OWASP Top 10 - 2010
The Top 10 Most Critical Web
Application Security Risks

Adrian Hayes
Security Consultant
Security-Assessment.com

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.org/

Introduction

m OWASP Top 10 Project

» "The OWASP Top Ten represents a broad consensus
about what the most critical web application security
flaws are.”

m Why are we covering this?
» Flaws 7, 8, 9 and 10

» What I see day to day during webapp assessments

» Widely applicable to .nz businesses

B These slides are heavily based on the work of others
» See credits at the end

OWASP - 2012 e

OWASP Top Ten (2010 Edition)

A3: Broken
A2: Cross-Site Authentication
Scripting (XSS) and Session

Management

A4: Insecure
Direct Object
References

Al: Injection

A7: Failure to A8: Insecure
Restrict URL Cryptographic
Access Storage

A5: Cross Site

Request Forgery AG6: Security

(CSRF) Misconfiguration

. : A10:
A9: Insufficient Unvalidated

Transport Layer =
Protection Re'c__l‘l)rrev::;i dasnd

OWASP http://www.owasp.org/index.php/Top 10

The Open Web Application Security Project

hep://www.owasp.org

OWASP - 2012

http://www.owasp.org/index.php/Top_10

T
A7 — Insecure Cryptographic Storage

Storing sensitive data insecurely

e Failure to identify all sensitive data

e Failure to identify all the places that this sensitive data gets stored
e Databases, files, directories, log files, backups, etc.
e Failure to properly protect this data in every location

Typical Impact

e Attackers access or modify confidential or private information

¢ e.g, credit cards, health care records, financial data (yours or your
customers)

o Attackers extract secrets to use in additional attacks
e Company embarrassment, customer dissatisfaction, and loss of trust

e Expense of cleaning up the incident, such as forensics, sending apology
letters, reissuing thousands of credit cards, providing identity theft
insurance

» Business gets sued and/or fined

OWASP - 2012 e

Insecure Cryptographic Storage Illustrated

Victim enters username
and password to login

Custom Code

ﬁ;‘t‘ @ Malicious hacker

with network access Error handler logs login @
(hackec’i)wm, WPS credentials because SSO
anyone?) gateway is unavailable

t Logs spewed all over the @

network by syslog.

OWASP - 2012 e

A7 — Avoiding Insecure Cryptographic
Storage

m Verify your architecture

Identify all sensitive data

Identify all the places that data is stored

Ensure threat model accounts for possible attacks

Use cryptography to counter the threats, don't just ‘encrypt’the data

v Vv Vv Vv

m Protect with appropriate mechanisms
» File encryption, database encryption, data element encryption
» Hashing, Public Key Crypto, Symmetric Crypto

B Use the mechanisms correctly
» Use standard strong algorithms
» Generate, distribute, and protect keys properly
» Be prepared for key change

m Verify the implementation
» A standard strong algorithm is used, and it’s the proper algorithm for this situation
» All keys, certificates, and passwords are properly stored and protected
» Safe key distribution and an effective plan for key change are in place
» Analyze encryption code for common flaws

OWASP - 2012 e

A8 — Failure to Restrict URL Access

How do you protect access to URLs (pages)?

e This is part of enforcing proper “authorization”, along with
A4 — Insecure Direct Object References

A common mistake ...

e Displaying only authorized links and menu choices
e This is called presentation layer access control, and doesn’t work
e Attacker simply forges direct access to ‘unauthorized’ pages

Typical Impact

o Attackers invoke functions and services they’re not authorized for
e Access other user’s accounts and data
e Perform privileged actions

OWASP - 2012 e

Failure to Restrict URL Access Illustrated

| Online Banking | Account Summary | Checking - Microsoft Internet Explorer

: Eile Edit View Favorites Tools Help

é@Back b) |

BREER) - search <> Favorites &2

Ue

[O]

https://www.onlinebank.com/user/getAccounts

wekcome Teotons @ [[ELLC

What can our
Cash Maximizer
account do

for you?

