
Copyright © The OWASP Foundation

Permission is granted to copy, distribute and/or modify this document

under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

OWASP Top 10 – 2010
The Top 10 Most Critical Web
Application Security Risks

Adrian Hayes
Security Consultant
Security-Assessment.com

OWASP - 2012

Introduction

OWASP Top 10 Project

 “The OWASP Top Ten represents a broad consensus
about what the most critical web application security
flaws are.”

Why are we covering this?

Flaws 7, 8, 9 and 10

What I see day to day during webapp assessments

Widely applicable to .nz businesses

These slides are heavily based on the work of others

See credits at the end

OWASP - 2012

OWASP Top Ten (2010 Edition)

http://www.owasp.org/index.php/Top_10

http://www.owasp.org/index.php/Top_10

OWASP - 2012

A7 – Insecure Cryptographic Storage

• Failure to identify all sensitive data

• Failure to identify all the places that this sensitive data gets stored
• Databases, files, directories, log files, backups, etc.

• Failure to properly protect this data in every location

Storing sensitive data insecurely

• Attackers access or modify confidential or private information

• e.g, credit cards, health care records, financial data (yours or your
customers)

• Attackers extract secrets to use in additional attacks

• Company embarrassment, customer dissatisfaction, and loss of trust

• Expense of cleaning up the incident, such as forensics, sending apology
letters, reissuing thousands of credit cards, providing identity theft
insurance

• Business gets sued and/or fined

Typical Impact

OWASP - 2012

Insecure Cryptographic Storage Illustrated

Custom Code

A
cc

o
u

n
ts

F
in

a
n

ce

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
sa

ct
io

n
s

C
o
m

m
u

n
ic

a
ti

o
n

K

n
o
w

le
d

g
e

M
g
m

t
E

-C
o
m

m
er

ce

B
u

s.
 F

u
n

ct
io

n
s

1
Victim enters username

and password to login

2 Error handler logs login

credentials because SSO

gateway is unavailable

4 Malicious hacker

with network access

(hacked wifi, WPS

anyone?)

Log files

3 Logs spewed all over the

network by syslog.

OWASP - 2012

A7 – Avoiding Insecure Cryptographic

Storage

 Verify your architecture

 Identify all sensitive data

 Identify all the places that data is stored

 Ensure threat model accounts for possible attacks

 Use cryptography to counter the threats, don‟t just „encrypt‟ the data

 Protect with appropriate mechanisms

 File encryption, database encryption, data element encryption

 Hashing, Public Key Crypto, Symmetric Crypto

 Use the mechanisms correctly

 Use standard strong algorithms

 Generate, distribute, and protect keys properly

 Be prepared for key change

 Verify the implementation

 A standard strong algorithm is used, and it‟s the proper algorithm for this situation

 All keys, certificates, and passwords are properly stored and protected

 Safe key distribution and an effective plan for key change are in place

 Analyze encryption code for common flaws

OWASP - 2012

A8 – Failure to Restrict URL Access

• This is part of enforcing proper “authorization”, along with
A4 – Insecure Direct Object References

How do you protect access to URLs (pages)?

• Displaying only authorized links and menu choices

• This is called presentation layer access control, and doesn‟t work

• Attacker simply forges direct access to „unauthorized‟ pages

A common mistake …

• Attackers invoke functions and services they‟re not authorized for

• Access other user‟s accounts and data

• Perform privileged actions

Typical Impact

OWASP - 2012

Failure to Restrict URL Access Illustrated

Attacker notices the URL
indicates his role

 /user/getAccounts

He modifies it to another

directory (role)

 /admin/getAccounts, or

 /manager/getAccounts

Attacker views more

accounts than just their
own

https://www.onlinebank.com/user/getAccountshttps://www.onlinebank.com/user/getAccounts

OWASP - 2012

A8 – Avoiding URL Access Control Flaws

 For each URL, a site needs to do 3 things
 Restrict access to authenticated users (if not public)

 Enforce any user or role based permissions (if private)

 Completely disallow requests to unauthorized page types (e.g., config files, log
files, source files, etc.)

