B

L
i

document

s
S

e
is

tut

bute and/or modify th

istri

(210) 522-6322

d to copy, d

under the terms of the OWASP License.

Southwest Research Inst
org

Steve Cook
scook@swr

Ission IS grante

The OWASP Foundation

Perm

Securing Software Applications

Using
Dynamic Dataflow Analysis

L

OWASP
June 16, 2010

I

AR

.

Outline

B Introduction and Overview

B How DDFA Works

m lllustrative Example Scenarios
m Efficiency of DDFA

B \Wrap Up

What is DDFA ?

B DDFA is an extensible compiler-based system
that automatically instruments input C programs
to enforce a user-specified security policy

B Approach uses a complementary combination of
static and dynamic data flow analysis along with
the policy to produce secure programs with low
runtime overhead

OWASP 0 3

DDFA Development Team

B University of Texas at Austin, Computer Science
» Fundamental research on Dynamic Dataflow Analysis

B Southwest Research Institute
= Applied research and tech transfer

Why is DDFA Needed ?

B Widespread use of untrusted COTS / Open
Source software

m Large legacy code bases

B Programs not designed with security in mind

m Difficult and costly to find software developers
well-versed in application security

Research Goals

B Minimize the impact to software development

» Easy to use and deploy

» Provide separation of concerns
B Keep program runtime and size overhead as low as
possible
B Support multi-level security
» Not just one binary state (e.g. bad, good)

B Provide extensibility for future threats

State of the Art

B Manual code inspection that support best practices

B Many automated approaches focus only on memory
safety
» Less important as memory-safe languages such as Java become
more popular
B Static Analysis Tools (e.g. Coverity)
» Statically detect bugs and vulnerabilities
» Admits both false positives and false negatives
» Only detects bugs, does not fix them

B Taint Tracking approaches
» High runtime overhead (82% - 7.9x%)
» Not general enough for multi-level security

Architecture of DDFA System

Development with DDFA

Runtime library provides
the dynamic data flow
analysis capability

Security policy separate

from source code
| Policy and dynamic data
Static dataflow DDFA flow analysis provide
analysis minimizes ~ Runtime \ customized error mitigation
DDFEA instrumentation ~ Library

Security

Policy N B Ny 02
® @ v DDFA Enhanced Convent_ilonal Enhance
@ Compiler C Code Compiler Enanced

Software C Code
Engineer

Security
Expert

OWASP e

Primary Benefits of DDFA

B Application dataflow is tracked at compile and run time

» Very low runtime overhead (many cases < 1%)
» Leverages semantic information from policy

» Configurable error mitigation at run time (e.g. fight through)

W Policy is separate from the source code
» Removes security concerns when developing new applications
* Including 3" party and open-source development
» Can secure existing legacy applications
» Requires one additional step in an automated build process
» Defined once and used many times
» Policy can change and be re-applied as threats evolve

OWASP Q 10

Generality of the DDFA Approach

m Traditional Tainted Data Attacks
» Format String Attacks
» SQL Injection
» Command Injection
» Cross-Site Scripting

B Other Security Problems
» File Disclosure Vulnerabillities
» Labeled Security Enforcement
» Role-Based Access Control, Mandatory Access Control
» Accountable Information Flow

OWASP e 11

Outline

m How DDFA Works

m lllustrative Example Scenarios
m Efficiency of DDFA

B \Wrap Up

Format String Vulnerability (FSV)

m String containing malicious

int sock; formatting directives

char buf[100]; . .
sock = socket(AF_INET, SOCK_STREAM, 0); iIntroduced into program
from outside the system

recv(sock, buf, 100, 0);

B Formatted output family of
functions can cause target

computer to execute
arbitrary commands

» e.g. printf(), sprintf()

OWASP e 13

printf(buf);