$2.518.08
§2200.00

CurrantBalance

Aviilible Balince

Transfor Funds 0
* Open Now Account
Your Bills

$9999,99 due in next:
|}

Pay Billi 0

Customer Service Privacy & Securty

Ingoene and Spending Top Ten

Income and Expenses from Sep 26, 2004 1o Jan 16, 2005

Hivtory and Ausrages

Totsl Casts |

Catigorkee

Recarring Costs [

Variable Costs [E—— 1L
Fined Costs |

Total Deposits

3820758 |

Checking-6534

125031 |

0 FAO00 4000 30000 FH000 F10000 $12,000 14000 $IE000 SS000 $E0000 22000 324000

|
Date Description
How 22, 2004 IAvere st Payinant
Mow 22, 2004 ATM Withdrawal, myBank, San Rafiel, CA
Moy 19, 2004 ATM Withdraval, myBank, San Francisce, A
How i%, 2004 SBC Phoms Bill Paymant
How §86, 2004 myRank Cradit Card Blll Payment
Mow 15, 2004 ATHM Withdrawsl, myBank, San Rafiel, CA
Maw 1%, 2004 mybank Payrall
Mow 10, 2004 ATH Withdrawal, myBank, San Franciscs, CA
Maw &, 2004 ATH Withdrawal, myBank, Son Francizce, CA
How 3, 2004 fyBank Cradit Card Bill Paymant
Mo 1, 2004
Moy 1, 2004
Mow §, 2004 Chass ManhmanMo-’:q:ut Corp Bill Payraent

Warking Azaetd Bill Paymant

Prudential Insurance Bill Payemant

et 29, 7004 ATM Withdrawal, myBank, San Franciscs, CA

Aeeng annd_melank Bavrall

Category
Tetarast
Caih
Cash

€I Phane
Cradit Card
Cash
Payrall
Cash
Cazh
Cradit Chrd

@ Phene

B Insurance

£ Morgage
Cash

Bawrall

Amsunt
s34
$10000| |
$100,00
$94.23
$2,853.5% |
$100,00 |
$42372.79 |
£100.00 |
$100.00 |
$10.00|
$13.57
$435.00
$2184.42 '
$100,00 | i
tuazngs "

Mt Cash Flow: 5435.20

@ @ Internet

B Attacker notices the URL
indicates his role

/user/getAccounts

B He modifies it to another
directory (role)

/admin/getAccounts, or
/manager/getAccounts

m Attacker views more
accounts than just their

own
OWASP - 2012 e

A8 — Avoiding URL Access Control Flaws

m For each URL, a site needs to do 3 things
» Restrict access to authenticated users (if not public)
» Enforce any user or role based permissions (if private)

» Completely disallow requests to unauthorized page types (e.g., config files, log
files, source files, etc.)

m Verify your architecture
» Use a simple, positive model at every layer
» Be sure you actually have a mechanism at every layer

m Verify the implementation
» Forget automated analysis approaches

» Verify that each URL in your application is protected by either
= An external filter, like Java EE web.xml or a commercial product
» Or internal checks in YOUR code — Use ESAPI’s isAuthorizedForURL() method

» Verify the server configuration disallows requests to unauthorized file types
» Use your browser to forge unauthorized requests

OWASP - 2012 e

A9 — Insufficient Transport Layer Protection

Transmitting sensitive data insecurely

e Failure to identify all sensitive data

e Failure to identify all the places that this sensitive data is sent

e On the web, to backend databases, to business partners, internal
communications

e Failure to properly protect this data in every location

Typical Impact

e Attackers access or modify confidential or private information

e e.g, credit cards, health care records, financial data (yours or your
customers)

e Attackers extract secrets to use in additional attacks

e Company embarrassment, customer dissatisfaction, and loss of trust
e Expense of cleaning up the incident

e Business gets sued and/or fined

OWASP - 2012 e

Insufficient Transport Layer Protection

Illustrated

External attacker
steals credentials
and data off

network
External Attacker

L)
Y

.‘.

Business Partners

Backend Systems

Employees

Internal attacker
steals credentials
and data from

internal network
Internal Attacker

OWASP - 2012 e

http://www.swbic.org/products/clipart/images/computeruser.jpg
http://www.swbic.org/products/clipart/images/computeruser.jpg

T
A9 — Avoiding Insufficient Transport Layer

Protection

B Protect with appropriate mechanisms
» Use TLS on all connections with sensitive data
» Individually encrypt messages before transmission
» E.g., XML-Encryption
» Sign messages before transmission
= E.g., XML-Signature

B Use the mechanisms correctly
» Use standard strong algorithms (disable old SSL algorithms)
» Manage keys/certificates properly
» Verify SSL certificates before using them
» Use proven mechanisms when sufficient

= E.g., SSL vs. XML-Encryption

B See: http://www.owasp.org/index.php/Transport Layer Protection Cheat
Sheet for more details

OWASP - 2012 e

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

T
A10 — Unvalidated Redirects and Forwards

Web application redirects are very common

e And frequently include user supplied parameters in the destination URL

o If they aren't validated, attacker can send victim to a site of their
choice

Forwards (aka Server.Transfer in .NET) are common too

e They internally send the request to a new page in the same application
e Sometimes parameters define the target page

o If not validated, attacker may be able to use unvalidated forward to
bypass authentication or authorization checks