 Verify your architecture

 Use a simple, positive model at every layer

 Be sure you actually have a mechanism at every layer

 Verify the implementation

 Forget automated analysis approaches

 Verify that each URL in your application is protected by either

 An external filter, like Java EE web.xml or a commercial product

 Or internal checks in YOUR code – Use ESAPI‟s isAuthorizedForURL() method

 Verify the server configuration disallows requests to unauthorized file types

 Use your browser to forge unauthorized requests

OWASP - 2012

A9 – Insufficient Transport Layer Protection

• Failure to identify all sensitive data

• Failure to identify all the places that this sensitive data is sent
• On the web, to backend databases, to business partners, internal

communications

• Failure to properly protect this data in every location

Transmitting sensitive data insecurely

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your

customers)

• Attackers extract secrets to use in additional attacks

• Company embarrassment, customer dissatisfaction, and loss of trust

• Expense of cleaning up the incident

• Business gets sued and/or fined

Typical Impact

OWASP - 2012

Insufficient Transport Layer Protection

Illustrated

Custom Code

Employees

Business Partners
External Victim

Backend Systems

External Attacker

1

External attacker

steals credentials

and data off

network

2

Internal attacker

steals credentials

and data from

internal network
Internal Attacker

http://www.swbic.org/products/clipart/images/computeruser.jpg
http://www.swbic.org/products/clipart/images/computeruser.jpg

OWASP - 2012

A9 – Avoiding Insufficient Transport Layer

Protection

Protect with appropriate mechanisms

Use TLS on all connections with sensitive data

Individually encrypt messages before transmission

 E.g., XML-Encryption

Sign messages before transmission

 E.g., XML-Signature

Use the mechanisms correctly

Use standard strong algorithms (disable old SSL algorithms)

Manage keys/certificates properly

Verify SSL certificates before using them

Use proven mechanisms when sufficient

 E.g., SSL vs. XML-Encryption

 See: http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat
_Sheet for more details

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

OWASP - 2012

A10 – Unvalidated Redirects and Forwards

• And frequently include user supplied parameters in the destination URL

• If they aren‟t validated, attacker can send victim to a site of their
choice

Web application redirects are very common

• They internally send the request to a new page in the same application

• Sometimes parameters define the target page

• If not validated, attacker may be able to use unvalidated forward to
bypass authentication or authorization checks

Forwards (aka Server.Transfer in .NET) are common too

• Redirect victim to phishing or malware site

• Attacker‟s request is forwarded past security checks, allowing
unauthorized function or data access

• Forward to URL handlers, javascript:// or skype://

Typical Impact

OWASP - 2012

Unvalidated Redirect Illustrated

3

2

Attacker sends attack to victim via email or webpage

From: IRD

Subject: Your Unclaimed Tax Refund

Our records show you have an

unclaimed tax refund. Please click

here to initiate your claim.

1

Application redirects
victim to attacker’s site

Request sent to vulnerable

site, including attacker’s

destination site as parameter.

Redirect sends victim to

attacker site

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
r
a

n
sa

c
ti

o
n

s

C
o

m
m

u
n

ic
a

ti
o
n

K
n

o
w

le
d

g
e
 M

g
m

t

E
-C

o
m

m
e
r
c
e

B
u

s.
 F

u
n

c
ti

o
n

s

4 Evil site installs malware on
victim, or phish’s for private
information

Victim clicks link containing unvalidated
parameter

Evil Site

http://www.irs.gov/taxrefund/claim.jsp?year=2006
& … &dest=www.evilsite.com

http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&

OWASP - 2012

Unvalidated Forward Illustrated

2

Attacker sends attack to vulnerable page they have access to 1

Application authorizes
request, which continues
to vulnerable page

Request sent to

vulnerable page which

user does have access to.

Redirect sends user

directly to private page,

bypassing access control.

