it’s the proper algorithm for this situation

� All keys, certificates, and passwords are properly stored and protected

� Safe key distribution and an effective plan for key change are in place

� Analyze encryption code for common flaws

A10 – Insufficient Transport Layer
Protection

• Failure to identify all sensitive data

• Failure to identify all the places that this sensitive data is sent
• On the web, to backend databases, to business partners, internal

communications

• Failure to properly protect this data in every location

Transmitting sensitive data insecurely

OWASP BeNeLux Day 2009

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your

customers)

• Attackers extract secrets to use in additional attacks

• Company embarrassment, customer dissatisfaction, and loss of trust

• Expense of cleaning up the incident

• Business gets sued and/or fined

Typical Impact

Insufficient Transport Layer Protection
Illustrated

Custom Code

Business Partners
External Victim

Backend Systems

OWASP BeNeLux Day 2009

Employees

External Attacker

1

External attacker

steals credentials

and data off

network

2

Internal attacker

steals credentials

and data from

internal network
Internal Attacker

A10 – Avoiding Insufficient Transport Layer
Protection

�Protect with appropriate mechanisms

�Use TLS on all connections with sensitive data

� Individually encrypt messages before transmission

� E.g., XML-Encryption

�Sign messages before transmission

� E.g., XML-Signature

OWASP BeNeLux Day 2009

�Use the mechanisms correctly

�Use standard strong algorithms (disable old SSL algorithms)

�Manage keys/certificates properly

�Verify SSL certificates before using them

�Use proven mechanisms when sufficient

� E.g., SSL vs. XML-Encryption

� See: http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat
_Sheet for more details

Summary: How do you address these
problems?

� Develop Secure Code

� Follow the best practices in OWASP’s Guide to Building Secure Web
Applications

� http://www.owasp.org/index.php/Guide

� Use OWASP’s Application Security Verification Standard as a guide to
what an application needs to be secure

� http://www.owasp.org/index.php/ASVS

� Use standard security components that are a fit for your organization

OWASP BeNeLux Day 2009

� Use standard security components that are a fit for your organization

� Use OWASP’s ESAPI as a basis for your standard components

� http://www.owasp.org/index.php/ESAPI

� Review Your Applications

� Have an expert team review your applications

� Review your applications yourselves following OWASP Guidelines

� OWASP Code Review Guide:
http://www.owasp.org/index.php/Code_Review_Guide

� OWASP Testing Guide:
http://www.owasp.org/index.php/Testing_Guide

Request for Comments

�Public release OWASP Top 10 -2010
first quarter of 2010

� final, public comment period
thru December 31, 2009

OWASP-TopTen@lists.owasp.org

OWASP BeNeLux Day 2009

�OWASP-TopTen@lists.owasp.org

40

OWASP (ESAPI)

Custom Enterprise Web Application

OWASP Enterprise Security API

A
u
th
e
n
ti
c
a
to
r

A
c
c
e
s
s
C
o
n
tr
o
ll
e
r

A
c
c
e
s
s
R
e
fe
re
n
c
e
M
a
p

V
a
li
d
a
to
r

E
n
c
o
d
e
r

H
T
T
P
U
ti
li
ti
e
s

E
n
c
ry
p
to
r

E
n
c
ry
p
te
d
P
ro
p
e
rt
ie
s

R
a
n
d
o
m
iz
e
r

E
x
c
e
p
ti
o
n
 H
a
n
d
li
n
g

L
o
g
g
e
r

I
n
tr
u
s
io
n
D
e
te
c
to
r

S
e
c
u
ri
ty
C
o
n
fi
g
u
ra
ti
o
n

OWASP BeNeLux Day 2009

A
u
th
e
n
ti
c
a
to
r

U
s
e
r

A
c
c
e
s
s
C
o
n
tr
o
ll
e
r

A
c
c
e
s
s
R
e
fe
re
n
c
e
M
a
p

V
a
li
d
a
to
r

E
n
c
o
d
e
r

H
T
T
P
U
ti
li
ti
e
s

E
n
c
ry
p
to
r

E
n
c
ry
p
te
d
P
ro
p
e
rt
ie
s

R
a
n
d
o
m
iz
e
r

E
x
c
e
p
ti
o
n
 H
a
n
d
li
n
g

L
o
g
g
e
r

I
n
tr
u
s
io
n
D
e
te
c
to
r

S
e
c
u
ri
ty
C
o
n
fi
g
u
ra
ti
o
n

Your Existing Enterprise Services or Libraries

ESAPI Homepage: http://www.owasp.org/index.php/ESAPI

Acknowledgements

� We’d like to thank the Primary Project Contributors

� Aspect Security for sponsoring the project

� Jeff Williams (Author who conceived of and launched Top 10 in 2003)

� Dave Wichers (Author and current project lead)

� Organizations that contributed vulnerability statistics

OWASP BeNeLux Day 2009

� Organizations that contributed vulnerability statistics

� Aspect Security

� MITRE

� Softtek

� White Hat

� A host of reviewers and contributors, including:

� Mike Boberski, Juan Carlos Calderon, Michael Coates, Jeremiah
Grossman, Paul Petefish, Eric Sheridan, Andrew van der Stock

