
Securing Software Applications
Using
Dynamic Dataflow Analysis

Steve Cook

Southwest Research Institute

OWASP

Southwest Research Institute
scook@swri.org
(210) 522-6322

June 16, 2010

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

Ju e 6, 0 0

The OWASP Foundation
http://www.owasp.org

Outline

Introduction and Overview

How DDFA Works

Illustrative Example Scenarios

Efficiency of DDFAEfficiency of DDFA

Wrap Up

OWASP 2

What is DDFA ?

DDFA i t ibl il b d tDDFA is an extensible compiler-based system
that automatically instruments input C programs
to enforce a user-specified security policyto enforce a user-specified security policy

Approach uses a complementary combination ofApproach uses a complementary combination of
static and dynamic data flow analysis along with
the policy to produce secure programs with lowthe policy to produce secure programs with low
runtime overhead

OWASP 3

DDFA Development Team

U i it f T t A ti C t S iUniversity of Texas at Austin, Computer Science
 Fundamental research on Dynamic Dataflow Analysis

Southwest Research Institute
 Applied research and tech transfer

OWASP 4

Why is DDFA Needed ?

Widespread use of untrusted COTS / Open

Source software

Large legacy code basesLarge legacy code bases

Programs not designed with security in mind

Difficult and costly to find software developers

well-versed in application security

OWASP 5

Research Goals

Minimize the impact to software development
E t d d lEasy to use and deploy

Provide separation of concerns

Keep program runtime and size overhead as low as

possible

Support multi-level security

Not just one binary state (e g bad good)Not just one binary state (e.g. bad, good)

Provide extensibility for future threats

OWASP 6

State of the Art

Manual code inspection that support best practices
Many automated approaches focus only on memoryMany automated approaches focus only on memory

safety
Less important as memory-safe languages such as Java become

lmore popular

Static Analysis Tools (e.g. Coverity)
Statically detect bugs and vulnerabilitiesStatically detect bugs and vulnerabilities
Admits both false positives and false negatives
Only detects bugs, does not fix them

T i t T ki hTaint Tracking approaches
High runtime overhead (82% - 7.9)
Not general enough for multi-level security

OWASP 7

g g y

Architecture of DDFA System

DDFA Compiler System

Secured
C Program

Unsecured
C Program Static Analysis

DDFA Compiler System

Instrumentation
Engine

Security Policy
Specification

DDFA Runtime
Library

OWASP 8

Development with DDFA

Runtime library provides
the dynamic data flow

Security policy separate
from source code

analysis capability

P li d d i d t
Static dataflow

analysis minimizes
instrumentation

DDFA
Runtime
Library

S it DDFA

Policy and dynamic data
flow analysis provide

customized error mitigation

EnhancedDDFA C ti l

Security
Expert

DDFA
Security
Policy

Con entionalE h dDDFA

Software
Engineer

C Code

Develops

Enhanced
C Code

DDFA
Compiler Enhanced

Executable

Conventional
Compiler

Software
Engineer

C Code

Conventional
Compiler Enhanced

Executable
Enhanced

C Code
DDFA

Compiler

OWASP 9

EngineerEngineer

Primary Benefits of DDFA

Application dataflow is tracked at compile and run timeApplication dataflow is tracked at compile and run time
Very low runtime overhead (many cases < 1%)

 Leverages semantic information from policy
Configurable error mitigation at run time (e g fight through)Configurable error mitigation at run time (e.g. fight through)

Policy is separate from the source code
R it h d l i li tiRemoves security concerns when developing new applications

 Including 3rd party and open-source development
Can secure existing legacy applications
R i dditi l t i t t d b ildRequires one additional step in an automated build process
Defined once and used many times
Policy can change and be re-applied as threats evolve

OWASP 10

Generality of the DDFA Approach

Traditional Tainted Data Attacks
F t St i Att kFormat String Attacks
SQL Injection
Command InjectionCommand Injection
Cross-Site Scripting

Other Security Problems
File Disclosure Vulnerabilities
L b l d S it E f tLabeled Security Enforcement
Role-Based Access Control, Mandatory Access Control
Accountable Information Flow

OWASP 11

Accountable Information Flow

Outline

Introduction and Overview

How DDFA Works

Illustrative Example Scenarios

Efficiency of DDFAEfficiency of DDFA

Wrap Up

OWASP 12

Format String Vulnerability (FSV)

String containing maliciousString containing malicious
formatting directives
introduced into program
from outside the system

int sock;
char buf[100];
sock = socket(AF_INET, SOCK_STREAM, 0);

from outside the systemrecv(sock, buf, 100, 0);

Formatted output family of
functions can cause targetfunctions can cause target
computer to execute
arbitrary commands
e g printf() sprintf()

printf(buf);

OWASP 13

e.g. printf(), sprintf()