3 Forwarding page fails to validate
parameter, sending attacker to
unauthorized page, bypassing access
control public void doPost(HttpServletRequest request,

HttpServletResponse response) {
 try {

 String target = request.getParameter("dest"));
 ...
 request.getRequestDispatcher(target

).forward(request, response);
}
catch (...

Filter

 public void sensitiveMethod(
HttpServletRequest request,
HttpServletResponse response) {

 try {
 // Do sensitive stuff here.
 ...

}
catch (...

OWASP - 2012

A10 – Avoiding Unvalidated Redirects and

Forwards
 There are a number of options

1. Avoid using redirects and forwards as much as you can

2. If used, don‟t involve user parameters in defining the target URL

3. If you „must‟ involve user parameters, then either

a) Validate each parameter to ensure its valid and authorized for the current user, or

b) (preferred) – Use server side mapping to translate choice provided to user with actual
target page

 Defense in depth: For redirects, validate the target URL after it is calculated to

make sure it goes to an authorized external site

 ESAPI can do this for you!!

 See: SecurityWrapperResponse.sendRedirect(URL)

 Some thoughts about protecting Forwards

 Ideally, you‟d call the access controller to make sure the user is authorized
before you perform the forward (with ESAPI, this is easy)

 Don‟t let the user control where the forward goes

 Don‟t forward across privilege boundaries (showRates.jsp -> updateRates.jsp)

OWASP - 2012

Summary: How do you address these

problems?

 Develop Secure Code

 Follow the best practices in OWASP‟s Guide to Building Secure Web
Applications

 http://www.owasp.org/index.php/Guide

 Use OWASP‟s Application Security Verification Standard as a guide to
what an application needs to be secure

 http://www.owasp.org/index.php/ASVS

 Use standard security components that are a fit for your organization

 Use OWASP‟s ESAPI as a basis for your standard components

 http://www.owasp.org/index.php/ESAPI

 Review Your Applications

 Have an expert team review your applications

 Review your applications yourselves following OWASP Guidelines

 OWASP Code Review Guide:
 http://www.owasp.org/index.php/Code_Review_Guide

 OWASP Testing Guide:
 http://www.owasp.org/index.php/Testing_Guide

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Testing_Guide

OWASP - 2012

OWASP (ESAPI)

Custom Enterprise Web Application

OWASP Enterprise Security API

A
u

th
e

n
ti

c
a

to
r

U
s
e

r

A
c
c
e

s
s
C

o
n

tr
o

ll
e
r

A
c
c
e

s
s
R

e
fe

re
n

c
e
M

a
p

V
a

li
d

a
to

r

E
n

c
o

d
e

r

H
T

T
P

U
ti

li
ti

e
s

E
n

c
ry

p
to

r

E
n

c
ry

p
te

d
P

ro
p

e
rt

ie
s

R
a

n
d

o
m

iz
e

r

E
x

c
e

p
ti

o
n

 H
a

n
d

li
n

g

L
o

g
g

e
r

In
tr

u
s
io

n
D

e
te

c
to

r

S
e

c
u

ri
ty

C
o

n
fi

g
u

ra
ti

o
n

Your Existing Enterprise Services or Libraries

ESAPI Homepage: http://www.owasp.org/index.php/ESAPI

http://www.owasp.org/index.php/ESAPI

OWASP - 2012

Acknowledgements

 We‟d like to thank the Primary Project Contributors

 Aspect Security for sponsoring the project

 Jeff Williams (Author who conceived of and launched Top 10 in 2003)

 Dave Wichers (Author and current project lead)

 Organizations that contributed vulnerability statistics

 Aspect Security

 MITRE

 Softtek

 WhiteHat Security

 A host of reviewers and contributors, including:

 Mike Boberski, Juan Carlos Calderon, Michael Coates, Jeremiah
Grossman, Jim Manico, Paul Petefish, Eric Sheridan, Neil Smithline,
Andrew van der Stock, Colin Watson, OWASP Denmark and Sweden
Chapters