Property Definition for FSV

B Security policy begins by
defining one or more
properties

B Each property represents a
lattice

» Lattices intrinsic to data flow
analysis

» Lattice nodes represent
possible flow values

» Flow values are meta-data
attached to program objects

property Taint : { Tainted, { Untainted } }
initially Untainted

|_attice with Two Nodes

Untainted

|

Tainted

Annotations for Library/System Calls
(Focus is on Three Areas)

B Introduction

» Associates property values (or metadata) to memory objects as
they are introduced into a program

B Propagation

» Tracks the flow of memory objects and their property values
throughout the program

H Violation

» Identifies if a violation occurs at runtime based on the memory
objects’ property values, which static analysis alone is not able
to do

OWASP e 15

Policy - Annotating the Library Procedures (FSV)

Original Source Code

Introduction

Annotated Procedures

procedure recv(s, buf, len, flags) {

int sock;
char buf[100];

recv(sock, buf, 100, 0);

sock = socket(AF_INET, SOCK _STREAM, 0);

on_entry { buf - buffer}
analyze Taint { buffer €& Tainted }

}

procedure strdup(s) {

Propagation

on_entry {s -» string }
on_exit { return - string_copy

buf2 = strdup(buf);

analyze Taint {string_copy < string }

}

Policy Violation

printf(buf2);

procedure printf(format, args) {
on_entry {format - format_string }
error if (Taint: format_string could-be Tainted) {

error_handler = fsv_error()
certify = fsv_check(format, args)

}
} OWASP e 16

Static Data Flow Analysis (Works Backwards)

In this case, data flow analysis proves that
dynamic data flow analysis is not necessary. No
instrumentation is needed.

Introduction

char buf[100] = ““safe string”’;

In this case, data flow analysis determines that
dynamic data flow analysis is necessary.
Source code must be instrumented.

Introduction

Propagation

recv(sock, buf, 100, 0);

buf2 = strdup(buf);

Propagation

N4

Policy Violation
printf(buf2);

buf2 = strdup(buf);

AN

Policy Violation

printf(buf2);

OWASP e 17

Instrumentation for Dynamic Data Flow Analysis

Program is augmented with calls to DDFA library to perform dynamic

' data fl Ivsis.
Introduction ata flow analysis

recv(sock, buf, 100, 0);
ddfa_insert(LTAINT, buf, strlen(buf), LTAINT TAINTED);

“buf” takes on flow value Tainted, since comes from outside system

Propagation

buf2 = strdup(buf);
ddfa_copy_flowval (LTAINT, buf2, buf, strlen(buf?));

Copies flow value from “buf” to “buf2”

Policy Violation
iIT ((ddfa_check flowval (LTAINT, buf2, LTAINT_TAINTED)) &&
(! fsv_check(buf2)))

{ fTsv_ error(); }

else
{ printf(buf2); 3}

For this flow path, “buf2” will be Tainted, but policy
allows “Fight Through” capability using fsv_check() so
error handler called only as last resort OWASP 18

Outline

m lllustrative Example Scenarios
m Efficiency of DDFA
B \Wrap Up

Example 1 - Format String Vulnerability

Introduction Propagation Violation

Int sock;
char buf[100];
sock = socket(AF _INET, .);

recv(sock, buf, 100, 0);

buf2 = strdup(buf);

Hacker introduces DDFA tracks the flow of ~Tainted string arrives

mal-formed printf() this “ Tainted” data at printf() statement

format string via web throughout the |
execution DDFA flags a runtime

violation, preventing
DDFA marks data the vulnerability from

entering from the being exploited bythe
web as “Tainted hacker OWASP 20

Example 1 - Format String Vulnerability

m \What you can’t see

» Static analysis dramatically prunes the amount of
dynamic data flow tracking

» Pruning is enabled by the annotation-based
compilation system

» This pruning requires precise pointer analysis

Pointer Analysis

m Pointer analysis: Tells the compiler which
regions in memory pointers point to

m Pointer analysis is fundamental to all static
analyses, not just DDFA

m A difficult problem:
» Severe tradeoff between precision and scalability

» DDFA requires a fairly precise degree of precision
(flow-sensitivity)