Property Definition for FSV

Security policy begins by
defining one or more property Taint : { Tainted, { Untainted } }defining one or more
properties

p p y { , { } }
initially Untainted

Each property represents a
l tti L tti ith T N dlattice
Lattices intrinsic to data flow

analysis
L tti d t

Untainted

Lattice with Two Nodes

Lattice nodes represent
possible flow values

Flow values are meta-data
attached to program objects

Tainted

OWASP 14

attached to program objects

Annotations for Library/System Calls
(Focus is on Three Areas)()

 Introduction Introduction
Associates property values (or metadata) to memory objects as

they are introduced into a program

Propagation
Tracks the flow of memory objects and their property values

th h t ththroughout the program

Violation
d ifi if i l i i b d h Identifies if a violation occurs at runtime based on the memory

objects’ property values, which static analysis alone is not able
to do

OWASP 15

Policy - Annotating the Library Procedures (FSV)

Introduction

Annotated ProceduresOriginal Source Code

Introduction
int sock;
char buf[100];
sock = socket(AF_INET, SOCK_STREAM, 0);

procedure recv(s, buf, len, flags) {
on_entry { buf  buffer }
analyze Taint { buffer  Tainted }

}
recv(sock, buf, 100, 0);

Propagation
procedure strdup(s) {

on_entry { s  string }
on exit { return string copy

buf2 = strdup(buf);
on_exit { return  string_copy
analyze Taint { string_copy  string }

}

procedure printf(format args) {

printf(buf2);
Policy Violation

procedure printf(format, args) {
on_entry { format  format_string }
error if (Taint: format_string could-be Tainted) {

error_handler = fsv_error()
certify = fsv check(format args)

OWASP 16

p (); certify = fsv_check(format, args)
}

}

Static Data Flow Analysis (Works Backwards)

In this case, data flow analysis determines that
dynamic data flow analysis is necessary.
Source code must be instrumented.

In this case, data flow analysis proves that
dynamic data flow analysis is not necessary. No
instrumentation is needed.

Introduction

Source code must be instrumented.

recv(sock, buf, 100, 0);

Introduction
char buf[100] = “safe string”;

Propagation

, , ,

Propagation

buf2 = strdup(buf);

Propagation

buf2 = strdup(buf);

Propagation

Policy Violation
i f 2

Policy Violation

OWASP 17

printf(buf2);printf(buf2);

Instrumentation for Dynamic Data Flow Analysis

Introduction
Program is augmented with calls to DDFA library to perform dynamic
data flow analysis.

Propagation

recv(sock, buf, 100, 0);
ddfa_insert(LTAINT, buf, strlen(buf), LTAINT_TAINTED);

“buf” takes on flow value Tainted, since comes from outside systemp g
buf2 = strdup(buf);
ddfa_copy_flowval(LTAINT, buf2, buf, strlen(buf2));

C i fl l f “b f” t “b f2”

Policy Violation
if ((ddfa_check_flowval(LTAINT, buf2, LTAINT_TAINTED)) &&
(! fsv check(buf2)))

Copies flow value from “buf” to “buf2”

(! fsv_check(buf2)))
{ fsv_error(); }
else
{ printf(buf2); }

OWASP 18

For this flow path, “buf2” will be Tainted, but policy
allows “Fight Through” capability using fsv_check() so
error handler called only as last resort

Outline

Introduction and Overview

How DDFA Works

Illustrative Example Scenarios

Efficiency of DDFAEfficiency of DDFA

Wrap Up

OWASP 19

Example 1 - Format String Vulnerability

Introduction Propagation Violation

int sock;
char buf[100];
sock = socket(AF_INET, …);

printf(buf2);

root#
recv(sock, buf, 100, 0);

buf2 = strdup(buf);

…

oot# _

Hacker introduces
l f d i tf()

DDFA tracks the flow of
this “Tainted” data

bu s dup(bu);

Tainted string arrives
at printf() statementmal-formed printf()

format string via web
this Tainted data
throughout the
execution

at printf() statement

DDFA flags a runtime
violation, preventing
th l bilit fDDFA marks data

OWASP 20

the vulnerability from
being exploited by the
hacker

DDFA marks data
entering from the
web as “Tainted”

Example 1 - Format String Vulnerability

What you can’t see
St ti l i d ti ll th t fStatic analysis dramatically prunes the amount of

dynamic data flow tracking
Pruning is enabled by the annotation-basedPruning is enabled by the annotation based

compilation system
This pruning requires precise pointer analysis

OWASP 21

Pointer Analysis

Pointer analysis: Tells the compiler which
regions in memory pointers point toregions in memory pointers point to

P i t l i i f d t l t ll t tiPointer analysis is fundamental to all static
analyses, not just DDFA

A difficult problem:
Severe tradeoff between precision and scalabilitySevere tradeoff between precision and scalability
DDFA requires a fairly precise degree of precision