Typical Impact

e Redirect victim to phishing or malware site

e Attacker’s request is forwarded past security checks, allowing
unauthorized function or data access

e Forward to URL handlers, javascript:// or skype://

UWASPKF - ZU1Z v

Unvalidated Redirect Illustrated

@ Attacker sends attack to victim via email or webpage

From:IRD

Subject: Your Unclaimed Tax Refund

Our records show you havean @ Application redirects
unclaimed tax refund. Please click victim to attacker’s site

here to initiate your claim.

w)
2
<
=)
<]
O
(&}
<

Administration
Transactions
Communication
Knowledge Mgmt
E-Commerce
Bus. Functions

How to Exploit Hidden Fields Custom Code

OWASP WebGoat V*

Request sent to vulnerable
site, including attacker’s
destination site as parameter.
Redirect sends victim to

attacker site o p— Evil Site

/ @ Evil site installs malware on

http://www.irs.gov/taxrefund/claim.jsp?year=2006 victim, or phish’s for private
& ... &dest=www.evilsite.com information
OWASP - 2012

http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&

Unvalidated Forward Illustrated

@ Attacker sends attack to vulnerable page they have access to

EIFE\

Ele Edit View avorites ools Help
adcress [4@) http: V| B co

E Request sent to

~ vulnerable page which
user does have access to.
Redirect sends user
directly to private page,
s bypassing access control. _

public void sensitiveMethod (

HttpServletRequest request,

HttpServletResponse response) |
try |

// Do sensitive stuff here.

Application authorizes

request, which continues - _ _ _

to vulnerable page Forwarding page fails to validate
‘ parameter, sending attacker to

unauthorized page, bypassing access
public void doPost (HttpServletRequest requesy control
HttpServletResponse response) |
try {
String target = request.getParametel/("dest"));

request.getRequestDispatcher (target

) . forward (request, response);

}
catch (...

OWASP - 2012 e

A10 — Avoiding Unvalidated Redirects and
Forwards

B There are a number of options
1. Avoid using redirects and forwards as much as you can
2. If used, don't involve user parameters in defining the target URL
3. If you ‘'must’ involve user parameters, then either

a) Validate each parameter to ensure its valid and authorized for the current user, or

b) (preferred)— Use server side mapping to translate choice provided to user with actual
target page

» Defense in depth: For redirects, validate the target URL after it is calculated to
make sure it goes to an authorized external site

» ESAPI can do this for you!!
= See: SecurityWrapperResponse.sendRedirect(URL)

B Some thoughts about protecting Forwards

» Ideally, you'd call the access controller to make sure the user is authorized
before you perform the forward (with ESAPI, this is easy)

» Don't let the user control where the forward goes
» Don't forward across privilege boundaries (showRates.jsp -> updateRates.jsp)

©

T
Summary: How do you address these

problems?

m Develop Secure Code
» Follow the best practices in OWASP’s Guide to Building Secure Web
Applications
= http://www.owasp.org/index.php/Guide
» Use OWASP’s Application Security Verification Standard as a guide to
what an application needs to be secure
= http://www.owasp.org/index.php/ASVS
» Use standard security components that are a fit for your organization
= Use OWASP’s ESAPI as a basis for your standard components
= http://www.owasp.org/index.php/ESAPI

m Review Your Applications
» Have an expert team review your applications
» Review your applications yourselves following OWASP Guidelines

= OWASP Code Review Guide:
http://www.owasp.org/index.php/Code_Review_Guide

= OWASP Testing Guide:
http://www.owasp.org/index.php/Testing_Guide

OWASP - 2012

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Testing_Guide

OWASP (ESAPI)

Custom Enterprise Web Application]

OWASP Enterprise Security API

Validator
Encoder
HTTPUtilities
Encryptor
Randomizer

L
2
S
=
)
=
o
<
whd
3
<

AccessController
EncryptedProperties
Exception Handling
IntrusionDetector
SecurityConfiguration

AccessReferenceMap

Your Existing Enterprise Services or Libraries

ESAPI Homepage: http://www.owasp.org/index.php/ESAPI
OWASP - 2012

http://www.owasp.org/index.php/ESAPI

-
Acknowledgements ASPECT i

Application Security Experts

m We'd like to thank the Primary Project Contributors

» Aspect Security for sponsoring the project
» Jeff Williams (Author who conceived of and launched Top 10 in 2003)

» Dave Wichers (Author and current project lead)

m Organizations that contributed vulnerability statistics
» Aspect Security
» MITRE

» Softtek
» WhiteHat Security

m A host of reviewers and contributors, including:

» Mike Boberski, Juan Carlos Calderon, Michael Coates, Jeremiah
Grossman, Jim Manico, Paul Petefish, Eric Sheridan, Neil Smithline,
Andrew van der Stock, Colin Watson, OWASP Denmark and Sweden

Chapters OWASP - 2012 e