OWASP e 22

Alternative Scenario for Example 1

W Security expert wants to fight
through attacks rather than simply
detect attacks

» Takes existing security policy

» Modifies policy to include call to new C
code to sanitize Tainted data

iIT (procedure printf(fmt, args)

{
on_entry { fmt --> format _string }
error 1Tt (Taint: format string could-be Tainted)
printf(sanitize(fmt), args);
}

UVVADHF 7'* 23
|

Example 2 — File Disclosure Vulnerability

Introduction Propagation Violation

Int sock;
char buf[100];
sock = socket(AF _INET, .));

recv(sock, buf, 100, 0);

buf2 = strdup(buf);
Hacker sends mal-

formed “finger” packet Data tagged as “File”
to retrieve contents of DDFA tracks the flow of originating from a
a password file this finger packet “Remote” source
throughout the code arrives at a socket
write()

DDFA marks Trust
of finger packet as

“Remote” DDFA prevents

vulnerability fro
being exploited fb o

Example 2 — File Disclosure Example

B What is interesting in this example

» Must track both Trustedness of data and Origin of
data

» Two properties instead of one are defined in policy

» DDFA is able to enforce multiple properties
simultaneously

Example 3 — Role Based Access Control

Introduction Propagation Violation

launch(Q);

ac_level = authenticate();

safety check();

Beetle Bailey logs on DDFA tracks the flow of Beetle aCCId_entalI<Iy
to Missile system to all Beetle’s activities ;':Ittemrr:ts to invoke
perform safety checks throughout the missile aunch()

system application _
DDFA flags a runtime

DDFA registers violation, preventing
him to the system missile from being

as “grunt” level launched, 0 .

Example 3 — Role Based Access Control

B What's interesting in this example?

» New functionality added to the system after
development

B Separation of concerns
» Software is difficult to build and maintain
» Software developer should focus on core functionality

» Security expert focuses on security (site-specific
security)

» Compiler ensures that security code is correctly and
thoroughly applied

» Separation of concerns simplifies each task

©

Outline

m Efficiency of DDFA
B \Wrap Up

Efficiency for Server Applications (FSV)

Program | Original DDFA Overhead
pfinger 3.07s 3.19s 3.78%
muh 11.23ms 11.23ms| < 0.01%
wu-ftp 2.745MB/s| 2.742MB/s 0.10%
bind 3.58ms 3.57ms| < 0.01%
apache 6.048MB/s| 6.062MB/s| < 0.01%

Average Increase 0.65%

Compare with 80% - 35x overhead for previous
state of the art in software-based approaches

Efficiency for Compute Bound Applications (FSV)

Program Overhead
gzip 51.35%
vpr 0.44%
mcf < 0.01%
crafty 0.25%
Average Increase 12.93%

Synthetic vulnerabilities were inserted into programs

Original programs contained no FS vulnerabilities; true
overhead is 0%
OWASP e 30

Static Code Overhead (FSV)

Program Original | DDFA | Overhead
pfinger 49,655 49,655 0%
muh 59,880 60,488 1.01%
wu-ftp 205,487 | 207,997 1.22%
bind 215,669 | 219,765 1.90%
apache 552,114 | 554,514 0.43%

Average Increase 0.91%

(Size In bytes)

Table excludes other programs where static analysis proves
that no instrumentation is needed
OWASP Q 31

Outline

B \Wrap Up

Other Potential Uses of DDFA

m Fault Tolerance Computing
H Privacy

W Testing

Future Plans

B Retarget for popular open-source compiler
Infrastructure, LLVM (Low-Level Virtual Machine)

» Supports C, C++, Java on the way

B Support other languages, and possibly byte-

code or binary as input

Questions