(flow-sensitivity)

OWASP 22

Alternative Scenario for Example 1

Security expert wants to fight
through attacks rather than simply
detect attacks
Takes existing security policyTakes existing security policy
Modifies policy to include call to new C

code to sanitize Tainted data

if (procedure printf(fmt, args)
{{

on_entry { fmt --> format_string }
error if (Taint: format_string could-be Tainted)

“Error! Tainted format string!”printf(sanitize(fmt) args);

OWASP 23

Error! Tainted format string!
}

printf(sanitize(fmt), args);

Example 2 – File Disclosure Vulnerability

Introduction Violation

fd=fopen(buf2);

Propagation
i fd=fopen(buf2);

/etc/passwd

int sock;
char buf[100];
sock = socket(AF_INET, …);

(k b f 100 0)recv(sock, buf, 100, 0);

buf2 = strdup(buf);

…

Data tagged as “File”
originating from a
“Remote” source

Hacker sends mal-
formed “finger” packet
to retrieve contents of
a password file

DDFA tracks the flow of
this finger packet Remote source

arrives at a socket
write()

DDFA t

a password file

DDFA marks Trust
of finger packet as

this finger packet
throughout the code

OWASP 24

DDFA prevents
vulnerability from
being exploited

o ge pac et as
“Remote”

Example 2 – File Disclosure Example

What is interesting in this example
Must track both Trustedness of data and Origin of g

data
Two properties instead of one are defined in policy

DDFA i bl f l i l iDDFA is able to enforce multiple properties
simultaneously

OWASP 25

Example 3 – Role Based Access Control

Introduction Propagation Violation

launch();
ac_level = authenticate();

launch();

safety_check();

…

Beetle Bailey logs on
to Missile system to

DDFA tracks the flow of
all Beetle’s activities

Beetle accidentally
attempts to invoke
launch()y

perform safety checks throughout the missile
system application

DDFA registers
hi t th t

launch()

DDFA flags a runtime
violation, preventing

OWASP 26

him to the system
as “grunt” level

p g
missile from being
launched

Example 3 – Role Based Access Control

What’s interesting in this example?
New functionality added to the system afterNew functionality added to the system after

development

Separation of concernsSeparation of concerns
Software is difficult to build and maintain
Software developer should focus on core functionalityp y
Security expert focuses on security (site-specific

security)
Compiler ensures that security code is correctly andCompiler ensures that security code is correctly and

thoroughly applied
Separation of concerns simplifies each task

OWASP 27

Outline

Introduction and Overview

How DDFA Works

Illustrative Example Scenarios

Efficiency of DDFAEfficiency of DDFA

Wrap Up

OWASP 28

Efficiency for Server Applications (FSV)

Program Original DDFA Overhead

pfinger 3.07s 3.19s 3.78%
muh 11.23ms 11.23ms < 0.01%

f 2 745MB/ 2 742MB/ 0 10%wu-ftp 2.745MB/s 2.742MB/s 0.10%
bind 3.58ms 3.57ms < 0.01%

h 6 048MB/ 6 062MB/ 0 01%apache 6.048MB/s 6.062MB/s < 0.01%

Average Increase 0.65%

Compare with 80% - 35 overhead for previous
state of the art in software-based approaches

OWASP 29

state of the art in software based approaches

Efficiency for Compute Bound Applications (FSV)

Program Overhead
gzip 51.35%
vpr 0.44%
mcf < 0.01%
crafty 0.25%
Average Increase 12.93%

Synthetic vulnerabilities were inserted into programs

Original programs contained no FS vulnerabilities; true

OWASP 30

g p g ;
overhead is 0%

Static Code Overhead (FSV)

Program Original DDFA Overhead

pfinger 49,655 49,655 0%
muh 59,880 60,488 1.01%

f 205 487 207 997 1 22%wu-ftp 205,487 207,997 1.22%
bind 215,669 219,765 1.90%

h 552 114 554 514 0 43%apache 552,114 554,514 0.43%

Average Increase 0.91%
(Si i b t)(Size in bytes)

Table excludes other programs where static analysis proves
that no instrumentation is needed

OWASP 31

that no instrumentation is needed

Outline

Introduction and Overview

How DDFA Works

Illustrative Example Scenarios

Efficiency of DDFAEfficiency of DDFA

Wrap Up

OWASP 32

Other Potential Uses of DDFA

Fault Tolerance Computing

Privacy

TestingTesting

OWASP 33

Future Plans

Retarget for popular open-source compiler

i f t t LLVM (L L l Vi t l M hi)infrastructure, LLVM (Low-Level Virtual Machine)

Supports C, C++, Java on the way

Support other languages, and possibly byte-

code or binary as input

OWASP 34

Questions

OWASP 35

